diff options
Diffstat (limited to '3802/CH3')
44 files changed, 693 insertions, 0 deletions
diff --git a/3802/CH3/EX3.1/Ex3_1.jpg b/3802/CH3/EX3.1/Ex3_1.jpg Binary files differnew file mode 100644 index 000000000..43f686ff0 --- /dev/null +++ b/3802/CH3/EX3.1/Ex3_1.jpg diff --git a/3802/CH3/EX3.1/Ex3_1.sce b/3802/CH3/EX3.1/Ex3_1.sce new file mode 100644 index 000000000..701c8ce95 --- /dev/null +++ b/3802/CH3/EX3.1/Ex3_1.sce @@ -0,0 +1,16 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex3_1.sce
+
+clc;
+clear;
+L=2.5;
+s=-1; //complex frequency , which is taken from the coefficient value of time in the given exponential term
+Z=L*s;
+printf("\n Impedence=%1.1f ohm \n",Z)
+Y=1/Z;
+printf("\n Admittance=%0.1f mho \n",Y)
+//Voltage cannot be determined since it involves equation in the result
diff --git a/3802/CH3/EX3.10/Ex3_10.jpg b/3802/CH3/EX3.10/Ex3_10.jpg Binary files differnew file mode 100644 index 000000000..cf80ac0de --- /dev/null +++ b/3802/CH3/EX3.10/Ex3_10.jpg diff --git a/3802/CH3/EX3.10/Ex3_10.sce b/3802/CH3/EX3.10/Ex3_10.sce new file mode 100644 index 000000000..7196ce595 --- /dev/null +++ b/3802/CH3/EX3.10/Ex3_10.sce @@ -0,0 +1,41 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex3_10.sce
+
+clc;
+clear;
+//datas are taken from example 3.8
+R=2; //Resistance in ohm
+L=2; //Inductor value in henry
+C=1/12; //capacitor value in farad
+omega=3; //Taken from v(t) value
+//given v(t)=12 sin(3t+30);
+Vm=12;
+Vrms=Vm/sqrt(2);
+theta=30;
+
+Z=complex(R,(omega*L)-(1/(omega*C)));
+V=complex(Vrms*cosd(theta),Vrms*sind(theta));
+I=V/Z; //from Ohm's law
+disp(I,' circuit current is')
+
+Vr=I*R;
+disp(Vr,'Voltage across the resistance is')
+
+theta1=90;
+Xl=complex(omega*L*cosd(theta1),omega*L*sind(theta1));
+Vl=I*Xl;
+disp(Vl,'Voltage across the inductance is')
+
+theta2=-90;
+Xc=complex(cosd(theta2)/(omega*C),sind(theta2)/(omega*C));
+Vc=I*Xc;
+disp(Vc,'Voltage across the capacitance is')
+
+Vsum=Vr+Vl+Vc;
+disp(Vsum,'The sum of three element voltages is')
+
+//Answers are displayed in a complex mode(real and imaginary) because it is solved in complex method
diff --git a/3802/CH3/EX3.11/Ex3_11.jpg b/3802/CH3/EX3.11/Ex3_11.jpg Binary files differnew file mode 100644 index 000000000..bde15c880 --- /dev/null +++ b/3802/CH3/EX3.11/Ex3_11.jpg diff --git a/3802/CH3/EX3.11/Ex3_11.sce b/3802/CH3/EX3.11/Ex3_11.sce new file mode 100644 index 000000000..3a6770a5d --- /dev/null +++ b/3802/CH3/EX3.11/Ex3_11.sce @@ -0,0 +1,29 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex3_11.sce
+
+clc;
+clear;
+R=10e3; //Resistance in ohm
+L=50.7e-6; //Inductor value in henry
+C=500e-12; //capacitor value in farad
+
+fr=1/(2*%pi*sqrt(L*C));
+printf("\n Resonance frequency=%1.0f MHz \n",fr*1e-6)
+
+Q=(1/R)*sqrt(L/C);
+printf("\n Quality factor=%1.5f \n",Q)
+
+f1=(-fr/(2*Q))+(fr*sqrt((1/(2*Q))^2+1));
+printf("\n Lower half power frequency=%2.1f kHz \n",f1*1e-3)
+
