diff options
Diffstat (limited to '3831/CH16/EX16.13/Ex16_13.sce')
-rw-r--r-- | 3831/CH16/EX16.13/Ex16_13.sce | 28 |
1 files changed, 28 insertions, 0 deletions
diff --git a/3831/CH16/EX16.13/Ex16_13.sce b/3831/CH16/EX16.13/Ex16_13.sce new file mode 100644 index 000000000..59fc65793 --- /dev/null +++ b/3831/CH16/EX16.13/Ex16_13.sce @@ -0,0 +1,28 @@ +// Example 16_13
+clc;funcprot(0);
+// Given data
+p_os=3.00;// atm
+T_os=20.0;// °C
+p_B=1.00;// atm
+A_r=2.0;// The exit to throat area ratio fo r the nozzle
+k=1.4;// The specific heat ratio
+R=286;// m^2/(s^2.K)
+g_c=1;// The gravitational constant
+
+// Calculation
+p_a=p_os*(2/(k+1))^(k/(k-1));// atm
+// Since we are given Aexit/A* = A_E/A*= 2.00, we can find ME by inverting Eq. (16.23b).However, in this case, it is again much easier to use Table C.18 for this area ratio and read (approximately),
+M_E=2.20;// The Mach number at exit
+// Assume p_rEos=p_E/p_os
+p_rEos=0.09352;
+p_E=p_rEos*p_os;// atm
+// Assume p_r=p_osy/p_osx
+p_r=1.00/3.00;
+// From Table C.19 at p_osy/p_osx=0.333
+M_x=2.98;// The Mach number
+M_y=0.476;// The Mach number
+T_e=0.50813*(T_os+273.15);// K
+c_exit=sqrt(k*g_c*R*T_e);// m/s
+M_exit=M_E;// The Mach number at exit
+V_exit=M_exit*c_exit;// m/s
+printf("\nThe exit pressure,p_E=%0.3f atm\nThe exit temperature,T_exit=%3.2f K \nThe exit velocity,V_exit=%3.0f m/s",p_E,T_e,V_exit);
|