diff options
Diffstat (limited to '3834')
128 files changed, 1286 insertions, 0 deletions
diff --git a/3834/CH10/EX10.1.1/Ex10_1_1.jpg b/3834/CH10/EX10.1.1/Ex10_1_1.jpg Binary files differnew file mode 100644 index 000000000..98036dc28 --- /dev/null +++ b/3834/CH10/EX10.1.1/Ex10_1_1.jpg diff --git a/3834/CH10/EX10.1.1/Ex10_1_1.sce b/3834/CH10/EX10.1.1/Ex10_1_1.sce new file mode 100644 index 000000000..effdfae0b --- /dev/null +++ b/3834/CH10/EX10.1.1/Ex10_1_1.sce @@ -0,0 +1,14 @@ +//Fiber-optics communication technology, by Djafer K. Mynbaev and Lowell L. Scheiner
+//Example 10.1.1
+//windows 7
+//Scilab version-6.0.0
+clc;
+clear ;
+//given
+E=0.712;//the energy gap E=Ec-Ef in eV
+KBT=0.025;//Boltzman constant temperature product in eV
+e=1.6E-19;//Electrons value in Coulomb
+Y=E/KBT;
+fE= exp(-Y);//Probability of excited electrons at conduction band at room tenmperature
+
+mprintf("The probability of excited electrons at conduction band at room tenmperature = %.2f *1e-13 ",fE*1e13);//multiplication by 1e13 to change the unit to 1e-13
diff --git a/3834/CH10/EX10.1.2/Ex10_1_2.jpg b/3834/CH10/EX10.1.2/Ex10_1_2.jpg Binary files differnew file mode 100644 index 000000000..ec79ee9a4 --- /dev/null +++ b/3834/CH10/EX10.1.2/Ex10_1_2.jpg diff --git a/3834/CH10/EX10.1.2/Ex10_1_2.sce b/3834/CH10/EX10.1.2/Ex10_1_2.sce new file mode 100644 index 000000000..ed17adb6e --- /dev/null +++ b/3834/CH10/EX10.1.2/Ex10_1_2.sce @@ -0,0 +1,15 @@ +//Fiber-optics communication technology, by Djafer K. Mynbaev and Lowell L. Scheiner
+//Example 10.1.2
+//windows 7
+//Scilab version-6.0.0
+clc;
+clear ;
+//given
+T=300;//temperature in K
+kB=1.38E-23;//Boltzman constant in J/K
+E=kB*T;
+e=1.6E-19;//Electrons value in Coulomb
+Vd=0.7;;//depletion voltage in V
+Y=e*Vd/E;
+nnbynp=exp(Y);//Ratio of majority to minority charge carriers in an n type and a p type of silicon semiconductor
+mprintf("Ratio of majority to minority charge carriers in an n type and a p type of silicon semiconductor = %.2f x10^11",nnbynp/1e11);//the answer vary due to rounding
diff --git a/3834/CH10/EX10.2.1/Ex10_2_1.jpg b/3834/CH10/EX10.2.1/Ex10_2_1.jpg Binary files differnew file mode 100644 index 000000000..e94481e5a --- /dev/null +++ b/3834/CH10/EX10.2.1/Ex10_2_1.jpg diff --git a/3834/CH10/EX10.2.1/Ex10_2_1.sce b/3834/CH10/EX10.2.1/Ex10_2_1.sce new file mode 100644 index 000000000..c825a9574 --- /dev/null +++ b/3834/CH10/EX10.2.1/Ex10_2_1.sce @@ -0,0 +1,13 @@ +//Fiber-optics communication technology, by Djafer K. Mynbaev and Lowell L. Scheiner
+//Example 10.2.1
+//windows 7
+//Scilab version-6.0.0
+clc;
+clear ;
+//given
+lambda=1300;//Operating wavelength in nm
+ETAext=0.1;//External Quantum Efficiency
+e=1.6E-19;//Electrons value in Coulomb
+Ep=0.0153E-17;//photon's energy in J
+SlopeE=(Ep/e)*ETAext;//Slope Efficiency
+mprintf("Slope Efficiency = %.3f",SlopeE);
diff --git a/3834/CH10/EX10.2.2/Ex10_2_2.jpg b/3834/CH10/EX10.2.2/Ex10_2_2.jpg Binary files differnew file mode 100644 index 000000000..3dc74f174 --- /dev/null +++ b/3834/CH10/EX10.2.2/Ex10_2_2.jpg diff --git a/3834/CH10/EX10.2.2/Ex10_2_2.sce b/3834/CH10/EX10.2.2/Ex10_2_2.sce new file mode 100644 index 000000000..9fd31f92c --- /dev/null +++ b/3834/CH10/EX10.2.2/Ex10_2_2.sce @@ -0,0 +1,39 @@ +//Fiber-optics communication technology, by Djafer K. Mynbaev and Lowell L. Scheiner
+//Example 10.2.2
+//windows 7
+//Scilab version-6.0.0
+clc;
+clear ;
+//given
+
+//case 1
+lambda=840;//Operating wavelength in nm
+Eg=1248/lambda;//semiconductor bandgap in eV
+e=1.6E-19;//Electrons value in Coulomb
+V=Eg;//voltage in V
+R=1;//Reflectivity
+I=10E-3;//Current in A
+P1=I*I*R;
+P2=I*V;
+P3=P1+P2;
+Pout=1.25E-3;//Output power in W
+ETAp=Pout/P3;
+mprintf("Power Efficiency of a VCSEL diode = %.3f", ETAp);
+ETAP=ETAp*100;
+mprintf("\n Hence, Power Efficiency of a VCSEL diode = %.1f Percent ",ETAP);
+
+//case 2
+lambda2=1300;//Operating wavelength in nm
+Eg2=1248/lambda2;//semiconductor bandgap in eV
+e2=1.6E-19;//Electrons value in Coulomb
+V2=Eg2;//voltage in V
+R2=1.84;//Reflectivity
+I2=312E-3;//Current in A
+P11=I2*I2*R;
+P22=I2*V2;
+P33=P11+P22;
+Pout1=1E-3;//Output power in W
+ETAp1=Pout1/P33;
+mprintf("\nPower Efficiency of a broad area laser diode = %.3f", ETAp1);
+ETAP1=ETAp1*100;
+mprintf("\n Hence, Power Efficiency of a broad area laser diode = %.1f Percent ",ETAP1);//the answer vary due to rounding
diff --git a/3834/CH10/EX10.3.1/Ex10_3_1.jpg b/3834/CH10/EX10.3.1/Ex10_3_1.jpg Binary files differnew file mode 100644 index 000000000..f45739d1c --- /dev/null +++ b/3834/CH10/EX10.3.1/Ex10_3_1.jpg diff --git a/3834/CH10/EX10.3.1/Ex10_3_1.sce b/3834/CH10/EX10.3.1/Ex10_3_1.sce new file mode 100644 index 000000000..c5079c3e4 --- /dev/null +++ b/3834/CH10/EX10.3.1/Ex10_3_1.sce @@ -0,0 +1,17 @@ +//Fiber-optics communication technology, by Djafer K. Mynbaev and Lowell L. Scheiner
+//Example 10.3.1
+//windows 7
+//Scilab version-6.0.0
+clc;
+clear;
+//given
+Ith1=40//threshold current in mA at 25 degree centigrade
+Ith2=66//threshold current in mA at 25 degree centigrade
+T1=25;//temperature in degree centigrade for calculation of threshold current
+T2=65//temperature in degree centigrade for calculation of threshold current
+delta=2.5//threshold current change with temperature in percent per degree centigrade
+Io=Ith1/(1+(delta/100)*T1);//characteristic current in mA at 0
+x=log(Ith1/Io)//constant
+To=T1/x//characteristic temperature degree centigrade
+mprintf("Io =%0.0f mA ",Io)
+mprintf("\nTo =%0.0f degree Centigrade",To)//answer vary due to rounding
diff --git a/3834/CH10/EX10.3.2/Ex10_3_2.jpg b/3834/CH10/EX10.3.2/Ex10_3_2.jpg Binary files differnew file mode 100644 index 000000000..5c3eca2fa --- /dev/null +++ b/3834/CH10/EX10.3.2/Ex10_3_2.jpg diff --git a/3834/CH10/EX10.3.2/Ex10_3_2.sce b/3834/CH10/EX10.3.2/Ex10_3_2.sce new file mode 100644 index 000000000..3b611b7fb --- /dev/null +++ b/3834/CH10/EX10.3.2/Ex10_3_2.sce @@ -0,0 +1,29 @@ +//Fiber-optics communication technology, by Djafer K. Mynbaev and Lowell L. Scheiner
+//Example 10.3.2
+//windows 7
+//Scilab version-6.0.0
+clc;
+clear ;
+//given
+
+tau=2E-9;//Carrier recombination lifetime in s
+Ith=90E-3;//threshold current in A
+Ip=40E-3;//amplitude of modulation current in A
+//case 1
+Ib=80E-3;//Assumed bias current in A
+Td=tau*log(Ip/(Ip+Ib-Ith));
+
+mprintf("The delay time for broad-area laser diode with Ib %.2f mA= %.2f ns",Ib*1e3,Td*1E+9);
+//case 2
+Ib=70E-3;//Assumed bias current in A
+Td=tau*log(Ip/(Ip+Ib-Ith));
+
+mprintf("\nThe delay time for broad-area laser diode with Ib %.2f mA= %.2f ns",Ib*1e3,Td*1E+9);
+//case 3
+Ib=90E-3;//Assumed bias current in A
+Td=abs(tau*log(Ip/(Ip+Ib-Ith)));
+
+mprintf("\nThe delay time for broad-area laser diode with Ib %.2f mA= %.2f ns",Ib*1e3,Td*1E+9);
+//multiplication by 1e3 to convert unit to mA from A and multiplication by 1e9 to convert unit from s to ns
+
+//the answers vary due to rounding
diff --git a/3834/CH10/EX10.3.3/Ex10_3_3.jpg b/3834/CH10/EX10.3.3/Ex10_3_3.jpg Binary files differnew file mode 100644 index 000000000..1ab1b8345 --- /dev/null +++ b/3834/CH10/EX10.3.3/Ex10_3_3.jpg diff --git a/3834/CH10/EX10.3.3/Ex10_3_3.sce b/3834/CH10/EX10.3.3/Ex10_3_3.sce new file mode 100644 index 000000000..7ad3524c8 --- /dev/null +++ b/3834/CH10/EX10.3.3/Ex10_3_3.sce @@ -0,0 +1,15 @@ +//Fiber-optics communication technology, by Djafer K. Mynbaev and Lowell L. Scheiner
+//Example 10.3.3
+//windows 7
+//Scilab version-6.0.0
+clc;
+clear ;
+//given
+RIN=1E-16;//relative intensity in 1/Hz
+P=100E-6;//power received in W
+BW=100E+6;//Receiver bandwidth in Hz
+
+PN=sqrt(RIN*(P^2)*BW);//The average noise power detected by receiver W
+
+mprintf("The average noise power detected by receiver = %.2f uW",PN*1E+6);
+//multiplication by 1e6 to convert unit to W from uW
diff --git a/3834/CH10/EX10.4.1/Ex10_4_1.jpg b/3834/CH10/EX10.4.1/Ex10_4_1.jpg Binary files differnew file mode 100644 index 000000000..1baee8161 --- /dev/null +++ b/3834/CH10/EX10.4.1/Ex10_4_1.jpg diff --git a/3834/CH10/EX10.4.1/Ex10_4_1.sce b/3834/CH10/EX10.4.1/Ex10_4_1.sce new file mode 100644 index 000000000..2b2f44718 --- /dev/null +++ b/3834/CH10/EX10.4.1/Ex10_4_1.sce @@ -0,0 +1,23 @@ +//Fiber-optics communication technology, by Djafer K. Mynbaev and Lowell L. Scheiner