+f2=(fr/(2*Q))+(fr*sqrt((1/(2*Q))^2+1));
+printf("\n Upper half power frequency=%5.1f kHz \n",f2*1e-3)
+
+BW=f2-f1;
+printf("\n Bandwidth=%5.0f kHz \n",BW*1e-3)
+
+//Answer vary dueto round off error in fr , Q Calculation
diff --git a/3802/CH3/EX3.12/Ex3_12.jpg b/3802/CH3/EX3.12/Ex3_12.jpg Binary files differnew file mode 100644 index 000000000..d562e4578 --- /dev/null +++ b/3802/CH3/EX3.12/Ex3_12.jpg diff --git a/3802/CH3/EX3.12/Ex3_12.sce b/3802/CH3/EX3.12/Ex3_12.sce new file mode 100644 index 000000000..b5009ef3e --- /dev/null +++ b/3802/CH3/EX3.12/Ex3_12.sce @@ -0,0 +1,30 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex3_12.sce
+
+clc;
+clear;
+R=10e3; //Resistance in ohm
+L=50.7e-6; //Inductor value in henry
+C=500e-12; //capacitor value in farad
+
+fr=1/(2*%pi*sqrt(L*C));
+printf("\n Resonance frequency=%1.0f MHz \n",fr*1e-6)
+
+Q=(R)*sqrt(C/L);
+printf("\n Quality factor=%2.1f \n",Q)
+
+f1=(-fr/(2*Q))+(fr*sqrt((1/(2*Q))^2+1));
+printf("\n Lower half power frequency=%3.0f kHz \n",f1*1e-3)
+
+f2=(fr/(2*Q))+(fr*sqrt((1/(2*Q))^2+1));
+printf("\n Upper half power frequency=%4.0f kHz \n",f2*1e-3)
+
+BW=f2-f1;
+printf("\n Bandwidth=%2.0f kHz \n",BW*1e-3)
+
+
+
diff --git a/3802/CH3/EX3.13/Ex3_13.jpg b/3802/CH3/EX3.13/Ex3_13.jpg Binary files differnew file mode 100644 index 000000000..09ed588c9 --- /dev/null +++ b/3802/CH3/EX3.13/Ex3_13.jpg diff --git a/3802/CH3/EX3.13/Ex3_13.sce b/3802/CH3/EX3.13/Ex3_13.sce new file mode 100644 index 000000000..1f2eae098 --- /dev/null +++ b/3802/CH3/EX3.13/Ex3_13.sce @@ -0,0 +1,44 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex3_13.sce
+
+clc;
+clear;
+
+//from the figure 3.25 the below values are taken
+Z1=complex(1.2,1.6);
+Z2=complex(1.0,-1.75);
+Z12=complex(6,8);
+
+V1=complex(110,0);
+V2=complex(110*cosd(-5),110*sind(-5));
+
+//VA is calculated from the nodal equation of node A
+VA=((V1/Z1)+(V2/Z2))/(1/Z1 + 1/Z2 + 1/Z12);
+VA_mag=sqrt(real(VA)^2+imag(VA)^2);
+VA_ang=atand(imag(VA)/real(VA));
+printf("\n V3=%3.0f angle:%1.2f degree \n",VA_mag,VA_ang)
+
+I1=(V1-VA)/Z1;
+I1_mag=sqrt(real(I1)^2+imag(I1)^2);
+I1_ang=atand(imag(I1)/real(I1))-180;
+printf("\n I1=%1.2f angle:%3.2f degree \n",I1_mag,I1_ang)
+
+I2=(V2-VA)/Z2;
+I2_mag=sqrt(real(I2)^2+imag(I2)^2);
+I2_ang=atand(imag(I2)/real(I2));
+printf("\n I2=%2.0f angle:%2.0f degree \n",I2_mag,I2_ang)
+
+I3=(VA)/Z12;
+I3_mag=sqrt(real(I3)^2+imag(I3)^2);
+I3_ang=atand(imag(I3)/real(I3));
+printf("\n I3=%2.2f angle:%2.1f degree \n",I3_mag,I3_ang)
+
+//Answer vary dueto round off error
+
+
+
+
diff --git a/3802/CH3/EX3.14/Ex3_14.jpg b/3802/CH3/EX3.14/Ex3_14.jpg Binary files differnew file mode 100644 index 000000000..4455ac193 --- /dev/null +++ b/3802/CH3/EX3.14/Ex3_14.jpg diff --git a/3802/CH3/EX3.14/Ex3_14.sce b/3802/CH3/EX3.14/Ex3_14.sce new file mode 100644 index 000000000..a13026bf7 --- /dev/null +++ b/3802/CH3/EX3.14/Ex3_14.sce @@ -0,0 +1,23 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex3_14.sce
