summaryrefslogtreecommitdiff
path: root/3784/CH5
diff options
context:
space:
mode:
Diffstat (limited to '3784/CH5')
-rw-r--r--3784/CH5/EX5.1/Ex5_1.sce17
-rw-r--r--3784/CH5/EX5.10/Ex5_10.sce31
-rw-r--r--3784/CH5/EX5.11/Ex5_11.sce42
-rw-r--r--3784/CH5/EX5.12/Ex5_12.sce23
-rw-r--r--3784/CH5/EX5.13/Ex5_13.sce29
-rw-r--r--3784/CH5/EX5.14/Ex5_14.sce27
-rw-r--r--3784/CH5/EX5.15/Ex5_15.sce35
-rw-r--r--3784/CH5/EX5.2/Ex5_2.sce45
-rw-r--r--3784/CH5/EX5.3/Ex5_3.sce25
-rw-r--r--3784/CH5/EX5.4/Ex5_4.sce24
-rw-r--r--3784/CH5/EX5.5/Ex5_5.sce41
-rw-r--r--3784/CH5/EX5.6/Ex5_6.sce19
-rw-r--r--3784/CH5/EX5.7/Ex5_7.sce32
-rw-r--r--3784/CH5/EX5.8/Ex5_8.sce32
-rw-r--r--3784/CH5/EX5.9/Ex5_9.sce42
15 files changed, 464 insertions, 0 deletions
diff --git a/3784/CH5/EX5.1/Ex5_1.sce b/3784/CH5/EX5.1/Ex5_1.sce
new file mode 100644
index 000000000..939485dfc
--- /dev/null
+++ b/3784/CH5/EX5.1/Ex5_1.sce
@@ -0,0 +1,17 @@
+clc
+//Variable Initilisation
+Ns=1500 //Speed of Squirrel Cage Induction Motor in RPM
+N1=1460 //Speed of Squirrel Cage Induction Motor in RPM
+N2=1350 //Speed of Squirrel Cage Induction Motor in RPM
+
+// At 1460 rpm the speed slip is given by
+S1=(Ns-N1)/Ns //Slip
+I=(sqrt(1/3)*(2/3))/(sqrt(S1)*(1-S1))
+// At 1350 rpm the speed slip is given by
+S2=(Ns-N2)/Ns //Slip
+I1=(sqrt(1/3)*(2/3))/(sqrt(S2)*(1-S2))
+
+
+//Results
+printf('\n\n The motor maximum Current in terms of rated current at the above speed =%0.1f \n\n',I)
+printf('\n\n The motor maximum Current in terms of rated current at the above speed =%0.1f \n\n',I1)
diff --git a/3784/CH5/EX5.10/Ex5_10.sce b/3784/CH5/EX5.10/Ex5_10.sce
new file mode 100644
index 000000000..8834b94c7
--- /dev/null
+++ b/3784/CH5/EX5.10/Ex5_10.sce
@@ -0,0 +1,31 @@
+clc
+//variable initialisation
+Vm=400 //Rated Voltage of motor in volt
+Vs=440 //Supply Voltage of motor in volt
+F=50 //Supply frequency in hrtz
+P=4 //Number Of Poles
+N1=1475 //Speed OF Motor In rpm
+R1=0.35 //Resistance of stator in ohm
+R2=0.18 //Resistance of rotor in ohm
+X1=0.9 //Reactance of Motor in ohm
+X2=0.7 //Reactance of Motor in ohm
+Xm=25 //Reactance of Motor in ohm
+
+//Solution
+Vph1=Vs/(sqrt(3))
+Vph2=Vm/(sqrt(3))
+Ns=(120*F)/(P)
+S=(Ns-N1)/Ns
+I2=(Vph2)/sqrt(((R1+(R2/S))^2)+((X1+X2)^2))
+Pg=3*(I2^2)*(R2/S)
+Sm=R2/sqrt((R1)^2+((X1+X2)^2))
+Wms=(2*%pi*Ns)/60
+Tm=3*(Vph1^2)/((2*Wms)*(R1+sqrt((R1)^2+((X1+X2)^2))))