+//Example 10.4.1
+//windows 7
+//Scilab version-6.0.0
+clc;
+clear ;
+//given
+
+//case 1
+R=0.035;//Reflectivity for the air-silica interface
+NAt=0.275;//Typical Numerical Aperture in a GI multimode fiber
+D=1;//Ratio of the diameter of the fiber core to the diameter of the source
+X=2*(D^2);
+Y=1-1/X;
+ETAcgi=(NAt^2)*Y;//The amount of light coupling in a GI multimode fiber
+
+mprintf("The amount of light coupling in a GI multimode fiber is = %.3f",ETAcgi);
+
+//case 2
+NAt2=0.13;//Typical Numerical Aperture in a SI singlemode fiber
+EATcsi=NAt2^2;//The amount of light coupling in a SI singlemode fiber
+mprintf("\nThe amount of light coupling in a SI singlemode fiber is = %.3f",EATcsi);
+//the answers vary due to rounding
diff --git a/3834/CH11/EX11.1.1/Ex11_1_1.jpg b/3834/CH11/EX11.1.1/Ex11_1_1.jpg Binary files differnew file mode 100644 index 000000000..9bf840b65 --- /dev/null +++ b/3834/CH11/EX11.1.1/Ex11_1_1.jpg diff --git a/3834/CH11/EX11.1.1/Ex11_1_1.sce b/3834/CH11/EX11.1.1/Ex11_1_1.sce new file mode 100644 index 000000000..d5d2e1f4c --- /dev/null +++ b/3834/CH11/EX11.1.1/Ex11_1_1.sce @@ -0,0 +1,13 @@ +//Fiber-optics communication technology, by Djafer K. Mynbaev and Lowell L. Scheiner
+//Example 11.1.1
+//windows 7
+//Scilab version-6.0.0
+clc;
+clear ;
+//given
+
+R=0.85;//Responsivity of photodiode in A/W
+P=1E-3;//Input power saturation in W
+
+Ip=R*P;//The photocurrent in A
+mprintf("The photocurrent =%.2f mA",Ip*1E+3);
diff --git a/3834/CH11/EX11.1.2/Ex11_1_2.jpg b/3834/CH11/EX11.1.2/Ex11_1_2.jpg Binary files differnew file mode 100644 index 000000000..9e49e9001 --- /dev/null +++ b/3834/CH11/EX11.1.2/Ex11_1_2.jpg diff --git a/3834/CH11/EX11.1.2/Ex11_1_2.sce b/3834/CH11/EX11.1.2/Ex11_1_2.sce new file mode 100644 index 000000000..f18ba0122 --- /dev/null +++ b/3834/CH11/EX11.1.2/Ex11_1_2.sce @@ -0,0 +1,12 @@ +//Fiber-optics communication technology, by Djafer K. Mynbaev and Lowell L. Scheiner
+//Example 10.3.3
+//windows 7
+//Scilab version-6.0.0
+clc;
+clear ;
+//given
+ETA=0.7;//The quantum efficiency
+lambda=1664;//Operating wavelength in nm
+R=(ETA/1248)*lambda;//Responsivity of an InGaAs photodiode A/W
+
+mprintf("Responsivity of an InGaAs photodiode =%.3f A/W",R);
diff --git a/3834/CH11/EX11.1.3/Ex11_1_3.jpg b/3834/CH11/EX11.1.3/Ex11_1_3.jpg Binary files differnew file mode 100644 index 000000000..852be5614 --- /dev/null +++ b/3834/CH11/EX11.1.3/Ex11_1_3.jpg diff --git a/3834/CH11/EX11.1.3/Ex11_1_3.sce b/3834/CH11/EX11.1.3/Ex11_1_3.sce new file mode 100644 index 000000000..53e789370 --- /dev/null +++ b/3834/CH11/EX11.1.3/Ex11_1_3.sce @@ -0,0 +1,13 @@ +//Fiber-optics communication technology, by Djafer K. Mynbaev and Lowell L. Scheiner
+//Example 11.1.3
+//windows 7
+//Scilab version-6.0.0
+clc;
+clear ;
+//given
+
+ETA=0.7;//The quantum efficiency
+alphaabs=1E+5;//absorption coefficient
+w=(log(1-ETA))/(-alphaabs);//The width of the depletion region of an InGaAs photodiode um
+
+mprintf("The width of the depletion region of an InGaAs photodiode =%.1f um",w*1E+6);//Multiplication by 1e6 to convert unit from m to um
diff --git a/3834/CH11/EX11.1.4/Ex11_1_4.jpg b/3834/CH11/EX11.1.4/Ex11_1_4.jpg Binary files differnew file mode 100644 index 000000000..9c2e98c0d --- /dev/null +++ b/3834/CH11/EX11.1.4/Ex11_1_4.jpg diff --git a/3834/CH11/EX11.1.4/Ex11_1_4.sce b/3834/CH11/EX11.1.4/Ex11_1_4.sce new file mode 100644 index 000000000..b25c0cd74 --- /dev/null +++ b/3834/CH11/EX11.1.4/Ex11_1_4.sce @@ -0,0 +1,12 @@ +//Fiber-optics communication technology, by Djafer K. Mynbaev and Lowell L. Scheiner
+//Example 11.1.4
+//windows 7
+//Scilab version-6.0.0
+clc;
+clear ;
+//given
+tautr=100//transit time in ps
+tauRC=100//time constant induced by a capacitor in ps
+BWPD1=1/(2*%pi*(tautr+tauRC))
+
+mprintf("\nBandwidth of InGaAs photodiode = %.3f Gbit/s",BWPD1*1E3);//multiplication by 1e3 to convert unit from 10^12 bits/s to Gbits/s
diff --git a/3834/CH11/EX11.3.1/Ex11_3_1.jpg b/3834/CH11/EX11.3.1/Ex11_3_1.jpg Binary files differnew file mode 100644 index 000000000..c20408ad9 --- /dev/null +++ b/3834/CH11/EX11.3.1/Ex11_3_1.jpg diff --git a/3834/CH11/EX11.3.1/Ex11_3_1.sce b/3834/CH11/EX11.3.1/Ex11_3_1.sce new file mode 100644 index 000000000..954f1a8dc --- /dev/null +++ b/3834/CH11/EX11.3.1/Ex11_3_1.sce @@ -0,0 +1,35 @@ +//Fiber-optics communication technology, by Djafer K. Mynbaev and Lowell L. Scheiner
+//Example 11.3.1
+//windows 7
+//Scilab version-6.0.0
+clc;
+clear ;
+//given
+
+Pin=0.1E-6;//Average input power in W
+lambda=1550;//Operating wavelength in nm
+R=1;//Responsivity of an MF-432 PIN photodiode
+Ip=R*Pin;//photocurrent in A
+e=1.6E-19;//Electrons value in Coulomb
+BWpd=2.5E+9;//Bandwidth of an MF-432 PIN photodiode in Hz
+Is=sqrt(2*e*Ip*BWpd);
+Isn=Is/sqrt(BWpd);//shot noise current in A/sqrt(Hz)
+
+Kb=1.38E-23;//Boltzman constant in J/K
+T=300;//Room temperature in K
+P=Kb*T;
+Rl=50E+3;
+x=(4*P)/Rl;
+It=sqrt(x*BWpd);
+Itn=It/sqrt(BWpd);//thermal noise current in A/sqrt(Hz)
+
+id=3E-9;//average dark noise current in A
+Id=sqrt(2*e*id*BWpd);
+Idn=Id/sqrt(BWpd);//dark noise current in A/sqrt(Hz)
+
+Inoise=sqrt(Is^2+It^2+Id^2);//RMS value of noise current for an MF-432 PIN photodiode in A
+mprintf("RMS value of noise current for an MF-432 PIN photodiode = %.1f nA", Inoise*1E+9);//Multiplication by 1e9 to convert unit from A to nA
+
+InoiseN=sqrt(Isn^2+Itn^2+Idn^2);//Bandwidth value of noise current for an MF-432 PIN photodiode in A/sqrt(Hz)
+mprintf("\nBandwidth value of noise current for an MF-432 PIN photodiode = %.2f x10^-4 nA/sqrt(Hz)", InoiseN*1E+13)
+//Multiplication by 1e12 to convert unit from A to pA
diff --git a/3834/CH11/EX11.3.2/Ex11_3_2.jpg b/3834/CH11/EX11.3.2/Ex11_3_2.jpg Binary files differnew file mode 100644 index 000000000..8f5d46dc2 --- /dev/null +++ b/3834/CH11/EX11.3.2/Ex11_3_2.jpg diff --git a/3834/CH11/EX11.3.2/Ex11_3_2.sce b/3834/CH11/EX11.3.2/Ex11_3_2.sce new file mode 100644 index 000000000..e9600fb00 --- /dev/null +++ b/3834/CH11/EX11.3.2/Ex11_3_2.sce @@ -0,0 +1,17 @@ +//Fiber-optics communication technology, by Djafer K. Mynbaev and Lowell L. Scheiner
+//Example 11.3.2
+//windows 7
+//Scilab version-6.0.0
+clc;
+clear ;
+//given
+
+Pin=0.1E-6;//Average input power in W
+lambda=1550;//Operating wavelength in nm
+T=300;//Room temperature in K
+R=1;//Responsivity of an MF-432 PIN photodiode in A/W
+X=R^2*Pin^2;
+Inoise=30.2E-9;//RMS value of noise current for an MF-432 PIN photodiode
+
+SNR=X/(Inoise^2);//SNR of an MF-432 PIN photodiode
+mprintf("SNR of an MF-432 PIN photodiode = %.2f",SNR);//the answer vary due to rounding
diff --git a/3834/CH11/EX11.3.3/Ex11_3_3.jpg b/3834/CH11/EX11.3.3/Ex11_3_3.jpg Binary files differnew file mode 100644 index 000000000..537d2ae3b --- /dev/null +++ b/3834/CH11/EX11.3.3/Ex11_3_3.jpg diff --git a/3834/CH11/EX11.3.3/Ex11_3_3.sce b/3834/CH11/EX11.3.3/Ex11_3_3.sce new file mode 100644 index 000000000..660ab5f03 --- /dev/null +++ b/3834/CH11/EX11.3.3/Ex11_3_3.sce @@ -0,0 +1,25 @@ +//Fiber-optics communication technology, by Djafer K. Mynbaev and Lowell L. Scheiner
+//Example 11.3.3
+//windows 7
+//Scilab version-6.0.0
+clc;
+clear ;
+//given
+
+M=20;//Multiplication factor of a photodiode
+Pin=0.1E-6;//Average input power in W
+T=300;//Room temperature in K
+BWpd=2.5E+9;//Bandwidth of a photodiode in Hz
+Rl=50E+3;
+R=0.9;//Responsivity of a photodiode
+e=1.6E-19;//Electrons value in Coulomb
+
+//case 1
+FsSi=2.49;//excess noise factor of Si avalanche photodiode
+SNRs=(R*Pin)/(2*e*FsSi*BWpd);//SNR of Si avalanche photodiode
+mprintf("SNR of Si avalanche photodiode = %.2f",SNRs);//the answer vary due to rounding
+
+//case 2
+FsInGaAs=12.78;//excess noise factor of InGaAs avalanche photodiode
+SNRt=(R*Pin)/(2*e*FsInGaAs*BWpd);//SNR of InGaAs avalanche photodiode
+mprintf("\nSNR of InGaAs avalanche photodiode = %.2f",SNRt);//the answer vary due to rounding