+
+clc;
+clear;
+
+//i(t)=sqrt(2)*1e-4*cos(4*10^7*t);
+a1=complex(5,4.04);b1=complex(0,-0.04);c1=1/10; //these are the coefficient values of VA,VB and source obtained from the node A in the given circuit
+a2=complex(200,-0.04);b2=complex(1.2,-1.56);c2=0; //these are the coefficient values of VA,VB and source obtained from the node B in the given circuit
+del=det([a1 b1;a2 b2]);
+delB=det([a1 c1;a2 c2]);
+VB=delB/del;
+
+VB_mag=sqrt(real(VB)^2+imag(VB)^2);
+VB_ang=atand(imag(VB)/real(VB))+180;
+printf("\n Vo=%1.1f angle:%3.1f degree \n",VB_mag,VB_ang)
+
+//Answer vary due to roundoff error
+//Result:Vo(t)=sqrt(2)*1.5*cos(4*10^7*t+157.7)
diff --git a/3802/CH3/EX3.15/Ex3_15.jpg b/3802/CH3/EX3.15/Ex3_15.jpg Binary files differnew file mode 100644 index 000000000..3262ab66d --- /dev/null +++ b/3802/CH3/EX3.15/Ex3_15.jpg diff --git a/3802/CH3/EX3.15/Ex3_15.sce b/3802/CH3/EX3.15/Ex3_15.sce new file mode 100644 index 000000000..cd7ede439 --- /dev/null +++ b/3802/CH3/EX3.15/Ex3_15.sce @@ -0,0 +1,26 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex3_15.sce
+
+clc;
+clear;
+V1=complex(12,0);
+//current source and its parallel impedance gives the voltage source
+V2=complex(5*cosd(-30),5*sind(-30))*complex(6,-3);
+//for loop1 , the coefficient of I1 ,I2 and source is given below
+a1=complex(10+6,15);
+b1=-complex(10,15);
+c1=V1;
+//for loop2 , the coefficient of I1 ,I2 and source is given below
+a2=-complex(10,15);
+b2=complex(19,12);
+c2=-V2;
+del2=det([a1 c1;a2 c2]);
+del=det([a1 b1;a2 b2]);
+I2=del2/del;
+I2_mag=sqrt(real(I2)^2+imag(I2)^2);
+I2_ang=atand(imag(I2)/real(I2))+180;
+printf("\n Current through the 3 ohm resistor=%1.3f angle:%3.2f degree \n",I2_mag,I2_ang)
diff --git a/3802/CH3/EX3.16/Ex3_16.jpg b/3802/CH3/EX3.16/Ex3_16.jpg Binary files differnew file mode 100644 index 000000000..4afa414dd --- /dev/null +++ b/3802/CH3/EX3.16/Ex3_16.jpg diff --git a/3802/CH3/EX3.16/Ex3_16.sce b/3802/CH3/EX3.16/Ex3_16.sce new file mode 100644 index 000000000..5e1f2fc9f --- /dev/null +++ b/3802/CH3/EX3.16/Ex3_16.sce @@ -0,0 +1,29 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//EX3_16.sce
+
+clc;
+clear;
+//from the mesh equations coefficient of I1,I2,and source is given below
+a1=complex(4,-2);
+b1=-complex(3,-2);
+c1=complex(12,0);
+a2=-complex(3,4);
+b2=complex(5,3);
+c2=complex(0);
+
+del1=det([c1 b1;c2 b2]);
+del2=det([a1 c1;a2 c2]);
+del=det([a1 b1;a2 b2]);
+I2=del2/del;
+I1=del1/del;
+
+V2=(2*I2)+((3*(-2*%i))*(I1-I2));
+V2_mag=sqrt(real(V2)^2+imag(V2)^2);
+V2_ang=atand(imag(V2)/real(V2));
+printf("\n V2=%1.2f angle:%2.2f degree \n",V2_mag,V2_ang)
+//Anawer vary dueto round off error
+//Result:v2(t)=4.87*sqrt(2) sin(2t-66.04)
diff --git a/3802/CH3/EX3.17/Ex3_17.jpg b/3802/CH3/EX3.17/Ex3_17.jpg Binary files differnew file mode 100644 index 000000000..0fa382d64 --- /dev/null +++ b/3802/CH3/EX3.17/Ex3_17.jpg diff --git a/3802/CH3/EX3.17/Ex3_17.sce b/3802/CH3/EX3.17/Ex3_17.sce new file mode 100644 index 000000000..0503c4695 --- /dev/null +++ b/3802/CH3/EX3.17/Ex3_17.sce @@ -0,0 +1,23 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex3_17.sce