+Zi=%i*(Xm*((R1+(R2/S))+%i*(X1+X2)))/(R1+(R2/S)+%i*(X1+X2+Xm))
+Z=abs(Zi)
+printf('\n\n The Slip=%0.1f\n\n',S)
+printf('\n\n The Air gap Power Angle=%0.1f Watts\n\n',Pg)
+printf('\n\n The Slip for maximum torque=%0.1f\n\n',Sm)
+printf('\n\n The Maximum Torque=%0.1f N-m\n\n',Tm)
+printf('\n\n The Input Impedance=%0.1f\n\n',Z)
+//The answers vary due to round off error
diff --git a/3784/CH5/EX5.11/Ex5_11.sce b/3784/CH5/EX5.11/Ex5_11.sce
new file mode 100644
index 000000000..2c3d8aa5d
--- /dev/null
+++ b/3784/CH5/EX5.11/Ex5_11.sce
@@ -0,0 +1,42 @@
+clc
+//variable Initialisation
+Vm=240 //Terminal Voltage Of Motor In Volt
+F=50 //Supply Frequency Of Motor
+P=4 //Number Of Pole
+R1=0.25 //Resistance Of Motor in Ohm
+R2=0.60 //Resistance Of Motor in Ohm
+X1=0.36//Reactance in Ohm
+X2=0.36//Reactance in Ohm
+Xm=17.3//Reactance In Ohm
+Nr1=1400 //Speed Of Rotor In RPM
+Nr2=600 //Speed Of Rotor In RPM
+
+//Solution
+#Case=1
+W=((2*%pi)/60)*(Nr1)
+Ns=(120*F)/(P)
+S1=(Ns-Nr1)/Ns
+S2=(Ns-Nr2)/Ns
+Zr=(R2/S1)+%i*(X2)
+Zs=R1+%i*(X1)
+Zt=Zr+Zs
+Zin=(%i*(Xm)*(Zt))/(%i*(Xm)+(Zt))
+Tl=1.4*((10)^-3)*(W)^2
+n=Nr1/60
+I2=sqrt((S1*Tl*2*%pi*n)/(3*R2*(1-S1)))
+#Case=2
+Zr1=(R2/S2)+%i*(X2)
+Zs1=R1+%i*(X1)
+Zt1=Zr1+Zs1
+Zin1=(%i*(Xm)*(Zt1))/(%i*(Xm)+(Zt1))
+W1=((2*%pi)/60)*(Nr2)
+Tl1=1.4*((10)^-3)*(W1)^2
+n1=Nr2/60
+I3=sqrt((S2*Tl1*2*%pi*n1)/(3*R2*(1-S2)))
+//Given base currents in Amp
+Ib1=17.55
+Ib2=100.27
+Ip1=I2/Ib1
+Ip2=I3/Ib2
+printf('\n\n The per unit rotor Current for case 1=%0.1f\n\n',Ip1)
+printf('\n\n The per unit rotor Current for case 2=%0.1f\n\n',Ip2)
diff --git a/3784/CH5/EX5.12/Ex5_12.sce b/3784/CH5/EX5.12/Ex5_12.sce
new file mode 100644
index 000000000..8eaf176d4
--- /dev/null
+++ b/3784/CH5/EX5.12/Ex5_12.sce
@@ -0,0 +1,23 @@
+clc
+//variable Initialisation
+Vm=400 //Terminal Voltage Of Motor In Volt
+F=50 //Supply Frequency Of Motor
+P=6 //Number Of Pole
+R1=0.2 //Resistance Of Motor in Ohm
+R2=0.2 //Resistance Of Motor in Ohm
+X1=0.5 //Reactance in Ohm
+X2=0.5 //Reactance in Ohm
+Xm=15 //Reactance In Ohm
+S=0.05 //Slip Of Motor
+
+//Solution
+Ns=(120*F)/(P)
+Ws=((2*%pi)/60)*(Ns)
+Vph=Vm/sqrt(3)
+S1=2-S
+I2=(Vph)/sqrt(((R1+(R2/S1))^2)+((X1+X2)^2))
+Im=Vph/Xm
+I1=Im+I2
+Tb=((3*((I2)^2))/(Ws))*(R2/S1)
+printf('\n\n The Primary Current=%0.1f Amp\n\n',I1)
+printf('\n\n The Braking Torque=%0.1f N-m\n\n',Tb)
diff --git a/3784/CH5/EX5.13/Ex5_13.sce b/3784/CH5/EX5.13/Ex5_13.sce