diff --git a/3834/CH11/EX11.3.4/Ex11_3_4.jpg b/3834/CH11/EX11.3.4/Ex11_3_4.jpg Binary files differnew file mode 100644 index 000000000..972aaac05 --- /dev/null +++ b/3834/CH11/EX11.3.4/Ex11_3_4.jpg diff --git a/3834/CH11/EX11.3.4/Ex11_3_4.sce b/3834/CH11/EX11.3.4/Ex11_3_4.sce new file mode 100644 index 000000000..4ec73e5ca --- /dev/null +++ b/3834/CH11/EX11.3.4/Ex11_3_4.sce @@ -0,0 +1,28 @@ +//Fiber-optics communication technology, by Djafer K. Mynbaev and Lowell L. Scheiner
+//Example 11.3.4
+//windows 7
+//Scilab version-6.0.0
+clc;
+clear;
+//given
+
+NEPnorm1=3.3E-12;//Bandwidth normalised NEP in W/sqrt(Hz) from 0-10MHz
+BW1=10E+6;//Bandwidth for case 1 in Hz
+
+x=NEPnorm1*sqrt(BW1);
+
+NEPnorm2=30E-12;//Bandwidth normalised NEP in W/sqrt(Hz)from 10-125 MHz
+BW2=115E+6;//Bandwidth for case 2 in Hz
+
+y=NEPnorm2*sqrt(BW2);
+
+NEP=sqrt(x^2+y^2);
+mprintf("Noise-Equivalent power(NEP) = %.1f nW",NEP*1E+9);
+
+Rmax=1.1;//Maximum value of responsivity of a photodiode in A/W at 1550nm
+Rlambda=0.9;//Responsivity of a photodiode for given wavelength 1300nm in A/W
+BW=125E+6;//Bandwidth in Hz
+NEPlambda1=NEPnorm2*(Rmax/Rlambda)*sqrt(BW);
+mprintf("\nNoise-Equivalent power(NEP) for given wavelength lambda=1550nm = %.1f nW",NEPlambda1*1E9);
+
+
diff --git a/3834/CH11/EX11.3.5/Ex11_3_5.jpg b/3834/CH11/EX11.3.5/Ex11_3_5.jpg Binary files differnew file mode 100644 index 000000000..7c58d9504 --- /dev/null +++ b/3834/CH11/EX11.3.5/Ex11_3_5.jpg diff --git a/3834/CH11/EX11.3.5/Ex11_3_5.sce b/3834/CH11/EX11.3.5/Ex11_3_5.sce new file mode 100644 index 000000000..e097b8f7e --- /dev/null +++ b/3834/CH11/EX11.3.5/Ex11_3_5.sce @@ -0,0 +1,22 @@ +//Fiber-optics communication technology, by Djafer K. Mynbaev and Lowell L. Scheiner
+//Example 11.3.5
+//windows 7
+//Scilab version-6.0.0
+clc;
+clear ;
+//given
+
+BER=1E-9;//bit error rate
+Kb=1.38E-23;//Boltzman constant in J/K
+T=300;//Room temperature in K
+P=Kb*T;//constant
+Rl=50E+3;//load resistance in ohm
+x=(4*P)/Rl;//constant
+BWpd=2.5e9//Bandwidth of MF-432 in Hz
+R=1//responsivity in A/W from data sheet
+It=sqrt(x*BWpd);
+Q=6;
+e=1.6E-19;//Electrons value in Coulomb
+
+Pmin=(It+e*Q*BWpd)*(Q/R);//The minimal optical power-photodiode sensitivity Pmin in W
+mprintf("The minimal optical power-photodiode sensitivity Pmin= %.2f dBm",10*log10(Pmin/1e-3));//the answer vary due to rounding//division by 1e-3 to convert unit from dB to dBm
diff --git a/3834/CH12/EX12.2.1/Ex12_2_1.jpg b/3834/CH12/EX12.2.1/Ex12_2_1.jpg Binary files differnew file mode 100644 index 000000000..93828ad7a --- /dev/null +++ b/3834/CH12/EX12.2.1/Ex12_2_1.jpg diff --git a/3834/CH12/EX12.2.1/Ex12_2_1.sce b/3834/CH12/EX12.2.1/Ex12_2_1.sce new file mode 100644 index 000000000..3f8dbab99 --- /dev/null +++ b/3834/CH12/EX12.2.1/Ex12_2_1.sce @@ -0,0 +1,17 @@ +//Fiber Optics Communication Technology, by Djafer K. Mynbaev and Lovell L.scheiner
+//Windows 8
+//Scilab version- 6.0.0
+//Example 12.2.1
+clc;
+clear ;
+//given
+
+deltaf=100E9;//spacing in Hz
+lambda=1550;//wavelength in nm
+c=3E17;//speed of light in nm/s
+f=c/lambda;
+
+x=1/(f*f);
+deltalambda=c*deltaf*x;//Spacing between channels in nm
+
+mprintf("Spacing between channels is = %.2f nm",deltalambda);
diff --git a/3834/CH12/EX12.3.1/Ex12_3_1.jpg b/3834/CH12/EX12.3.1/Ex12_3_1.jpg Binary files differnew file mode 100644 index 000000000..f3661a622 --- /dev/null +++ b/3834/CH12/EX12.3.1/Ex12_3_1.jpg diff --git a/3834/CH12/EX12.3.1/Ex12_3_1.sce b/3834/CH12/EX12.3.1/Ex12_3_1.sce new file mode 100644 index 000000000..44e500d0b --- /dev/null +++ b/3834/CH12/EX12.3.1/Ex12_3_1.sce @@ -0,0 +1,27 @@ +//Fiber Optics Communication Technology, by Djafer K. Mynbaev and Lovell L.scheiner
+//Windows 8
+//Scilab version- 6.0.0
+//Example 12.3.1
+clc;
+clear ;
+//given
+
+R=0.32;//Reflectance (power reflection coeeficient)
+
+//case 1 Gs value assumed as 2
+Gs=2;//assumed single-pass amplification factor
+
+x=Gs*((1-R)^2);
+y=(1-R*Gs)^2;
+Gfpa=x/y;
+
+mprintf("Gain of Fabry-Perot semiconductor optical amplifier = %.2f or %.1f dB for Gs=2",Gfpa,10*log10(Gfpa));
+
+//case 2 Gs value assumed as 3
+Gs2=3;//assumed single-pass amplification factor
+
+x2=Gs2*((1-R)^2);
+y2=(1-R*Gs2)^2;
+Gfpa2=x2/y2;//Gain of Fabry-Perot semiconductor optical amplifier
+
+mprintf("\nGain of Fabry-Perot semiconductor optical amplifier = %.2f or %.1f dB for Gs=3",Gfpa2,10*log10(Gfpa2));
diff --git a/3834/CH12/EX12.3.2/Ex12_3_2.jpg b/3834/CH12/EX12.3.2/Ex12_3_2.jpg Binary files differnew file mode 100644 index 000000000..f86e2b991 --- /dev/null +++ b/3834/CH12/EX12.3.2/Ex12_3_2.jpg diff --git a/3834/CH12/EX12.3.2/Ex12_3_2.sce b/3834/CH12/EX12.3.2/Ex12_3_2.sce new file mode 100644 index 000000000..5893eca02 --- /dev/null +++ b/3834/CH12/EX12.3.2/Ex12_3_2.sce @@ -0,0 +1,22 @@ +//Fiber Optics Communication Technology, by Djafer K. Mynbaev and Lovell L.scheiner
+//Windows 8
+//Scilab version- 6.0.0
+//Example 12.3.2
+clc;
+clear ;
+//given
+
+g=106;//maximum gain coefficient in 1/cm
+alpha=14;//loss coefficient of a cavity in 1/cm
+GAMA=0.8;//confinement factor
+L1=50E-3;//assumed length of a typical travelling-wave semiconductor amplifier in cm
+y=GAMA*g-alpha;
+z=y*L1;
+Gs1=exp(z);//Gain of a travelling-wave semiconductor amplifier
+mprintf("Gain of a travelling-wave semiconductor amplifier = %.2f.or %.1f ",Gs1,10*log10(Gs1));
+//case 2
+L2=100E-3;//assumed length of a typical travelling-wave semiconductor amplifier in cm
+y=GAMA*g-alpha;
+z=y*L2;
+Gs2=exp(z);//Gain of a travelling-wave semiconductor amplifier
+mprintf("\nGain of a travelling-wave semiconductor amplifier = %.2f.or %.1f ",Gs2,10*log10(Gs2));
diff --git a/3834/CH12/EX12.3.3/Ex12_3_3.jpg b/3834/CH12/EX12.3.3/Ex12_3_3.jpg Binary files differnew file mode 100644 index 000000000..929e7762f --- /dev/null +++ b/3834/CH12/EX12.3.3/Ex12_3_3.jpg diff --git a/3834/CH12/EX12.3.3/Ex12_3_3.sce b/3834/CH12/EX12.3.3/Ex12_3_3.sce new file mode 100644 index 000000000..5c08c844f --- /dev/null +++ b/3834/CH12/EX12.3.3/Ex12_3_3.sce @@ -0,0 +1,17 @@ +//Fiber Optics Communication Technology, by Djafer K. Mynbaev and Lovell L.scheiner
+//Windows 8
+//Scilab version- 6.0.0
+//Example 12.3.3
+clc;
+clear;
+//given
+
+x=0.96;//assumed R*Gs value
+L=500E-4;//assumed length of a typical travelling-wave semiconductor amplifier in cm
+n=3.6;//refractive index of SOA medium
+c=3e10//spped of light in vaccum in cm/s
+v=c/n//speed of light within resonant cavity in cm/s
+y=asin((1-x)/(2*sqrt(x)));
+BWfpa=((v/L)*y);//Bandwidth of Fabry-perot semiconductor amplifier
+mprintf("Bandwidth of Fabry-perot semiconductor amplifier = %.2f *10^9 rad/s.",BWfpa/1e9);//division by 1e9 to convert unit from rad/s to 10^9 rad/sec
+//the answer given in the book is wrong//
diff --git a/3834/CH12/EX12.3.4/Ex12_3_4.jpg b/3834/CH12/EX12.3.4/Ex12_3_4.jpg Binary files differnew file mode 100644 index 000000000..cd9cc69a6 --- /dev/null +++ b/3834/CH12/EX12.3.4/Ex12_3_4.jpg diff --git a/3834/CH12/EX12.3.4/Ex12_3_4.sce b/3834/CH12/EX12.3.4/Ex12_3_4.sce new file mode 100644 index 000000000..89fe16692 --- /dev/null +++ b/3834/CH12/EX12.3.4/Ex12_3_4.sce @@ -0,0 +1,20 @@ +//Fiber Optics Communication Technology, by Djafer K. Mynbaev and Lovell L.scheiner
+//Windows 8
+//Scilab version- 6.0.0
+//Example 12.3.4
+clc;
+clear ;
+//given
+
+Pis=300E-6;//input-signal power in W
+Pin=30E-9;//input noise power in w
+B=1E-9;//Bandwidth in m
+Pos=60E-3;//output signal power in W
+Pon=20E-6;// output noise power in W
+
+SNRin=Pis/Pin;
+SNRout=Pos/Pon;
+
+Fn=SNRin/SNRout;
+
+mprintf("Noise figure of an optical amplifier = %.2f or %.1fdB",Fn,10*log10(Fn));
diff --git a/3834/CH12/EX12.3.5/Ex12_3_5.jpg b/3834/CH12/EX12.3.5/Ex12_3_5.jpg Binary files differnew file mode 100644 index 000000000..d636b841f --- /dev/null +++ b/3834/CH12/EX12.3.5/Ex12_3_5.jpg diff --git a/3834/CH12/EX12.3.5/Ex12_3_5.sce b/3834/CH12/EX12.3.5/Ex12_3_5.sce new file mode 100644 index 000000000..8b0d824ee --- /dev/null +++ b/3834/CH12/EX12.3.5/Ex12_3_5.sce @@ -0,0 +1,20 @@ +//Fiber Optics Communication Technology, by Djafer K. Mynbaev and Lovell L.scheiner
+//Windows 8
+//Scilab version- 6.0.0
+//Example 12.3.5
+clc;
+clear ;
+//given
+
+lambda=1300E-9;//operating wavelength in m
+c=3E8;//speed of light in m
+f=c/lambda;
+hf=1.53E-19;//photon energy in V
+nsp=3;//spontaneous emission factor
+G=1000;//by converting gain into absolut no.