+
+clc;
+clear;
+//Below values are taken from the given circuit (fig.3.29)
+Z1=complex(5,-5);
+Z2=complex(5,-5);
+Z3=complex(10,10);
+V=complex(100,0);
+
+I=V/(Z1+Z2);
+Vab=I*Z2;
+Zs=(Z1*Z2)/(Z1+Z2)+Z3;
+V_AB=(Vab*real(Z3))/Zs;
+V_AB_mag=sqrt(real(V_AB)^2+imag(V_AB)^2);
+V_AB_ang=atand(imag(V_AB)/real(V_AB));
+printf("\n V_AB=%2.2f angle:%2.2f degree \n",V_AB_mag,V_AB_ang)
+
diff --git a/3802/CH3/EX3.18/Ex3_18.jpg b/3802/CH3/EX3.18/Ex3_18.jpg Binary files differnew file mode 100644 index 000000000..f17782a71 --- /dev/null +++ b/3802/CH3/EX3.18/Ex3_18.jpg diff --git a/3802/CH3/EX3.18/Ex3_18.sce b/3802/CH3/EX3.18/Ex3_18.sce new file mode 100644 index 000000000..ad1c91f12 --- /dev/null +++ b/3802/CH3/EX3.18/Ex3_18.sce @@ -0,0 +1,24 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex3_18.sce
+
+clc;
+clear;
+//Below values are taken from the given circuit (fig.3.27)
+Z1=complex(6,0);
+Z2=complex(10,15);
+Z3=complex(6,-3);
+
+Zs=(Z1*Z2)/(Z1+Z2)+Z3;
+V=12;
+Va=V-(V/(Z1+Z2))*real(Z3);
+Is=complex(5*cosd(-30),5*sind(-30));
+Vb=Is*Z3;
+Voc=Va-Vb;
+I=Voc/(Zs+3);
+I_mag=sqrt(real(I)^2+imag(I)^2);
+I_ang=atand(imag(I)/real(I))+180;
+printf("\n The required current= %1.4f angle:%3.2f degree \n",I_mag,I_ang)
diff --git a/3802/CH3/EX3.19/Ex3_19.jpg b/3802/CH3/EX3.19/Ex3_19.jpg Binary files differnew file mode 100644 index 000000000..a659111fe --- /dev/null +++ b/3802/CH3/EX3.19/Ex3_19.jpg diff --git a/3802/CH3/EX3.19/Ex3_19.sce b/3802/CH3/EX3.19/Ex3_19.sce new file mode 100644 index 000000000..ad6bd435f --- /dev/null +++ b/3802/CH3/EX3.19/Ex3_19.sce @@ -0,0 +1,34 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex3_19.sce
+
+clc;
+clear;
+//Below values are taken from the given circuit (fig.3.27)
+Z1=complex(6,0);
+Z2=complex(10,15);
+Z3=complex(6,-3);
+Zs=(Z1*Z2)/(Z1+Z2)+Z3;
+Vs=complex(12,0);
+Is=complex(5*cosd(-30),5*sind(-30));
+
+//for loop1 , the coefficient of I2 ,Isc and source is given below
+a1=Z1+Z2;
+b1=Z1;
+c1=Vs;
+//for loop2 , the coefficient of I1 ,I2 and source is given below
+a2=Z2;
+b2=-Z3;
+c2=Is*Z3;
+del2=det([a1 c1;a2 c2]);
+del=det([a1 b1;a2 b2]);
+
+Isc=del2/del;
+Ys=1/Zs;
+I=(Isc/Ys)/((1/Ys)+3);
+I_mag=sqrt(real(I)^2+imag(I)^2);
+I_ang=atand(imag(I)/real(I))+180;
+printf("\n Current through the 3 ohm resistor= %1.4f angle:%3.2f degree \n",I_mag,I_ang)
diff --git a/3802/CH3/EX3.20/Ex3_20.jpg b/3802/CH3/EX3.20/Ex3_20.jpg Binary files differnew file mode 100644 index 000000000..fe7aa6bf4 --- /dev/null +++ b/3802/CH3/EX3.20/Ex3_20.jpg diff --git a/3802/CH3/EX3.20/Ex3_20.sce b/3802/CH3/EX3.20/Ex3_20.sce new file mode 100644 index 000000000..abea7902a --- /dev/null +++ b/3802/CH3/EX3.20/Ex3_20.sce @@ -0,0 +1,36 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex3_20.sce.