new file mode 100644
index 000000000..305213f39
--- /dev/null
+++ b/3784/CH5/EX5.13/Ex5_13.sce
@@ -0,0 +1,29 @@
+clc
+//variable Initialisation
+Vm=400 //Terminal Voltage Of Motor In Volt
+F=50 //Supply Frequency
+P=6 //Number Of Pole
+R1=1.5 //Resistance Of Motor in Ohm
+R2=1.5 //Resistance Of Motor in Ohm
+X1=2.5//Reactance in Ohm
+X2=2.5//Reactance in Ohm
+Nr1=900 //Speed Of Rotor In RPM
+Nr2=400 //Speed Of Rotor In RPM
+
+//Solution
+Vph=Vm/sqrt(3)
+Ns=(120*F)/(P)
+S=(Ns-Nr1)/Ns
+I2=(Vph)/sqrt(((R1+(R2/S))^2)+((X1+X2)^2))
+Ws=((2*%pi)/60)*(Ns)
+T=((3*((I2)^2))/(Ws))*(R2/S)
+//At Braking
+Sb=2-S
+I2b=(Vph)/sqrt(((R1+(R2/Sb))^2)+((X1+X2)^2))
+Tb=((3*((I2b)^2))/(Ws))*(R2/Sb)
+S1=(Ns+Nr2)/Ns
+I3=(Vph)/sqrt(((R1+(R2/S1))^2)+((X1+X2)^2))
+T1=((3*((I3)^2))/(Ws))*(R2/S1)
+printf('\n\n The Full load Torque=%0.1f N-m\n\n',T)
+printf('\n\n The Initial braking Torque=%0.1f N-m\n\n',Tb)
+printf('\n\n The braking Torque at 400 rpm=%0.1f N-m\n\n',T1)
diff --git a/3784/CH5/EX5.14/Ex5_14.sce b/3784/CH5/EX5.14/Ex5_14.sce
new file mode 100644
index 000000000..42fc74bbf
--- /dev/null
+++ b/3784/CH5/EX5.14/Ex5_14.sce
@@ -0,0 +1,27 @@
+
+clc
+//variable Initialisation
+Vm=400 //Terminal Voltage Of Motor In Volts
+Pout=3 //Output Of Motor In KW
+F=50 //Supply Frequency
+P=4 //Number Of Pole
+R1=2.5 //Resistance Of Motor in Ohm
+R2=4.5 //Resistance Of Motor in Ohm
+X1=6 //Reactance in Ohm
+X2=6 //Reactance in Ohm
+Nr1=1400 //Speed Of Rotor In RPM
+Nr2=1300 //Speed Of Rotor In RPM
+
+//Solution
+Ns=(120*F)/(P)
+S=(Ns-Nr1)/Ns
+Vph=Vm/sqrt(3)
+I2=(Vm)/sqrt(((R1+(R2/S))^2)+((X1+X2)^2))
+Ws=((2*%pi)/60)*(Ns)
+Tl=((3*((I2)^2))/(Ws))*(R2/S)
+K=Tl/((1-S)^2)
+S1=(Ns-Nr2)/Ns
+Tl1=K*((1-S1)^2)
+Vs=sqrt(Tl1*S1*Ws*(((R1+(R2/S1))^2)+((X1+X2)^2))/((3)*(R2)))//Wrongly calculated in textbook
+printf('\n\n The Voltage To be Applied=%0.1f Volts\n\n',Vs)
+//The answer provided in the textbook is wrong
diff --git a/3784/CH5/EX5.15/Ex5_15.sce b/3784/CH5/EX5.15/Ex5_15.sce
new file mode 100644
index 000000000..280a9a677
--- /dev/null
+++ b/3784/CH5/EX5.15/Ex5_15.sce
@@ -0,0 +1,35 @@
+clc
+//variable Initialisation
+Vm=400 //Terminal Voltage Of Motor In Volt
+F=50 //Supply Frequency
+P=6 //Number Of Pole
+R1=0.6 //Resistnce Of Motor in Ohm
+R2=0.5 //Resistnce Of Motor in Ohm
+X1=1.3 //Reactance in Ohm
+X2=1.3 //Reactance in Ohm
+Xm=50 //Reactance In Ohm
+Nr=950 //Speed Of Rotor In RPM
+
+//Solution