+deltalambda=40E-9;//bandwidth of TWA in m
+//BW=f*(((deltalambda)/lambda)^2);//it is not giving correct answer
+BW=1.775E12;
+P_ASE = 2*nsp*hf*G*BW;//ASE power generated in mW
+
+mprintf("ASE power generated= %.1f mW",P_ASE*1000);//multiplication by 1e3 to convert unit from W to mW
diff --git a/3834/CH12/EX12.4.1/Ex12_4_1.jpg b/3834/CH12/EX12.4.1/Ex12_4_1.jpg Binary files differnew file mode 100644 index 000000000..739fad669 --- /dev/null +++ b/3834/CH12/EX12.4.1/Ex12_4_1.jpg diff --git a/3834/CH12/EX12.4.1/Ex12_4_1.sce b/3834/CH12/EX12.4.1/Ex12_4_1.sce new file mode 100644 index 000000000..0ed60d0bb --- /dev/null +++ b/3834/CH12/EX12.4.1/Ex12_4_1.sce @@ -0,0 +1,23 @@ +//Fiber Optics Communication Technology, by Djafer K. Mynbaev and Lovell L.scheiner
+//Windows 8
+//Scilab version- 6.0.0
+//Example 12.4.1
+clc;
+clear ;
+//given
+
+//case 1
+Pin=300E-6;//light input power in W
+Pout=60E-3;//output power in W
+
+Gain=Pout/Pin;//Gain
+x=log10(Gain);
+Gdb=10*x;//Gain of erbium-doped fiber for case in dB
+
+mprintf("Gain of erbium-doped fiber for case 1 = %.0f dB",Gdb);
+
+//case 2
+Pase=30E-6;//ASE power in W
+
+Gdb2=10*log10(Gain-(Pase/Pin));//Gain of erbium-doped fiber for case 2 in dB
+mprintf("\nGain of erbium-doped fiber for case 2 = %.0f dB",Gdb);
diff --git a/3834/CH12/EX12.4.2/Ex12_4_2.jpg b/3834/CH12/EX12.4.2/Ex12_4_2.jpg Binary files differnew file mode 100644 index 000000000..fb678dc95 --- /dev/null +++ b/3834/CH12/EX12.4.2/Ex12_4_2.jpg diff --git a/3834/CH12/EX12.4.2/Ex12_4_2.sce b/3834/CH12/EX12.4.2/Ex12_4_2.sce new file mode 100644 index 000000000..247b79e3f --- /dev/null +++ b/3834/CH12/EX12.4.2/Ex12_4_2.sce @@ -0,0 +1,18 @@ +//Fiber Optics Communication Technology, by Djafer K. Mynbaev and Lovell L.scheiner
+//Windows 8
+//Scilab version- 6.0.0
+//Example 12.4.2
+clc;
+clear ;
+//given
+
+w1=10.5E-6;//MFD of transmission fibre in m
+lambda=1550E-9;//operating wavelength in m
+w2=5.3E-6;//assumed average MFD of Pirelli EDF-PAX-01 Fiber in m
+
+a=w1*w2;
+y=w2^2+w1^2;
+z=(2*a)/y;
+
+Ldb=-10*log10(z^2);//Connection loss in transmission fibre in dB
+mprintf("Connection loss in transmission fibre = %.2f dB",Ldb);//the answer vary due to rounding
diff --git a/3834/CH13/EX13.1.1/Ex13_1_1.jpg b/3834/CH13/EX13.1.1/Ex13_1_1.jpg Binary files differnew file mode 100644 index 000000000..5c9f318c2 --- /dev/null +++ b/3834/CH13/EX13.1.1/Ex13_1_1.jpg diff --git a/3834/CH13/EX13.1.1/Ex13_1_1.sce b/3834/CH13/EX13.1.1/Ex13_1_1.sce new file mode 100644 index 000000000..0b599f0d9 --- /dev/null +++ b/3834/CH13/EX13.1.1/Ex13_1_1.sce @@ -0,0 +1,24 @@ +//Fiber Optics Communication Technology, by Djafer K. Mynbaev and Lovell L.scheiner
+//Windows 8
+//Scilab version- 6.0.0
+//Example 13.1.1
+clc;
+clear ;
+//given
+
+lambda1=1300E-9;//Wavelength of lambda 1 in m
+lambda2=1550E-9;//Wavelength of lambda 2 in m
+DELTA=0.0031;//given for SM fiber
+delta=2*DELTA;//relative refractive index
+a=4E-6;//assumed fiber core radius in m
+u=12E-6;//distance between 2 fiber axes in m
+w=u/a;//seperation between two fibers in m
+
+k1=411.06;//coupling coefficient for 1310nm
+k2=852.47;//coupling coefficient for 1550nm
+
+//since the arguement of raised sine and cosine series reaches Pi/4=0.785 hence k*L=785 gives:
+Lc1=785/k1;//For 1300nm, Coupling length in mm
+mprintf("For 1300nm, Coupling length= %.2f mm",Lc1);
+Lc2=785/k2;//For 1550nm, Coupling length in mm
+mprintf("\nFor 1550nm, Coupling length= %.2f mm",Lc2);
diff --git a/3834/CH13/EX13.2.1/Ex13_2_1.jpg b/3834/CH13/EX13.2.1/Ex13_2_1.jpg Binary files differnew file mode 100644 index 000000000..0e0dbdce6 --- /dev/null +++ b/3834/CH13/EX13.2.1/Ex13_2_1.jpg diff --git a/3834/CH13/EX13.2.1/Ex13_2_1.sce b/3834/CH13/EX13.2.1/Ex13_2_1.sce new file mode 100644 index 000000000..f18d08b29 --- /dev/null +++ b/3834/CH13/EX13.2.1/Ex13_2_1.sce @@ -0,0 +1,27 @@ +//Fiber Optics Communication Technology, by Djafer K. Mynbaev and Lovell L.scheiner
+//Windows 8
+//Scilab version- 6.0.0
+//Example 13.2.1
+clc;
+clear ;
+//given
+
+//case 1
+lambda1=1540.56E-9;//wavelength in m
+lambda2=1541.35E-9;//wavelength in m
+d=5E-6;//grating pitch in m
+
+x=lambda1/d;
+theta1=asind(x);////Angle of separation in deg
+y=lambda2/d;
+theta2=asind(y);//Angle of separation in deg
+
+Asep=theta2-theta1;//Angle of separation in deg
+mprintf("Angle of separation = %.3f deg.",Asep);
+
+//case 2
+
+z=tand(theta2)-tand(theta1);
+L=245E-6/z;//Length required to separate wavelength in m
+
+mprintf("\nLength required to separate wavelength = %.3f m",L);//the answer vary due to rounding
diff --git a/3834/CH13/EX13.3.1/Ex13_3_1.jpg b/3834/CH13/EX13.3.1/Ex13_3_1.jpg Binary files differnew file mode 100644 index 000000000..ee6eb5158 --- /dev/null +++ b/3834/CH13/EX13.3.1/Ex13_3_1.jpg diff --git a/3834/CH13/EX13.3.1/Ex13_3_1.sce b/3834/CH13/EX13.3.1/Ex13_3_1.sce new file mode 100644 index 000000000..3fbcd5cd1 --- /dev/null +++ b/3834/CH13/EX13.3.1/Ex13_3_1.sce @@ -0,0 +1,21 @@ +//Fiber Optics Communication Technology, by Djafer K. Mynbaev and Lovell L.scheiner
+//Windows 8
+//Scilab version- 6.0.0
+//Example 13.3.1
+clc;
+clear ;
+//given
+
+//case 1
+deltan=0.07;//Difference between refractive indexes of TE and TM modes
+v=3.75E3;//velocity of sound in LiNb)3 in m/s
+lambda=1540.56E-9;//optical wavelength in m
+L=22E-3;//length of acousto-optic interaction
+
+LAMDA=lambda/deltan;//wavelength for period of grating
+Fsaw=v/LAMDA;//Frequency of surface acoustic wave in MHz
+mprintf("Frequency of surface acoustic wave = %.2f MHz",Fsaw/1e6);
+
+//case 2
+t_tun=(L/v)*1E6;//Tuning time acousto-optic interaction in us
+mprintf("\nTuning time acousto-optic interaction = %.2f us",t_tun);
diff --git a/3834/CH13/EX13.4.1/Ex13_4_1.jpg b/3834/CH13/EX13.4.1/Ex13_4_1.jpg Binary files differnew file mode 100644 index 000000000..3c54554f6 --- /dev/null +++ b/3834/CH13/EX13.4.1/Ex13_4_1.jpg diff --git a/3834/CH13/EX13.4.1/Ex13_4_1.sce b/3834/CH13/EX13.4.1/Ex13_4_1.sce new file mode 100644 index 000000000..1c029ddaf --- /dev/null +++ b/3834/CH13/EX13.4.1/Ex13_4_1.sce @@ -0,0 +1,20 @@ +//Fiber Optics Communication Technology, by Djafer K. Mynbaev and Lovell L.scheiner
+//Windows 8
+//Scilab version- 6.0.0
+//Example 13.4.1
+clc;
+clear ;
+//given
+
+
+Oe=(10^3)/(4*%pi);
+pfib=0.0128/Oe;//verdet's angle min/Oe-cm for silica fiber
+pcry=9*60/Oe;//verdet's angle min/Oe-cm for BIG(Bi-substituted iron garnet) crystal
+H=1000*Oe;//strength of magnetic field in A/m
+phi=45*60;//angle in minutes
+
+Lfib=phi/(pfib*H);//Length of faraday rotators made from silica fiber in cm
+mprintf("Length of faraday rotators made from silica fiber= %.2f cm",Lfib);
+
+Lcry=phi/(pcry*H);//Length of faraday rotators made from silica fiber in mm
+mprintf("\nLength of faraday rotators made from silica fiber= %.2f mm",Lcry*10);
diff --git a/3834/CH14/EX14.1.1/Ex14_1_1.jpg b/3834/CH14/EX14.1.1/Ex14_1_1.jpg Binary files differnew file mode 100644 index 000000000..5d87cde80 --- /dev/null +++ b/3834/CH14/EX14.1.1/Ex14_1_1.jpg diff --git a/3834/CH14/EX14.1.1/Ex14_1_1.sce b/3834/CH14/EX14.1.1/Ex14_1_1.sce new file mode 100644 index 000000000..68068f51b --- /dev/null +++ b/3834/CH14/EX14.1.1/Ex14_1_1.sce @@ -0,0 +1,14 @@ +//Fiber Optics Communication Technology, by Djafer K. Mynbaev and Lovell L.scheiner
+//Windows 8
+//Scilab version- 6.0.0
+//Example 14.1.1
+clc;
+clear;
+//given
+H=4.16;//Information carrying capacity(that is bandwidth) of a transmission line in Mbit
+C=56;//time of transmission in Kbit/s
+
+//By Hartley's law
+T=(H*1E6)/(C*1E3);//Time for downloading in s
+
+mprintf("It takes %.2f sec to download %.2f bits from internet to PC",T,H);//the answer given in book is wrong
diff --git a/3834/CH14/EX14.1.2/Ex14_1_2.jpg b/3834/CH14/EX14.1.2/Ex14_1_2.jpg Binary files differnew file mode 100644 index 000000000..fbf71f2ee --- /dev/null +++ b/3834/CH14/EX14.1.2/Ex14_1_2.jpg diff --git a/3834/CH14/EX14.1.2/Ex14_1_2.sce b/3834/CH14/EX14.1.2/Ex14_1_2.sce new file mode 100644 index 000000000..88f74079a --- /dev/null +++ b/3834/CH14/EX14.1.2/Ex14_1_2.sce @@ -0,0 +1,22 @@ +//Fiber Optics Communication Technology, by Djafer K. Mynbaev and Lovell L.scheiner
+//Windows 8
+//Scilab version- 6.0.0
+//Example 14.1.2
+clc;