+
+clc;
+clear;
+
+Vm=16*sqrt(2); //Maximum voltage value in volt
+Vrms=Vm/sqrt(2); //RMS voltage in volt
+R=1; //resistance in ohm
+C=-%i; //capacitance in ohm
+R1=2; //resistance in ohm
+R2=3; //resistance in ohm
+C1=-%i; //capacitance in ohm
+//After simplication of the network by star-delta transformation
+Za=complex(2,-10)/26;
+Zb=complex(3,-15)/26;
+Zc=complex(30,6)/26;
+Voc=(Vrms*(Zc+C))/(R+Za+Zc+C);
+Zs=(1/((1/(Za+R))+(1/(Zc+C))))+Zb;
+
+printf("\n (a)")
+Zl=Zs;
+Zl_mag=sqrt(real(Zl)^2+imag(Zl)^2);
+Zl_ang=atand(imag(Zl)/real(Zl));
+printf("\n Z_L=%1.2f angle:%2.2f degree \n",Zl_mag,Zl_ang)
+
+printf("\n (b)")
+Voc_mag=sqrt(real(Voc)^2+imag(Voc)^2);
+Pmax=Voc_mag^2/(2*real(Zl));
+printf("\n Maximum power=%2.2f watt \n",Pmax)
+//There is a mistake in Zs calculation .Zs=0.7555-0.8539i is wrong .the correct value of Zs=0.6829-0.8536i
+//So the answer vary
diff --git a/3802/CH3/EX3.21/Ex3_21.jpg b/3802/CH3/EX3.21/Ex3_21.jpg Binary files differnew file mode 100644 index 000000000..f3c4c9277 --- /dev/null +++ b/3802/CH3/EX3.21/Ex3_21.jpg diff --git a/3802/CH3/EX3.21/Ex3_21.sce b/3802/CH3/EX3.21/Ex3_21.sce new file mode 100644 index 000000000..8197ec8fa --- /dev/null +++ b/3802/CH3/EX3.21/Ex3_21.sce @@ -0,0 +1,39 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex3_21.sce
+
+clc;
+clear;
+P1=7e3; //supplied power in watt
+pf1=0.8; //lagging power factor
+//below values are taken from the given circuit (fig.3.39)
+Z1=complex(0.8,1);
+Z2=complex(1.4,1.6);
+V1=440; //terminal voltage in volt
+PL=10e3; //power required by the load in watt
+pf2=0.8; //lagging power factor
+
+I1=P1/(V1*pf1);
+Pr1=P1-(I1^2*real(Z1));
+Q1=P1*tand(acosd(pf1));
+Qr1=Q1-(I1^2*imag(Z1));
+VA=sqrt(Pr1^2+Qr1^2);
+VL=VA/I1;
+printf("\n V_L=%3.1f V \n",VL)
+
+QL=PL*tand(acosd(pf2));
+Pr2=PL-Pr1;
+Qr2=QL-Qr1;
+VA_load=sqrt(Pr2^2+Qr2^2);
+I2=VA_load/VL;
+
+P2=Pr2+(I2^2*real(Z2));
+Q2=Qr2+(I2^2*imag(Z2));
+V2=sqrt(P2^2+Q2^2)/I2;
+printf("\n V2=%3.1f V \n",V2)
+printf("\n Reactive power:P2=%4.1f W \t Q2=%4.1f Var \n",P2,Q2)
+
+
diff --git a/3802/CH3/EX3.22/Ex3_22.jpg b/3802/CH3/EX3.22/Ex3_22.jpg Binary files differnew file mode 100644 index 000000000..c645dd3c1 --- /dev/null +++ b/3802/CH3/EX3.22/Ex3_22.jpg diff --git a/3802/CH3/EX3.22/Ex3_22.sce b/3802/CH3/EX3.22/Ex3_22.sce new file mode 100644 index 000000000..f7d41c445 --- /dev/null +++ b/3802/CH3/EX3.22/Ex3_22.sce @@ -0,0 +1,37 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex3_22.sce.