+Ns=(120*F)/(P)
+Wms=((2*%pi)/60)*(Ns)
+S=(Ns-Nr)/Ns
+Vph=Vm/sqrt(3)
+I2=(Vph)/sqrt(((R1+(R2/S))^2)+((X1+X2)^2))
+Im=Vph/Xm
+I1=Im+I2
+Z1=(%i*(Xm)*((R2/S)+%i*(X2)))/((R2/S)+(%i*(X2+Xm)))
+Zf=R1+%i*(X1)+(Z1)
+Z2=%i*Xm*((R2/(2-S))+(%i*(X2)))/((R2/(2-S))+(%i*(X2+Xm)))
+Zb=R1+%i*(X1)+(Z2)
+Z3=Zf+Zb
+Znew=abs(Z3)
+I=Vph/Znew
+Tp=(3*((I)^2)*((Xm)^2)*(R2/S))/((Wms)*(((R2/S)^2)+((X2+Xm)^2)))
+Tn=-((3*((I)^2)*((Xm)^2)*(R2/(2-S)))/((Wms)*(((R2/(2-S))^2)+((X2+Xm)^2))))
+T=Tp+Tn
+Wm=Wms*(1-S)
+Tl=(8.4/1000)*(Wm^2)//Given
+printf('\n\n The Motor Speed=%0.1f rpm\n\n',Ns)
+printf('\n\n The motor Current=%0.1f Amp\n\n',I)
+disp("Since T=Tl,Motor will run Safely")
diff --git a/3784/CH5/EX5.2/Ex5_2.sce b/3784/CH5/EX5.2/Ex5_2.sce
new file mode 100644
index 000000000..631b76f01
--- /dev/null
+++ b/3784/CH5/EX5.2/Ex5_2.sce
@@ -0,0 +1,45 @@
+clc
+//variable Initialisation
+V=415//Voltage Input in Volts
+f=50//supply frequency in Hz
+P=4//No of Poles
+N1=1450//Rotor Speed in rpm
+N2=1290//Rotor Speed in rpm for case II
+R1=1.01
+R2=0.69
+X1=1.08
+X2=1.60
+Xm=36
+Tl=42//Rated torque in N-m
+//Solution
+Vph=V/sqrt(3)
+Ns=120*f/P
+Ws=2*%pi*Ns/60
+Wm=2*%pi*N1/60
+K=Tl/(Wm^2)
+s=(Ns-N2)/Ns//Slip
+Wm2=Ws*(1-s)
+Tl=K*(Wm2^2)//Load Torque in N-m
+Tl2=Tl*Wm2//Torque in Synchronous Watts
+I2=sqrt((Tl2*s)/(3*R2*(1-s)))
+Z=R1+(R2/s)+(%i*(X1+X2))//Impedance at slip s
+V2=I2*abs(Z)//Voltage applied in Volts/Phase
+Im=V2/(%i*Xm)
+Im1=abs(Im)
+Ir=V2/Z//Rotor Current
+Is=Ir+Im//Stator Current
+a=atand(imag(Is)/real(Is))
+Pin=3*V2*abs(Is)*cosd(a)//Input Power
+Smax=1/3//Smax is obtain theorotically
+I2max=Ws*sqrt(Smax)*(1-Smax)*sqrt(K*Ws/(3*R2))
+Nr=Ns*(1-Smax)//Speed at maximum Current
+Wmax=2*%pi*Nr/60
+T=3*(I2max^2)*R2*(1-Smax)/(Smax*Wmax)//Torque at maximum Current
+printf('\n\n The Load torque=%0.1f N-m\n\n',Tl)
+printf('\n\n The Rotor Current=%0.1f Amp\n\n',Ir)
+printf('\n\n The Stator Supply Voltage=%0.1f Volts\n\n',V2)
+printf('\n\n The Motor input current=%0.1f Amp\n\n',Is)
+printf('\n\n The Motor input power=%0.1f Watt\n\n',Pin)//The answer provided in the textbook is wrong
+printf('\n\n Maximum rotor Current=%0.1f Amp\n\n',I2max)
+printf('\n\n The speed at maximum current=%0.1f rad/sec\n\n',Wmax)
+printf('\n\n The torque at maximum current=%0.1f N-m\n\n',T)
diff --git a/3784/CH5/EX5.3/Ex5_3.sce b/3784/CH5/EX5.3/Ex5_3.sce
new file mode 100644
index 000000000..2ac1d93ba