+clear ;
+//given
+
+lambda=1310;//operating wavelength in nm
+Transport_line=36;//Length of transport line in km
+Power_budget=10;//linked power budget in dB
+Loss_singlemode_fiber=0.6;//loss of SM fiber in dB/km
+
+
+Linkloss=Loss_singlemode_fiber*Transport_line;//total link loss in dB
+
+mprintf("Link loss = %.1f dB\n ",Linkloss);
+if (Power_budget < Linkloss) then
+mprintf("Hence, we need to use an in-line amplifier");
+else
+ mprintf("Hence, we need not use an in-line amplifier");
+end
diff --git a/3834/CH2/EX2.2.1/Ex2_2_1.jpg b/3834/CH2/EX2.2.1/Ex2_2_1.jpg Binary files differnew file mode 100644 index 000000000..a0a9729be --- /dev/null +++ b/3834/CH2/EX2.2.1/Ex2_2_1.jpg diff --git a/3834/CH2/EX2.2.1/Ex2_2_1.sce b/3834/CH2/EX2.2.1/Ex2_2_1.sce new file mode 100644 index 000000000..0e03f0b4b --- /dev/null +++ b/3834/CH2/EX2.2.1/Ex2_2_1.sce @@ -0,0 +1,13 @@ +//Fiber-optics communication technology, by Djafer K. Mynbaev and Lowell L. Scheiner
+//Example 2.2.1
+//OS=Windows 10
+////Scilab version Scilab 6.0.0-beta-2(64 bit)
+clc;
+clear;
+
+//given
+c=3E8;//velocity of light in m/sec
+n=1.5;//refractive idex of glass
+
+v=(c/n);//light velocity in glass in m/s
+mprintf("Light velocity in glass=%.1fx10^8 m/s",v/1e8);
diff --git a/3834/CH2/EX2.2.2/Ex2_2_2.jpg b/3834/CH2/EX2.2.2/Ex2_2_2.jpg Binary files differnew file mode 100644 index 000000000..0d2c4e824 --- /dev/null +++ b/3834/CH2/EX2.2.2/Ex2_2_2.jpg diff --git a/3834/CH2/EX2.2.2/Ex2_2_2.sce b/3834/CH2/EX2.2.2/Ex2_2_2.sce new file mode 100644 index 000000000..0dafd4e63 --- /dev/null +++ b/3834/CH2/EX2.2.2/Ex2_2_2.sce @@ -0,0 +1,21 @@ +//Fiber-optics communication technology, by Djafer K. Mynbaev and Lowell L. Scheiner
+//Example 2.2.2
+//OS=Windows 10
+//Scilab version Scilab 6.0.0-beta-2(64 bit)
+clc;
+clear;
+
+//given
+n1=1;//refractive index 1
+theta1=30;//angle of incidence in degrees
+n2=1.5;//refractive index 2
+
+u=sind(theta1);
+theta2=asind(u/n2);//angle of refraction in degrees case1
+
+theta3=theta1//From figure 2.4(a) given theta3= theta1=30 degrees//angle of relection
+v=n2*sind(theta1);
+theta4=asind(v/n1)//angle of refraction in degrees case 2
+mprintf("\n Angle of reflection=%.1f degrees",theta3);
+mprintf("\n Angle of refraction case 1=%.1f degrees ",theta2);
+mprintf("\n Angle of refraction case2=%.1f degrees ",theta4);
diff --git a/3834/CH2/EX2.2.3/Ex2_2_3.jpg b/3834/CH2/EX2.2.3/Ex2_2_3.jpg Binary files differnew file mode 100644 index 000000000..775766b92 --- /dev/null +++ b/3834/CH2/EX2.2.3/Ex2_2_3.jpg diff --git a/3834/CH2/EX2.2.3/Ex2_2_3.sce b/3834/CH2/EX2.2.3/Ex2_2_3.sce new file mode 100644 index 000000000..1a62904ff --- /dev/null +++ b/3834/CH2/EX2.2.3/Ex2_2_3.sce @@ -0,0 +1,15 @@ +//Fiber-optics communication technology, by Djafer K. Mynbaev and Lowell L. Scheiner
+//Example 2.2.3
+//OS=Windows 10
+////Scilab version Scilab 6.0.0-beta-2(64 bit)
+clc;
+clear;
+
+//given
+n1=1.6;//refractive index in glass rod
+n2=1;//refractive index of air
+thetha2=90;//angle of refraction in degrees
+
+v=n2/n1;
+thethac=asind(v);//critical incident angle in degrees
+mprintf("the critical incident angle=%.2f degrees ",thethac);
diff --git a/3834/CH2/EX2.3.1/Ex2_3_1.jpg b/3834/CH2/EX2.3.1/Ex2_3_1.jpg Binary files differnew file mode 100644 index 000000000..77b74994d --- /dev/null +++ b/3834/CH2/EX2.3.1/Ex2_3_1.jpg diff --git a/3834/CH2/EX2.3.1/Ex2_3_1.sce b/3834/CH2/EX2.3.1/Ex2_3_1.sce new file mode 100644 index 000000000..dc7ee3329 --- /dev/null +++ b/3834/CH2/EX2.3.1/Ex2_3_1.sce @@ -0,0 +1,16 @@ +//Fiber-optics communication technology, by Djafer K. Mynbaev and Lowell L. Scheiner
+//Example 2.3.1
+//OS=Windows 10
+////Scilab version Scilab 6.0.0-beta-2(64 bit)
+clc;
+clear;
+
+//given
+lambda=650E-9;//wavelength in meter
+h=6.6E-34;//Planck's constant in SI units
+c=3E8;//velocity of light in m/s
+
+Ep=(h*c/lambda);//energy of single photon in V
+E=1e-3;///total energy in joules
+N=(E/Ep);//number of photos
+mprintf("\n Number of photons=%.1f x10^15 ",N/1e15);//division by 1e15 to convert the unit to x10^15
diff --git a/3834/CH2/EX2.3.2/Ex2_3_2.jpg b/3834/CH2/EX2.3.2/Ex2_3_2.jpg Binary files differnew file mode 100644 index 000000000..f4512afe6 --- /dev/null +++ b/3834/CH2/EX2.3.2/Ex2_3_2.jpg diff --git a/3834/CH2/EX2.3.2/Ex2_3_2.sce b/3834/CH2/EX2.3.2/Ex2_3_2.sce new file mode 100644 index 000000000..5b5d2e664 --- /dev/null +++ b/3834/CH2/EX2.3.2/Ex2_3_2.sce @@ -0,0 +1,15 @@ +//Fiber-optics communication technology, by Djafer K. Mynbaev and Lowell L. Scheiner
+//Example 2.3.2
+//OS=Windows 10
+////Scilab version Scilab 6.0.0-beta-2(64 bit)
+clc;
+clear;
+
+//given
+Ep=2.5*1.602*1e-19;//energy in V
+c=3E8;//velocity of light in m/s
+h=6.6261E-34;//Planck's constant in SI units
+
+lambda=(c*h/Ep);//lambda in meter
+mprintf("Wavelength is=%.1f nm. \nIt will emit green colour.",lambda*1e9);//Multiplication by 1e9 to convert the unit from m to nm
+//the answer vary due to rounding
diff --git a/3834/CH3/EX3.1.1/Ex3_1_1.jpg b/3834/CH3/EX3.1.1/Ex3_1_1.jpg Binary files differnew file mode 100644 index 000000000..dd34d4050 --- /dev/null +++ b/3834/CH3/EX3.1.1/Ex3_1_1.jpg diff --git a/3834/CH3/EX3.1.1/Ex3_1_1.sce b/3834/CH3/EX3.1.1/Ex3_1_1.sce new file mode 100644 index 000000000..eb51779a1 --- /dev/null +++ b/3834/CH3/EX3.1.1/Ex3_1_1.sce @@ -0,0 +1,27 @@ +//Fiber-optics communication technology, by Djafer K. Mynbaev and Lowell L. Scheiner
+//Example 3.1.1
+//windows 7
+//Scilab version-6.0.0
+clc;
+clear;
+//given
+
+//case 1
+n1=1.48;//refractive index of the core
+n2=1.46;//refractive index of the cladding
+
+//case 2
+n3=1.495;//refractive index of the core
+n4=1.402;//refractive index of the cladding
+
+//case 1
+b=n2/n1;
+thetac=asind(b);
+mprintf("\n The critical incident angle for case 1 is=%.2f degrees",thetac);
+
+//case 2
+g=n4/n3;
+mprintf("\n The ratio=%.2f",g);
+thetac2=asind(g);
+mprintf("\n The critical incident angle for case 2 is=%.2f degrees",thetac2);
+
diff --git a/3834/CH3/EX3.1.2/Ex3_1_2.jpg b/3834/CH3/EX3.1.2/Ex3_1_2.jpg Binary files differnew file mode 100644 index 000000000..5e88f423c --- /dev/null +++ b/3834/CH3/EX3.1.2/Ex3_1_2.jpg diff --git a/3834/CH3/EX3.1.2/Ex3_1_2.sce b/3834/CH3/EX3.1.2/Ex3_1_2.sce new file mode 100644 index 000000000..75e5d90e2 --- /dev/null +++ b/3834/CH3/EX3.1.2/Ex3_1_2.sce @@ -0,0 +1,23 @@ +//Fiber Optics Communication Technology, by Djafer K. Mynbaev and Lovell L.scheiner
+//Windows 7
+//Scilab version- 6.0.0
+//Example 3.1.2
+clc;
+clear;
+//given
+
+//case 1
+n1=1.48;//Refractive index of the core for silica fiber
+n2=1.46;//Refractive index of the cladding for silica fiber
+
+//case 2
+n3=1.495;//Refractive index of the core for plastic optical fiber
+n4=1.402;//Refractive index of the cladding for plastic optical fiber
+
+//case 1
+alphac=asind(sqrt(1-(n2/n1)^2));
+mprintf("\n The Critical propagation angle for case 1 = %.2f deg",alphac);
+
+//case 2
+alphac2=asind(sqrt(1-(n4/n3)^2));
+mprintf("\n The Critical propagation angle for case 2 = %.2f deg",alphac2);
diff --git a/3834/CH3/EX3.1.3/Ex3_1_3.jpg b/3834/CH3/EX3.1.3/Ex3_1_3.jpg Binary files differnew file mode 100644 index 000000000..2465d427b --- /dev/null +++ b/3834/CH3/EX3.1.3/Ex3_1_3.jpg diff --git a/3834/CH3/EX3.1.3/Ex3_1_3.sce b/3834/CH3/EX3.1.3/Ex3_1_3.sce new file mode 100644 index 000000000..59a29da21 --- /dev/null +++ b/3834/CH3/EX3.1.3/Ex3_1_3.sce @@ -0,0 +1,31 @@ +//Fiber-optics communication technology, by Djafer K. Mynbaev and Lowell L. Scheiner
+//Example 3.1.3
+//windows XP
+//Scilab version-5.1.1
+clc;
+clear;
+//given
+
+//case 1
+n1=1.48;//refractive index of the core
+n2=1.46;//refractive index of the cladding
+
+alphac=asin(sqrt(1-(n2/n1)^2));
+mprintf("\n The Critical propogation angle for case 1 = %.2f deg",alphac);
+b=sin(alphac);
+thetaa=asind(n1*b);//by snell's law
+
+a=2*thetaa;//acceptance angle of the fiber
+mprintf("\nThe acceptance angle for case 1 is = %.2f deg",a);
+
+//case 2
+n3=1.495;//refractive index of the core
+n4=1.402;//refractive index of the cladding
+
+alphac2=asin(sqrt(1-(n4/n3)^2));
+mprintf("\n The critical propagation angle for case 1 = %.2f deg",alphac2);
+b2=sin(alphac2);
+thetaa2=asind(n3*b2);//by snell's law
+