+
+clc;
+clear;
+V=230; //Supply voltage in volt
+PL1=10E3; //supply power to loaad 1 in watt
+pf1=0.7;// lagging power factor value of load 1
+P2=10E3; //supply power to load 2 in watt
+pf2=0.5; //lagging power factor value of load 2
+
+printf("\n (a)")
+PL2=P2*pf2;
+QL1=PL1*tand(acosd(pf1));
+QL2=PL2*tand(acosd(pf2));
+PL=PL1+PL2;
+QL=QL1+QL2;
+QC=-QL;
+IC=QC/V;
+XC=QC/IC^2;
+f=50;
+C=1/(2*%pi*f*-XC);
+printf("\n The value of capacitance=%4.1f micro-farad \n",C*1e6)
+
+printf("\n (b)\t(i)")
+kVA=sqrt(PL^2+QL^2);
+Ig=kVA/V;
+printf("\n Magnitude alternator current without capacitor=%3.1f A \n",Ig)
+printf("\n\t(ii)")
+kVA=PL;
+Ig=kVA/V;
+printf("\n Magnitude alternator current with capacitor=%2.1f A \n",Ig)
+//Answer vary dueto roundoff error
diff --git a/3802/CH3/EX3.27/Ex3_27.jpg b/3802/CH3/EX3.27/Ex3_27.jpg Binary files differnew file mode 100644 index 000000000..9278382de --- /dev/null +++ b/3802/CH3/EX3.27/Ex3_27.jpg diff --git a/3802/CH3/EX3.27/Ex3_27.sce b/3802/CH3/EX3.27/Ex3_27.sce new file mode 100644 index 000000000..e9157b56f --- /dev/null +++ b/3802/CH3/EX3.27/Ex3_27.sce @@ -0,0 +1,53 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex3_27(b).sce
+
+clc;
+clear;
+//case(b)
+//from case(a) result v(t)=5+6.36 sin(t)+2.12 sin(3t)+1.27 sin(5t)
+V0=5
+V1=6.36/sqrt(2);
+V3=2.12/sqrt(2);
+V5=1.27/sqrt(2);
+
+omega0=0;
+omega1=1;
+omega3=3;
+omega5=5;
+
+Vdc=(2*V0)/(2+%i*omega0);
+V1=(2*V1)/(2+%i*omega1)
+V3=(2*V3)/(2+%i*omega3)
+V5=(2*V5)/(2+%i*omega5)
+
+Vdc_mag=sqrt(real(Vdc)^2+imag(Vdc)^2);
+Vdc_ang=atand(imag(Vdc)/real(Vdc));
+V1_mag=sqrt(real(V1)^2+imag(V1)^2);
+V1_ang=atand(imag(V1)/real(V1))-180;
+V3_mag=sqrt(real(V3)^2+imag(V3)^2);
+V3_ang=atand(imag(V3)/real(V3));
+V5_mag=sqrt(real(V5)^2+imag(V5)^2);
+V5_ang=atand(imag(V5)/real(V5));
+
+
+t=[0:0.1:2*%pi];
+
+Vc1=V1_mag*sin(t-V1_ang);
+Vc3=V3_mag*sin((3*t)-V3_ang);
+Vc5=V5_mag*sin((5*t)-V5_ang);
+for tt=1:length(t)
+ V(tt)=Vdc_mag*sin(%pi/2);
+end
+V=V';
+Vc=V+Vc1+Vc3+Vc5;
+
+plot(t,[Vc1; Vc3; Vc5; V ;Vc])
+
+title('The dc, fundamental, third and fifth harmonics components and resultant waveforms')
+xlabel('Time')
+ylabel('Voltage')
+legend('Fundamental component','3rd harmonic component','5th harmonic component','DC component','output')
diff --git a/3802/CH3/EX3.3/Ex3_3.jpg b/3802/CH3/EX3.3/Ex3_3.jpg Binary files differnew file mode 100644 index 000000000..36e7efc78 --- /dev/null +++ b/3802/CH3/EX3.3/Ex3_3.jpg diff --git a/3802/CH3/EX3.3/Ex3_3.sce b/3802/CH3/EX3.3/Ex3_3.sce new file mode 100644 index 000000000..9c766dc03 --- /dev/null +++ b/3802/CH3/EX3.3/Ex3_3.sce @@ -0,0 +1,20 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex3_3(b).sce.
+
+clc;
+clear;
+R=1;
+L=1;
+C=0.1;
+//case (b)
+s=0;
+//Z=R+(L*s)+(1/(C*s))
+Z=0; //Z=s/(s^2+s+10)
+//voltage across the resistancce and inductance are zero
+
+Vc=100/(s^2+s+10);//simplified form of (10s/(s^2+s+10))/(0.1s)
+printf("\n Voltage across the capacitance=%d volt",Vc)
diff --git a/3802/CH3/EX3.4/Ex3_4.jpg b/3802/CH3/EX3.4/Ex3_4.jpg Binary files differnew file mode 100644 index 000000000..99829a122 --- /dev/null +++ b/3802/CH3/EX3.4/Ex3_4.jpg diff --git a/3802/CH3/EX3.4/Ex3_4.sce b/3802/CH3/EX3.4/Ex3_4.sce new file mode 100644 index 000000000..c627a69d7 --- /dev/null +++ b/3802/CH3/EX3.4/Ex3_4.sce @@ -0,0 +1,25 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex3_4(b).sce