--- /dev/null
+++ b/3784/CH5/EX5.3/Ex5_3.sce
@@ -0,0 +1,25 @@
+clc
+//variable Initialisation
+Vl=440//Voltage Input in Volts
+f1=50//supply frequency in Hz
+P=25e+3//power rating in Watts
+N1=950//Rotor Speed in rpm
+Z=0.1+(%i*3)//Rotor Impedance
+pole=6//No of poles
+f2=80//Supply 2 frequency in Hz
+//Solution
+V=Vl/sqrt(3)//Phase Voltage in Volts
+Wm=2*%pi*N1/60
+Tfl=P/Wm//Full load Torque in N-m
+Ns=120*f2/pole
+Ws=2*%pi*Ns/60
+Z2=Z*(f2/f1)//Rotor Impedance at 80 Hz
+S=3*(V^2)*0.5/(Ws*((abs(Z2))^2)*Tfl)
+Nr=Ns*(1-S)
+Rl=real(Z)
+Xl=imag(Z2)
+Smax=(Rl/Xl)
+Tmax=3*(V^2)/(Ws*2*Xl)
+printf('\n\n The Motor speed=%0.1f rpm\n\n',Nr)//The answers vary due to round off error
+printf('\n\n The Slip at which maximum torque occurs=%0.1f\n\n',Smax)
+printf('\n\n The maximum Torque=%0.1f\n\n',Tmax)
diff --git a/3784/CH5/EX5.4/Ex5_4.sce b/3784/CH5/EX5.4/Ex5_4.sce
new file mode 100644
index 000000000..fa2505604
--- /dev/null
+++ b/3784/CH5/EX5.4/Ex5_4.sce
@@ -0,0 +1,24 @@
+clc
+//variable initialisation
+Vm=400 //Input Voltage in volt
+F=50 //supply frequency in Hz
+P1=4 //number of poles
+R1=0.15 //resistance of stator in ohm
+R2=0.12 //resistance of rotor in ohm
+X1=0.45 //reactance of Motor in ohm
+X2=0.45 //reactance of Motor in ohm
+Xm=28.5 //reactance of Motor in ohm
+S=0.04 //Slip Of Motor
+
+//Solution
+Rl=R2*((1/S)-1)
+Vph=Vm/sqrt(3)
+I2=Vph/((R1+R2+Rl)+%i*(X1+X2))
+I0=Vph/(%i*Xm)
+I1=I0+I2
+y=imag(I1)
+x=real(I1)
+phi=atand(y/x)
+pf=cosd(phi)
+printf('\n\n The Stator Current=%0.1f Amp\n\n',I1)
+printf('\n\n The Power Factor=%0.1f lag\n\n',pf)
diff --git a/3784/CH5/EX5.5/Ex5_5.sce b/3784/CH5/EX5.5/Ex5_5.sce
new file mode 100644
index 000000000..3644a3841
--- /dev/null
+++ b/3784/CH5/EX5.5/Ex5_5.sce
@@ -0,0 +1,41 @@
+clc
+//variable initialisation
+Pout=37.3 //Motor Output In KW
+Vm=440 //Motor Input in volt
+F=50 //supply frequency in Hz
+I0=20 //NO Load Line Current Of Motor
+R1=0.1 //resistance of stator in ohm
+R2=0.15 //resistance of rotor in ohm
+X1=0.4 //reactance of Motor in ohm
+X2=0.44 //reactance of Motor in ohm
+S=0.03 //Slip Of Motor
+Ls=1250 //Stator Core Loses In Watt
+Lr=1000 //Rotational Losses In KW
+Ns=1500 // Synchronous Speed Of Motor
+
+//Solution
+Vph=Vm/sqrt(3)
+I2=Vph/((R1+(R2/S))+%i*(X1+X2))
+I21=abs(I2)
+I21=49.1//rounding off to avoid computational error
+I0=1.78-(%i*19.9)//Taken in book for No load motor current
+I1=I0+I2