+a2=2*thetaa2;//acceptance angle of the fiber
+mprintf("\nThe acceptance angle for case 2 is = %.2f deg",a2);
diff --git a/3834/CH3/EX3.1.4/Ex3_1_4.jpg b/3834/CH3/EX3.1.4/Ex3_1_4.jpg Binary files differnew file mode 100644 index 000000000..54c317db3 --- /dev/null +++ b/3834/CH3/EX3.1.4/Ex3_1_4.jpg diff --git a/3834/CH3/EX3.1.4/Ex3_1_4.sce b/3834/CH3/EX3.1.4/Ex3_1_4.sce new file mode 100644 index 000000000..5bfea516a --- /dev/null +++ b/3834/CH3/EX3.1.4/Ex3_1_4.sce @@ -0,0 +1,31 @@ +//Fiber-optics communication technology, by Djafer K. Mynbaev and Lowell L. Scheiner
+//Example 3.1.4
+//windows XP
+//Scilab version-5.5.1
+clc;
+clear;
+//given
+
+//case 1
+n1=1.48;//refractive index of the core
+n2=1.46;//refractive index of the cladding
+
+//case 2
+n3=1.495;//refractive of the index of core
+n4=1.402;//refractive index of the cladding
+
+//case 1
+b=n1*n1;
+c=n2*n2;
+v=b-c;
+NA=sqrt(v);//numerical aperture for case 1
+mprintf("\n numerical aperture for case 1=%.4f",NA);
+
+//case 2
+e=n3*n3;
+r=n4*n4;
+t=e-r;
+NA1=sqrt(t);//numerical aperture for case 2
+mprintf("\n numerical aperture for case 2=%.4f",NA1);
+
+
diff --git a/3834/CH3/EX3.2.1/Ex3_2_1.jpg b/3834/CH3/EX3.2.1/Ex3_2_1.jpg Binary files differnew file mode 100644 index 000000000..44944b5f6 --- /dev/null +++ b/3834/CH3/EX3.2.1/Ex3_2_1.jpg diff --git a/3834/CH3/EX3.2.1/Ex3_2_1.sce b/3834/CH3/EX3.2.1/Ex3_2_1.sce new file mode 100644 index 000000000..f98f24867 --- /dev/null +++ b/3834/CH3/EX3.2.1/Ex3_2_1.sce @@ -0,0 +1,16 @@ +//Fiber Optics Communication Technology, by Djafer K. Mynbaev and Lovell L.scheiner
+//Windows 7
+//Scilab version- 6.0.0
+//Example 3.2.1
+clc;
+clear;
+//given
+
+A=0.5;//attenuation in dB/Km
+Pin=1E-3;//input power in milli watts
+L=15;//length in kilometers
+
+a=[(-A*L)/10];
+b=10^(a);
+Pout=(Pin*b)*1E3;
+mprintf("ouput power is=%.3f mW",Pout);
diff --git a/3834/CH3/EX3.2.2/Ex3_2_2.jpg b/3834/CH3/EX3.2.2/Ex3_2_2.jpg Binary files differnew file mode 100644 index 000000000..f1ad75c50 --- /dev/null +++ b/3834/CH3/EX3.2.2/Ex3_2_2.jpg diff --git a/3834/CH3/EX3.2.2/Ex3_2_2.sce b/3834/CH3/EX3.2.2/Ex3_2_2.sce new file mode 100644 index 000000000..84c60dfb5 --- /dev/null +++ b/3834/CH3/EX3.2.2/Ex3_2_2.sce @@ -0,0 +1,17 @@ +//Fiber Optics Communication Technology, by Djafer K. Mynbaev and Lovell L.scheiner
+//Windows 7
+//Scilab version- 6.0.0
+//Example 3.2.2
+clc;
+clear;
+//given
+
+A=0.5;//Attenuation in dB/km
+Pin=1E-3; //Power launched in mW
+Pout=50E-6; //Receiver sensitivity in uW
+e=Pin/Pout;
+s=10/A;
+d=log10(e);
+lmax=s*d;//maximum transistion distance
+
+mprintf("Maximum transistion distance = %.2f km",lmax);
diff --git a/3834/CH3/EX3.3.1/Ex3_3_1.jpg b/3834/CH3/EX3.3.1/Ex3_3_1.jpg Binary files differnew file mode 100644 index 000000000..924584e98 --- /dev/null +++ b/3834/CH3/EX3.3.1/Ex3_3_1.jpg diff --git a/3834/CH3/EX3.3.1/Ex3_3_1.sce b/3834/CH3/EX3.3.1/Ex3_3_1.sce new file mode 100644 index 000000000..b98c06476 --- /dev/null +++ b/3834/CH3/EX3.3.1/Ex3_3_1.sce @@ -0,0 +1,18 @@ +//Fiber-optics communication technology, by Djafer K. Mynbaev and Lowell L. Scheiner
+//Example 3.3.1
+//windows 7
+//Scilab version-6.0.0
+clc;
+clear;
+//given
+d=62.5E-6;//core diameter in SI units
+NA=0.275;//numerical aperture
+lambda=1300E-9;//operating wavelength lambda in m
+
+x=3.14*d*NA;
+
+V=x/lambda;
+
+N=(V^2)/4;
+
+mprintf("Number of modes for graded index fiber = %.0f",N);
diff --git a/3834/CH3/EX3.3.2/Ex3_3_2.jpg b/3834/CH3/EX3.3.2/Ex3_3_2.jpg Binary files differnew file mode 100644 index 000000000..f6cacf5cf --- /dev/null +++ b/3834/CH3/EX3.3.2/Ex3_3_2.jpg diff --git a/3834/CH3/EX3.3.2/Ex3_3_2.sce b/3834/CH3/EX3.3.2/Ex3_3_2.sce new file mode 100644 index 000000000..fa6cc683f --- /dev/null +++ b/3834/CH3/EX3.3.2/Ex3_3_2.sce @@ -0,0 +1,23 @@ +//Fiber-optics communication technology, by Djafer K. Mynbaev and Lowell L. Scheiner
+//Example 3.3.2
+//windows 7
+//Scilab version-6.0.0
+clc;
+clear;
+//given
+L=5;//fiber length in km
+NA=0.275;//numerical aperture
+c=3E5;//speed of light in km
+n1=1.48;//refractive index
+
+p=2*c*n1;
+
+e=NA*NA;
+
+d=L*e;
+
+deltatsi=(d/p)*1E9;//pulse spreading in ns //answer vary due round-off
+deltatsi_by_L=(deltatsi/L)//pulse spreading per unit length in ns/Km//answer vary due round-off
+
+mprintf("\n Light pulse spreading= %.2f ns",deltatsi);
+mprintf("\n Pulse spreading per unit length is=%.2f ns/Km",deltatsi_by_L);
diff --git a/3834/CH3/EX3.3.3/Ex3_3_3.jpg b/3834/CH3/EX3.3.3/Ex3_3_3.jpg Binary files differnew file mode 100644 index 000000000..4f1fb484a --- /dev/null +++ b/3834/CH3/EX3.3.3/Ex3_3_3.jpg diff --git a/3834/CH3/EX3.3.3/Ex3_3_3.sce b/3834/CH3/EX3.3.3/Ex3_3_3.sce new file mode 100644 index 000000000..a9501fe6b --- /dev/null +++ b/3834/CH3/EX3.3.3/Ex3_3_3.sce @@ -0,0 +1,22 @@ +//Fiber-optics communication technology, by Djafer K. Mynbaev and Lowell L. Scheiner
+//Example 3.3.3
+//windows 7
+//Scilab version-6.0.0
+clc;
+clear;
+//given
+L=5;//fiber length in km
+NA=0.275;//numerical aperture
+c=3E5;//speed of light in km
+n1=1.48;//refractive index
+
+p=2*c*n1;
+
+e=NA*NA;
+
+d=L*e;
+
+deltatsi=(d/p)*1E9;//pulse spreading in ns //answer vary due round-off
+deltatsi_by_L=(deltatsi/L)//pulse spreading per unit length in ns/Km//answer vary due round-off
+Maximum_bit_rate=1e3/deltatsi_by_L//maximum bit rate in Mbits/s//multiplication by 1e3 to conver unit from Gbits/s to Mbits per sec
+mprintf("\n maximum bit rate = %.1f Mbits/s",Maximum_bit_rate);//answer vary due to rounding
diff --git a/3834/CH3/EX3.3.4/Ex3_3_4.jpg b/3834/CH3/EX3.3.4/Ex3_3_4.jpg Binary files differnew file mode 100644 index 000000000..0827c4597 --- /dev/null +++ b/3834/CH3/EX3.3.4/Ex3_3_4.jpg diff --git a/3834/CH3/EX3.3.4/Ex3_3_4.sce b/3834/CH3/EX3.3.4/Ex3_3_4.sce new file mode 100644 index 000000000..181e848f0 --- /dev/null +++ b/3834/CH3/EX3.3.4/Ex3_3_4.sce @@ -0,0 +1,20 @@ +//Fiber Optics Communication Technology, by Djafer K. Mynbaev and Lovell L.scheiner
+//Windows 7
+//Scilab version- 6.0.0
+//Example 3.3.4
+clc;
+clear;
+//given
+N1=1.487;//refractive index
+delta=1.71;
+L=5E3;//length of the graded index fiber
+c=3E8;//velocity of light in m/s
+
+b=delta*delta;
+e=L*N1*b;
+w=8*c;
+deltatg1=(e/w)*1E5;//pulse spreading due to modal dispersion in ns
+deltatg1_by_L=(deltatg1/L)*1E3;//maximum bit rate Mbits/s
+
+mprintf("\n Pulse spreading due to modal dispersion=%.1f ns",deltatg1);
+mprintf("\n Maximum bit rate=%.2f ns/Km",deltatg1_by_L);
diff --git a/3834/CH3/EX3.3.5/Ex3_3_5.jpg b/3834/CH3/EX3.3.5/Ex3_3_5.jpg Binary files differnew file mode 100644 index 000000000..87e955e3c --- /dev/null +++ b/3834/CH3/EX3.3.5/Ex3_3_5.jpg diff --git a/3834/CH3/EX3.3.5/Ex3_3_5.sce b/3834/CH3/EX3.3.5/Ex3_3_5.sce new file mode 100644 index 000000000..b8caec59a --- /dev/null +++ b/3834/CH3/EX3.3.5/Ex3_3_5.sce @@ -0,0 +1,19 @@ +//Fiber Optics Communication Technology, by Djafer K. Mynbaev and Lovell L.scheiner
+//Windows 7
+//Scilab version- 6.0.0
+//Example 3.3.5
+clc;
+clear;
+//given
+
+S0=0.097;//zero dispersion slope in ps/(nm^2.km)
+lambda0=1343E-9; //zero dispersion wavelength in m
+lambda=1300E-9;//operating wavelength in m
+
+b=lambda0*lambda0*lambda0*lambda0;
+c=lambda*lambda*lambda;
+x=b/c;
+e=lambda-x;
+g=S0/4;
+Dlambda=g*e*1E9;//Chromatic dispersion in ps/(nm.Km)
+mprintf("\n Chromatic dispersion =%.2f ps/(nm.Km)",Dlambda);
diff --git a/3834/CH3/EX3.4.1/Ex3_4_1.jpg b/3834/CH3/EX3.4.1/Ex3_4_1.jpg Binary files differnew file mode 100644 index 000000000..ab9e0f920 --- /dev/null +++ b/3834/CH3/EX3.4.1/Ex3_4_1.jpg diff --git a/3834/CH3/EX3.4.1/Ex3_4_1.sce b/3834/CH3/EX3.4.1/Ex3_4_1.sce new file mode 100644 index 000000000..a21657ceb --- /dev/null +++ b/3834/CH3/EX3.4.1/Ex3_4_1.sce @@ -0,0 +1,18 @@ +//Fiber Optics Communication Technology, by Djafer K. Mynbaev and Lovell L.scheiner
+//Windows 7
+//Scilab version- 6.0.0
+//Example 3.4.1
+clc;
+clear;
+//given
+
+NA=0.275;//numerical aperture
+N1=1.487;//refractive in dex
+c=3E8;//speed of light in m/s
+L=1E3;//length of the link
+a=N1*N1*N1;
+b=8*c*a;
+d=NA*NA*NA*NA;
+g=L*d;
+BRg1=(b/g);
+mprintf("The bits restricted by modal dispersion is=%.2f Gbit/s",BRg1/1e9);//division by 1e9 t0 convert unit from bits/sec to Gbits /sec