+
+
+//case(b)
+clc;
+clear;
+R=1;
+L=0.1;
+C=1;
+I=10;
+s=0; //complex frequency
+V=(10*s)/(s^2+s+10); //voltage across the parallel circuit
+iG=V*R;
+printf("\n Current through conductance=%d A \n",iG)
+iC=V*C;
+printf("\n Current through capacitance=%d A \n",iC)
+iL=100/(s^2+s+10); //simplified form of V/Ls=(10s/(s^2+s+10))/(0.1s)
+printf("\n Current through inductance=%d A \n",iL)
+
+
diff --git a/3802/CH3/EX3.5/Ex3_5.jpg b/3802/CH3/EX3.5/Ex3_5.jpg Binary files differnew file mode 100644 index 000000000..24003c585 --- /dev/null +++ b/3802/CH3/EX3.5/Ex3_5.jpg diff --git a/3802/CH3/EX3.5/Ex3_5.sce b/3802/CH3/EX3.5/Ex3_5.sce new file mode 100644 index 000000000..1dc265daa --- /dev/null +++ b/3802/CH3/EX3.5/Ex3_5.sce @@ -0,0 +1,30 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex3_5.sce
+
+clc;
+clear;
+R=2;
+L=2;
+C=1/12;
+omega=3;
+XL=omega*L;
+XC=1/(omega*C);
+Z=complex(R,XL-XC);
+Vl=12*sqrt(2);
+theta=30;
+V=complex(Vl*cosd(theta),Vl*sind(theta));
+I=V/Z;
+I_mag=sqrt(real(I)^2+imag(I)^2);
+I_angle=atand(imag(I)/real(I));
+printf("\n Current flow through the given circuit=%d angle:%d degree \n",I_mag,I_angle)
+
+XL=complex(0,6);
+V_L=I*XL;
+V_L_mag=sqrt(real(V_L)^2+imag(V_L)^2);
+V_L_angle=atand(imag(V_L)/real(V_L));
+printf("\n Voltage across the inductance=%d angle:%2.0f degree \n",V_L_mag,V_L_angle)
+//result:Vl(t)=36 sin(wt+75) , i(t)=6 sin(wt-15)
diff --git a/3802/CH3/EX3.6/Ex3_6.jpg b/3802/CH3/EX3.6/Ex3_6.jpg Binary files differnew file mode 100644 index 000000000..a146bef3c --- /dev/null +++ b/3802/CH3/EX3.6/Ex3_6.jpg diff --git a/3802/CH3/EX3.6/Ex3_6.sce b/3802/CH3/EX3.6/Ex3_6.sce new file mode 100644 index 000000000..901211118 --- /dev/null +++ b/3802/CH3/EX3.6/Ex3_6.sce @@ -0,0 +1,24 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex3_6.sce
+
+clc;
+clear;
+G=3; //conductance in mho
+L=1/4; //Inductor value in henry
+C=3; //capacitor value in farad
+omega=2; //taken from i(t)
+XL=1/(omega*L);
+XC=(omega*C);
+Y=complex(G,XC-XL);
+I=complex(15,0);
+V=I/Y;
+BL= complex(0,-2);
+I_L=V*BL;
+I_L_mag=sqrt(real(I_L)^2+imag(I_L)^2);
+I_L_angle=atand(imag(I_L)/real(I_L))-180;
+printf("\n The current through inductor=%d angle:%2.1f degree \n",I_L_mag,I_L_angle)
+//result: iL(t)=6 cos(2t-143.1)
diff --git a/3802/CH3/EX3.7/Ex3_7.jpg b/3802/CH3/EX3.7/Ex3_7.jpg Binary files differnew file mode 100644 index 000000000..555ca9032 --- /dev/null +++ b/3802/CH3/EX3.7/Ex3_7.jpg diff --git a/3802/CH3/EX3.7/Ex3_7.sce b/3802/CH3/EX3.7/Ex3_7.sce new file mode 100644 index 000000000..a7c871a92 --- /dev/null +++ b/3802/CH3/EX3.7/Ex3_7.sce @@ -0,0 +1,21 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex3_7.sce
+
+clc;
+clear;
+
+printf("\n (a)")
+T=(2*%pi); //Time value for one cycle
+V=15; //Maximum voltage in volt
+t0=%pi/4;t1=%pi; //time values for particular period which is taken from the given voltage wave form
+Vav=(1/T)*integrate('V*sin(t)','t',t0,t1);
+printf("\n Average value=%1.3f volt \n",Vav)
+
+printf("\n (b)")