diff --git a/3834/CH4/EX4.4.1/Ex4_4_1.jpg b/3834/CH4/EX4.4.1/Ex4_4_1.jpg Binary files differnew file mode 100644 index 000000000..e0df3db99 --- /dev/null +++ b/3834/CH4/EX4.4.1/Ex4_4_1.jpg diff --git a/3834/CH4/EX4.4.1/Ex4_4_1.sce b/3834/CH4/EX4.4.1/Ex4_4_1.sce new file mode 100644 index 000000000..4c637c44d --- /dev/null +++ b/3834/CH4/EX4.4.1/Ex4_4_1.sce @@ -0,0 +1,18 @@ +//Fiber-optics communication technology, by Djafer K. Mynbaev and Lowell L. Scheiner
+//Example 4.4.1
+//windows 7
+//Scilab version-6.0.0
+clc;
+clear;
+//given
+
+d=62.5E-6;//core diameter in SI units
+D=125E-6;//cladding diameter in SI units
+NA=0.275;//numerical aperture
+lambda=1300E-9;//operating wavelength lambda in m
+
+x=3.14*d*NA;
+V=x/lambda;
+PcladbyPtotal=2*sqrt(2)/(3*V)//Power carried by fiber cladding
+mprintf("\nPower carried by fiber cladding = %.3f",PcladbyPtotal);
+
diff --git a/3834/CH4/EX4.6.1/Ex4_6_1.jpg b/3834/CH4/EX4.6.1/Ex4_6_1.jpg Binary files differnew file mode 100644 index 000000000..3f5270281 --- /dev/null +++ b/3834/CH4/EX4.6.1/Ex4_6_1.jpg diff --git a/3834/CH4/EX4.6.1/Ex4_6_1.sce b/3834/CH4/EX4.6.1/Ex4_6_1.sce new file mode 100644 index 000000000..cd5a7a3a5 --- /dev/null +++ b/3834/CH4/EX4.6.1/Ex4_6_1.sce @@ -0,0 +1,26 @@ +//Fiber-optics communication technology, by Djafer K. Mynbaev and Lowell L. Scheiner
+//Example 4.6.1
+//windows 8
+//Scilab version-6.0.0
+clc;
+clear;
+//given
+
+lambda=850;// wavelength in nm
+L=100E12;//Length of fiber in nm
+deltalambda=70;//spectral width wavelength in nm
+S0=0.097;//zero dispersion slope in ps/nm^2.km
+lambda0=1343;//assumed zero dispersion wavelength in nm
+
+y=lambda0/lambda;
+x=1-(y*y*y*y);
+
+Dlambda=-(S0*x*lambda)/4;//dispersion parameter in ps/nm.km
+
+deltatgmat=(Dlambda*deltalambda)/1000;//Pulse spreading by material dispersion in ns/km
+
+mprintf("Pulse spreading by material dispersion = %.2f ns/km",deltatgmat);//the answer vary due to roundingoff
+
+deltatmat=deltatgmat*100;//Pulse spreading over entire fiber in s
+
+mprintf("\nPulse spreading over entire fiber = %.2f s",deltatmat);//the answer vary due to roundingoff
diff --git a/3834/CH5/EX5.1.1/Ex5_1_1.jpg b/3834/CH5/EX5.1.1/Ex5_1_1.jpg Binary files differnew file mode 100644 index 000000000..3c8966b2a --- /dev/null +++ b/3834/CH5/EX5.1.1/Ex5_1_1.jpg diff --git a/3834/CH5/EX5.1.1/Ex5_1_1.sce b/3834/CH5/EX5.1.1/Ex5_1_1.sce new file mode 100644 index 000000000..1cdb285d4 --- /dev/null +++ b/3834/CH5/EX5.1.1/Ex5_1_1.sce @@ -0,0 +1,17 @@ +//Fiber-optics communication technology, by Djafer K. Mynbaev and Lowell L. Scheiner
+//Example 5.1.1
+//windows XP
+//Scilab version-5.5.1
+clc;
+clear;
+//given
+
+n1=1.4675;//Refractive index of the core for silica fiber
+n2=1.4622;//Refractive index of the cladding for silica fiber
+
+x=n1*n1;
+y=n2*n2;
+
+NA=sqrt(x-y);
+
+mprintf("Numerical aperture of singlemode fiber =%.3f",NA);
diff --git a/3834/CH5/EX5.2.1/Ex5_2_1.jpg b/3834/CH5/EX5.2.1/Ex5_2_1.jpg Binary files differnew file mode 100644 index 000000000..28caf272d --- /dev/null +++ b/3834/CH5/EX5.2.1/Ex5_2_1.jpg diff --git a/3834/CH5/EX5.2.1/Ex5_2_1.sce b/3834/CH5/EX5.2.1/Ex5_2_1.sce new file mode 100644 index 000000000..38606322b --- /dev/null +++ b/3834/CH5/EX5.2.1/Ex5_2_1.sce @@ -0,0 +1,17 @@ +//Fiber Optics Communication Technology, by Djafer K. Mynbaev and Lovell L.scheiner
+//Windows 8
+//Scilab version- 6.0.0
+//Example 5.2.1
+clc;
+clear;
+//given
+
+A=0.2;//Attenuation in dB/km
+Pin=0.029E-3; //Power launched in mW
+Pout=0.001E-3; //Receiver sensitivity in mW
+e=Pin/Pout;
+s=10/A;
+d=log10(e);
+L=s*d;//maximum transistion distance in km
+
+mprintf("Maximum transistion distance = %.2f Km",L);
diff --git a/3834/CH5/EX5.3.1/Ex5_3_1.jpg b/3834/CH5/EX5.3.1/Ex5_3_1.jpg Binary files differnew file mode 100644 index 000000000..8ad7b5bcb --- /dev/null +++ b/3834/CH5/EX5.3.1/Ex5_3_1.jpg diff --git a/3834/CH5/EX5.3.1/Ex5_3_1.sce b/3834/CH5/EX5.3.1/Ex5_3_1.sce new file mode 100644 index 000000000..a173ebb35 --- /dev/null +++ b/3834/CH5/EX5.3.1/Ex5_3_1.sce @@ -0,0 +1,15 @@ +//Fiber Optics Communication Technology, by Djafer K. Mynbaev and Lovell L.scheiner
+//Windows 8
+//Scilab version- 6.0.0
+//Example 5.3.1
+clc;
+clear ;
+//given
+lambda=1310;//operating wavelength in nm
+deltalambda=1;//wavelength in nm
+L=1;//length of fiber in km
+
+Dmatlambda=2;//material dispersion in ps/nm.km from graph
+deltatmat=Dmatlambda*deltalambda*L;//Pulse spreading caused by material dispersion in ps
+
+mprintf("Pulse spreading caused by material dispersion per Km=%.2f ps/Km",deltatmat);
diff --git a/3834/CH5/EX5.3.2/Ex5_3_2.jpg b/3834/CH5/EX5.3.2/Ex5_3_2.jpg Binary files differnew file mode 100644 index 000000000..55116ccf3 --- /dev/null +++ b/3834/CH5/EX5.3.2/Ex5_3_2.jpg diff --git a/3834/CH5/EX5.3.2/Ex5_3_2.sce b/3834/CH5/EX5.3.2/Ex5_3_2.sce new file mode 100644 index 000000000..d54ccf725 --- /dev/null +++ b/3834/CH5/EX5.3.2/Ex5_3_2.sce @@ -0,0 +1,18 @@ +//Fiber Optics Communication Technology, by Djafer K. Mynbaev and Lovell L.scheiner
+//Windows 8
+//Scilab version- 6.0.0
+//Example 5.3.2
+clc;
+clear ;
+//given
+lambda=1550;//operating wavelength in nm
+deltalambda=1;//wavelength in nm
+L=1;//length of fiber in km
+Dmatlambda=20;//material dispersion in ps/nm.km
+Dwglambda=5;//waveguide dispersion in ps/nm.km
+
+deltatmat=Dmatlambda*deltalambda*L;//Pulse spreading caused by material dispersion in ps
+deltatwg=Dwglambda*deltalambda*L;//Pulse spreading caused by waveguide dispersion in ps
+
+mprintf("Pulse spread caused by material dispersion=%.0f ps",deltatmat);
+mprintf("\nPulse spread caused by waveguide dispersion=%.0f ps",deltatwg);
diff --git a/3834/CH5/EX5.3.3/Ex5_3_3.jpg b/3834/CH5/EX5.3.3/Ex5_3_3.jpg Binary files differnew file mode 100644 index 000000000..1cbeca011 --- /dev/null +++ b/3834/CH5/EX5.3.3/Ex5_3_3.jpg diff --git a/3834/CH5/EX5.3.3/Ex5_3_3.sce b/3834/CH5/EX5.3.3/Ex5_3_3.sce new file mode 100644 index 000000000..17690bed7 --- /dev/null +++ b/3834/CH5/EX5.3.3/Ex5_3_3.sce @@ -0,0 +1,15 @@ +//Fiber Optics Communication Technology, by Djafer K. Mynbaev and Lovell L.scheiner
+//Windows 8
+//Scilab version- 6.0.0
+//Example 5.3.3
+clc;
+clear;
+//given
+
+lambda=1550;//operating wavelength in nm
+L=1;//Length of fiber in km
+deltalambda=1;//spectral width wavelength in nm
+Dlambda=15;//given chromatic dispersion parameter in ps/nm.km
+
+deltatchrom=Dlambda*deltalambda*L;//Pulse spreading due to chromatic dispersion in ps
+mprintf("\nChromatic dispersion in single mode fiber = %.2f ps",deltatchrom);
diff --git a/3834/CH5/EX5.3.4/Ex5_3_4.jpg b/3834/CH5/EX5.3.4/Ex5_3_4.jpg Binary files differnew file mode 100644 index 000000000..2591c969d --- /dev/null +++ b/3834/CH5/EX5.3.4/Ex5_3_4.jpg diff --git a/3834/CH5/EX5.3.4/Ex5_3_4.sce b/3834/CH5/EX5.3.4/Ex5_3_4.sce new file mode 100644 index 000000000..cc153d0ff --- /dev/null +++ b/3834/CH5/EX5.3.4/Ex5_3_4.sce @@ -0,0 +1,13 @@ +//Fiber Optics Communication Technology, by Djafer K. Mynbaev and Lovell L.scheiner
+//Windows 8
+//Scilab version- 6.0.0
+//Example 5.3.4
+clc;
+clear;
+//given
+
+Dpmd=0.5;//polarization mode dispersion coefficient in ps/sqrt(km)
+L=100;//fiber length in km
+deltatpmd=Dpmd*sqrt(L);//Pulse spreading due to PMD in ps
+
+mprintf("Pulse spread caused by PMD for single mode fiber= %.0f ps",deltatpmd);
diff --git a/3834/CH5/EX5.3.5/Ex5_3_5.jpg b/3834/CH5/EX5.3.5/Ex5_3_5.jpg Binary files differnew file mode 100644 index 000000000..e07ea377e --- /dev/null +++ b/3834/CH5/EX5.3.5/Ex5_3_5.jpg diff --git a/3834/CH5/EX5.3.5/Ex5_3_5.sce b/3834/CH5/EX5.3.5/Ex5_3_5.sce new file mode 100644 index 000000000..0c40d95dc --- /dev/null +++ b/3834/CH5/EX5.3.5/Ex5_3_5.sce @@ -0,0 +1,15 @@ +//Fiber Optics Communication Technology, by Djafer K. Mynbaev and Lovell L.scheiner
+//Windows 8
+//Scilab version- 6.0.0
+//Example 5.3.5
+clc;
+clear;
+//given
+
+L=100;//given assumed fiber optic length in km
+deltalambda=1;//spectral width wavelength in nm
+Dlambda=2;//given chromatic dispersion parameter in ps/nm.km
+
+
+BRchrom = 1/(4*Dlambda*deltalambda*L);//maximum bit rate limited by chromatic dispersion in 10^12(bps)
+mprintf("Maximum bit rate limited by chromatic dispersion= %.2f Gbps",BRchrom*1e3);//multiplication by 1e3 to convert unit into Gbps from 10^12(bps)