+Vrms=sqrt(((V^2)/T)*integrate('(1-cos(2*t))/2','t',t0,t1)); //sin^2(t)=(1-cos(2t))/2
+printf("\n RMS value=%1.2f volt \n",Vrms)
+//Answer given in the book for Vrms is wrong
diff --git a/3802/CH3/EX3.8/Ex3_8.jpg b/3802/CH3/EX3.8/Ex3_8.jpg Binary files differnew file mode 100644 index 000000000..f4ca24acd --- /dev/null +++ b/3802/CH3/EX3.8/Ex3_8.jpg diff --git a/3802/CH3/EX3.8/Ex3_8.sce b/3802/CH3/EX3.8/Ex3_8.sce new file mode 100644 index 000000000..ba8d34f2b --- /dev/null +++ b/3802/CH3/EX3.8/Ex3_8.sce @@ -0,0 +1,43 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//EX3_8.sce
+
+clc;
+clear;
+R=2; //Resistance in ohm
+L=2; //Inductor value in henry
+C=1/12; //capacitor value in farad
+omega=3; //Taken from v(t) value
+//given v(t)=12 sin(3t+30);
+Vm=12;
+Vrms=Vm/sqrt(2);
+theta=30;
+
+Z=complex(R,(omega*L)-(1/(omega*C)));
+V=complex(Vrms*cosd(theta),Vrms*sind(theta));
+I=V/Z;
+I_mag=sqrt(real(I)^2+imag(I)^2);
+I_ang=atand(imag(I)/real(I));
+printf("\n Circuit current=%1.0f angle:%d degree \n",I_mag,I_ang)
+
+Vr=I*R;
+Vr_mag=sqrt(real(Vr)^2+imag(Vr)^2);
+Vr_ang=atand(imag(Vr)/real(Vr));
+printf("\n Voltage across the resistance=%1.0f angle:%d degree \n",Vr_mag,Vr_ang)
+
+theta1=90;
+Xl=complex(omega*L*cosd(theta1),omega*L*sind(theta1));
+Vl=I*Xl;
+Vl_mag=sqrt(real(Vl)^2+imag(Vl)^2);
+Vl_ang=atand(imag(Vl)/real(Vl));
+printf("\n Voltage across the inductance=%1.0f angle:%1.0f degree \n",Vl_mag,Vl_ang)
+
+theta2=-90;
+Xc=complex(cosd(theta2)/(omega*C),sind(theta2)/(omega*C));
+Vc=I*Xc;
+Vc_mag=sqrt(real(Vc)^2+imag(Vc)^2);
+Vc_ang=atand(imag(Vc)/real(Vc))-180;
+printf("\n Voltage across the capacitance=%1.0f angle:%d degree \n",Vc_mag,Vc_ang)
diff --git a/3802/CH3/EX3.9/Ex3_9.jpg b/3802/CH3/EX3.9/Ex3_9.jpg Binary files differnew file mode 100644 index 000000000..88b5aed32 --- /dev/null +++ b/3802/CH3/EX3.9/Ex3_9.jpg diff --git a/3802/CH3/EX3.9/Ex3_9.sce b/3802/CH3/EX3.9/Ex3_9.sce new file mode 100644 index 000000000..b34b53ecf --- /dev/null +++ b/3802/CH3/EX3.9/Ex3_9.sce @@ -0,0 +1,46 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex3_9.sce
+
+clc;
+clear;
+G=3; //Conductance in mho
+L=1/4; //Inductor value in henry
+C=3; //capacitor value in farad
+//Given i(t)=15 cos 2t;
+Im=15;
+Irms=Im/sqrt(2);
+omega=2;
+theta=0;
+
+Y=complex(G,(omega*C)-(1/(omega*L)));
+I=complex(Irms*cosd(theta),Irms*sind(theta));
+V=I/Y;
+V_mag=sqrt(real(V)^2+imag(V)^2);
+V_ang=atand(imag(V)/real(V));
+printf("\n Voltage across the elements=%1.2f angle:%2.1f degree \n",V_mag,V_ang)
+
+Ig=V*G;
+Ig_mag=sqrt(real(Ig)^2+imag(Ig)^2);
+Ig_ang=atand(imag(Ig)/real(Ig));
+printf("\n Current through the conductor=%1.2f angle:%2.1f degree \n",Ig_mag,Ig_ang)
+
+theta1=-90;
+Bl=complex(cosd(theta1)/(omega*L),sind(theta1)/(omega*L));
+Il=V*Bl;
+Il_mag=sqrt(real(Il)^2+imag(Il)^2);
+Il_ang=atand(imag(Il)/real(Il))-180;
+printf("\n Current through the inductor=%1.2f angle:%3.1f degree \n",Il_mag,Il_ang)
+
+theta2=90;
+Bc=complex(cosd(theta1)*omega*C,sind(theta1)*omega*C);
+Ic=V*Bc;
+Ic_mag=sqrt(real(Ic)^2+imag(Ic)^2);
+Ic_ang=atand(imag(Ic)/real(Ic));
+printf("\n Current through the capacitor=%2.3f angle:%2.1f degree \n",Ic_mag,Ic_ang)
+
+
+
|