diff --git a/3834/CH5/EX5.3.6/Ex5_3_6.jpg b/3834/CH5/EX5.3.6/Ex5_3_6.jpg Binary files differnew file mode 100644 index 000000000..5bd9fe32f --- /dev/null +++ b/3834/CH5/EX5.3.6/Ex5_3_6.jpg diff --git a/3834/CH5/EX5.3.6/Ex5_3_6.sce b/3834/CH5/EX5.3.6/Ex5_3_6.sce new file mode 100644 index 000000000..95400b954 --- /dev/null +++ b/3834/CH5/EX5.3.6/Ex5_3_6.sce @@ -0,0 +1,16 @@ +//Fiber Optics Communication Technology, by Djafer K. Mynbaev and Lovell L.scheiner
+//Windows 8
+//Scilab version- 6.0.0
+//Example 5.3.6
+clc;
+clear;
+//given
+
+Dpmd=0.5;//polarization mode dispersion coefficient in ps/sqrt(km)
+
+L=100;//for assumed fiber length in km
+deltatpmd=Dpmd*sqrt(L);//pulse spread due to PMD in ps
+mprintf("Pulse spread caused by PMD for single mode fiber= %.2f ps",deltatpmd);
+BRpmd=1/(4*deltatpmd);//maximum bit rate limited by PMD in 10^12(bps)
+mprintf("\nBit Rate limited by PMD= %.2f Gbps",BRpmd*1e3);//multiplication by 1e3 to convert unit into Gbps from 10^12(bps)
+
diff --git a/3834/CH6/EX6.2.1/Ex6_2_1.jpg b/3834/CH6/EX6.2.1/Ex6_2_1.jpg Binary files differnew file mode 100644 index 000000000..4c41c31cd --- /dev/null +++ b/3834/CH6/EX6.2.1/Ex6_2_1.jpg diff --git a/3834/CH6/EX6.2.1/Ex6_2_1.sce b/3834/CH6/EX6.2.1/Ex6_2_1.sce new file mode 100644 index 000000000..365f1911c --- /dev/null +++ b/3834/CH6/EX6.2.1/Ex6_2_1.sce @@ -0,0 +1,17 @@ +//Fiber-optics communication technology, by Djafer K. Mynbaev and Lowell L. Scheiner +//Example 6.2.1 +//windows 8 +//Scilab version-6.0.0 +clc; +clear ; +//given + +a1=12.45E-6;//radius of the cladding for silica fiber +a=4.15E-6;//radius of the core for silica fiber +w0=5.15E-6;//in m +lambda=1600E-9;//wavelength in m +x=exp(-2*(a1^2/w0^2)); +y=1-x; +Ploss=-10*log10(y);//power leakage in dB + +mprintf("Possible power leakage= %.2f micro-dB",Ploss*1e6);//multiplication by 1e6 to convert unit from dB to micro dB diff --git a/3834/CH6/EX6.3.1/Ex6_3_1.jpg b/3834/CH6/EX6.3.1/Ex6_3_1.jpg Binary files differnew file mode 100644 index 000000000..af87e0a72 --- /dev/null +++ b/3834/CH6/EX6.3.1/Ex6_3_1.jpg diff --git a/3834/CH6/EX6.3.1/Ex6_3_1.sce b/3834/CH6/EX6.3.1/Ex6_3_1.sce new file mode 100644 index 000000000..a7cb489e9 --- /dev/null +++ b/3834/CH6/EX6.3.1/Ex6_3_1.sce @@ -0,0 +1,28 @@ +//Fiber-optics communication technology, by Djafer K. Mynbaev and Lowell L. Scheiner
+//Example 6.3.1
+//windows XP
+//Scilab version-5.5.1
+clc;
+clear ;
+//given
+
+L=100E12;//Length of the single-mode fiber link in nm
+
+lambda0=1310;//average of zero-dispersion wavelength in nm
+lambda=1550;//operating wavelength in nm
+S0=0.092;//zero dispersion slope in ps/nm^2
+
+y=lambda0/lambda;
+z=1-y^4;
+Dlambda=(S0/4)*lambda*z;//dispersion coefficient in ps/nm.Km
+
+deltalambda=1;//light source's spectral width in nm
+
+deltatchrom=Dlambda*deltalambda*L;//Pulse spread caused by chromatic dispersion in s
+
+mprintf("Pulse spread caused by chromatic dispersion = %.2f ps",deltatchrom*1E-12);//multiplication by 1e-12 to convert unit from s to ps
+
+x=6.66;//here, x= L/Ldcf assumed to be 6.66
+
+Ddcf=-Dlambda*x;//dispersion in DCF in ps/nm.Km
+mprintf("\nWe need DCF of %.2f ps/nm.km to compensate for dispersion in a conventional SM fiber.",Ddcf);
diff --git a/3834/CH8/EX8.1.1/Ex8_1_1.jpg b/3834/CH8/EX8.1.1/Ex8_1_1.jpg Binary files differnew file mode 100644 index 000000000..0b5730e88 --- /dev/null +++ b/3834/CH8/EX8.1.1/Ex8_1_1.jpg diff --git a/3834/CH8/EX8.1.1/Ex8_1_1.sce b/3834/CH8/EX8.1.1/Ex8_1_1.sce new file mode 100644 index 000000000..2708bc69f --- /dev/null +++ b/3834/CH8/EX8.1.1/Ex8_1_1.sce @@ -0,0 +1,28 @@ +//Fiber-optics communication technology, by Djafer K. Mynbaev and Lowell L. Scheiner
+//Example 8.1.1
+//windows 8
+//Scilab version-6.0.0
+clc;
+clear ;
+//given
+
+//case 1
+d1=65.5E-6;//diameter of the core considering 62.5+3 in m
+d2=59.5E-6;//diameter of the core considering 62.5-3 in m
+
+Losscore=-10*log10((d2/d1)^2);//Intrinsic loss due to diameter mismatch in dB
+mprintf("Intrinsic loss due to diameter mismatch = %.2fdB",Losscore);
+
+
+//case 2
+NA1=0.290;//numerical aperture of fiber considering 0.275+0.015
+NA2=0.260;//numerical aperture of fiber considering 0.275-0.015
+
+LossNA=-10*log10((NA2/NA1)^2);//Intrinsic loss due to NA mismatch in dB
+mprintf("\nIntrinsic loss due to NA mismatch = %.2fdB",LossNA);
+
+//case 3
+w1=9.8;//MFD considering 9.3+0.5 um
+w2=8.8;//MFD considering 9.3-0.5 um
+LossMFD=-10*log10(4/((w1/w2)+(w2/w1))^2);//Intrinsic loss due to NA mismatch in dB
+mprintf("\nIntrinsic loss due to MFD mismatch = %.2fdB",LossMFD);
diff --git a/3834/CH8/EX8.4.1/Ex8_4_1.jpg b/3834/CH8/EX8.4.1/Ex8_4_1.jpg Binary files differnew file mode 100644 index 000000000..11510814d --- /dev/null +++ b/3834/CH8/EX8.4.1/Ex8_4_1.jpg diff --git a/3834/CH8/EX8.4.1/Ex8_4_1.sce b/3834/CH8/EX8.4.1/Ex8_4_1.sce new file mode 100644 index 000000000..c800c03e4 --- /dev/null +++ b/3834/CH8/EX8.4.1/Ex8_4_1.sce @@ -0,0 +1,28 @@ +//Fiber-optics communication technology, by Djafer K. Mynbaev and Lowell L. Scheiner
+//Example 8.4.1
+//windows 8
+//Scilab version-6.0.0
+clc;
+clear;
+//given
+
+L=2;//installation length in Km
+lambda=850E-9;//operating wavelength in m
+deltalambda=20;//spectral width in nm
+BW=16;//maximum bit rate in M bit/s
+taultwrise=4;//rise time of light wave equipment in ns
+BWLmodal=160//modalbandwidth length product in MHz.Km from data sheet
+dlambda=0.21//chromatic dispersion parameter in ns/nm.Km at 850nm wavelength
+tausystrise=0.35/BW;//total system rise time in us
+mprintf("Total system rise time= %.0f ns",tausystrise*1e3);//multiplication by 1e3 to convert unit from us to ns
+taufib_rise1=sqrt((tausystrise*1e3)^2-(taultwrise)^2)//Fiber risetime in ns//the answer vary due to rounding
+mprintf("\nFiber risetime =%.2f ns",taufib_rise1)
+BWmodal=BWLmodal/(L)//modal bandwidth in MHz
+BWel_modal=0.707*BWmodal//electrical bandwith in MHz
+taumod_rise=0.35/BWel_modal//Fiber modal risetime in ns
+mprintf("\nFiber modal risetime =%.2f ns",taumod_rise*1e3)//multiplication by 1e3 to convert unit from us to ns
+tauchrom_rise=dlambda*L*deltalambda//Fiber chromatic risetime in ns
+mprintf("\nFiber chromatic risetime =%.2f ns",tauchrom_rise)
+taufib_rise2=sqrt((taumod_rise*1e3)^2+tauchrom_rise^2)//Fiber risetime in ns
+mprintf("\nFiber risetime =%.1f ns",taufib_rise2)
+mprintf("\nThe fiber rise time %.2fns is less than the required risetime of %.2f ns;therefore the chosen fiber will support this link",taufib_rise2,taufib_rise1)
diff --git a/3834/CH9/EX9.1.1/Ex9_1_1.jpg b/3834/CH9/EX9.1.1/Ex9_1_1.jpg Binary files differnew file mode 100644 index 000000000..ed9ae48d5 --- /dev/null +++ b/3834/CH9/EX9.1.1/Ex9_1_1.jpg diff --git a/3834/CH9/EX9.1.1/Ex9_1_1.sce b/3834/CH9/EX9.1.1/Ex9_1_1.sce new file mode 100644 index 000000000..2c00fcd88 --- /dev/null +++ b/3834/CH9/EX9.1.1/Ex9_1_1.sce @@ -0,0 +1,15 @@ +//Fiber Optics Communication Technology, by Djafer K. Mynbaev and Lovell L.scheiner
+//Windows 8
+//Scilab version- 6.0.0
+//Example 9.1.1
+clc;
+clear ;
+//given
+
+lambdap=850;//Peak wavelength in nm
+n=0.01;//quantum efficiency is 1%
+Ep=1248/lambdap;//energy of photon in eV
+I=50;//current supposed to be in mA
+
+P=n*Ep*I;
+mprintf("Power radiated by LED = %.3f mW",P);//answer vary due to rounding
diff --git a/3834/CH9/EX9.1.2/Ex9_1_2.jpg b/3834/CH9/EX9.1.2/Ex9_1_2.jpg Binary files differnew file mode 100644 index 000000000..8f05a0ef9 --- /dev/null +++ b/3834/CH9/EX9.1.2/Ex9_1_2.jpg diff --git a/3834/CH9/EX9.1.2/Ex9_1_2.sce b/3834/CH9/EX9.1.2/Ex9_1_2.sce new file mode 100644 index 000000000..102857971 --- /dev/null +++ b/3834/CH9/EX9.1.2/Ex9_1_2.sce @@ -0,0 +1,21 @@ +//Fiber Optics Communication Technology, by Djafer K. Mynbaev and Lovell L.scheiner
+//Windows 8
+//Scilab version- 6.0.0
+//Example 9.1.2
+clc;
+clear ;
+//given
+Pout=100E-6;//radiated power in W
+
+n1=1.48;//refractive index of the core
+n2=1.46;//refractive index of the cladding
+
+b=n1*n1;
+c=n2*n2;
+v=b-c;
+NA=sqrt(v);//numerical aperture
+mprintf("\n Numerical aperture=%.4f",NA);
+
+Pin=Pout*NA*NA;//light power Pin in W
+mprintf("\nLight power Pin=%.2f uW",Pin*1e6);//multiplication by 1e6 to convert unit from W to uW
+
|