+y=imag(I1)
+x=real(I1)
+phi=atand(y/x)
+pf=cosd(phi)
+P2=3*((I21)^2)*(R2/S)
+Tg=(9.55*P2)/Ns
+Pm=(1-S)*P2
+Pout1=Pm+Lr
+Lcs=3*((I21)^2)*R1//Wrong value of I2 is taken in textbook
+Lcr=S*P2
+Lt=Ls+Lr+Lcs+Lcr
+Pin=Lt+Pout1
+n=Pout1/Pin
+printf('\n\n The input line Current=%0.1f Amp\n\n',I1)
+printf('\n\n The power factor=%0.1f lag\n\n',pf)
+printf('\n\n The Electromagnetic Torque Developed=%0.1f N-m\n\n',Tg)
+printf('\n\n The output=%0.1f Watts\n\n',Pm)
+printf('\n\n The efficiency of Motor=%0.1f\n\n',n)
+//The answers vary due to round off error
diff --git a/3784/CH5/EX5.6/Ex5_6.sce b/3784/CH5/EX5.6/Ex5_6.sce
new file mode 100644
index 000000000..24c55c7a1
--- /dev/null
+++ b/3784/CH5/EX5.6/Ex5_6.sce
@@ -0,0 +1,19 @@
+clc
+//variable initialisation
+Vm=400 //Supply Voltage in volt
+F=50 //supply frequency in hrtz
+P=6 //Number Of Poles
+R1=0.15 //resistance of stator in ohm
+R2=0.15 //resistance of rotor in ohm
+X1=0.8 //reactance of Motor in ohm
+X2=0.8 //reactance of Motor in ohm
+S=0.04 //Slip Of Motor
+
+//Solution
+Ns=(120*F)/P
+Ws=((2*%pi)/60)*1000
+Sr=2-S
+Vph=Vm/(sqrt(3))
+I2=Vph/(sqrt(((R1+(R2/((2-S))))^2)+((X1+X2)^2)))
+Tsb=(3*((I2)^2)*(R2/(2-S)))/(Ws)
+printf('\n\n The Initial Braking Torque=%0.1f N-m\n\n',Tsb)
diff --git a/3784/CH5/EX5.7/Ex5_7.sce b/3784/CH5/EX5.7/Ex5_7.sce
new file mode 100644
index 000000000..55ac6056e
--- /dev/null
+++ b/3784/CH5/EX5.7/Ex5_7.sce
@@ -0,0 +1,32 @@
+clc
+//variable initialisation
+Pout=7.5 // Output Of Motor In KW
+Vm=230 //Supply Voltage in volt
+F=50 //supply frequency in hrtz
+R1=0.36 //resistance of stator in ohm
+R2=0.222 //resistance of rotor in ohm
+X1=0.47 //reactance of Motor in ohm
+X2=0.47 //reactance of Motor in
+Xm=15.5 //reactance of Motor in ohm
+S=0.4723 //Slip Of Motor
+P=4 //Number Of Poles
+
+//Solution
+Vph=Vm/sqrt(3)
+Z=((R1+(R2/S))+(%i*(X1+X2)))
+I2=Vph/Z
+I2r=abs(I2)
+Lcr=3*((I2r)^2)*R2
+P2=Lcr/S
+Ns=(120*F)/P
+Tst=(9.55*P2)/Ns
+Sm=R2/X2
+Z1=(R1+R2)+%i*(X1+X2)
+Z2=abs(Z1)
+I3=Vph/Z2
+I4=abs(I3)
+P3=3*((I4)^2)*R2
+Tst1=(9.55*P3)/(Ns)
+printf('\n\n The Maximum Internal Torque=%0.1f N-m\n\n',Tst)
+printf('\n\n Slip at Maximum Torque=%0.1f\n\n',Sm)
+printf('\n\n The Starting Torque=%0.1f N-m\n\n',Tst1)
diff --git a/3784/CH5/EX5.8/Ex5_8.sce b/3784/CH5/EX5.8/Ex5_8.sce
new file mode 100644
index 000000000..f18ed19ec
--- /dev/null
+++ b/3784/CH5/EX5.8/Ex5_8.sce
@@ -0,0 +1,32 @@
+clc
+//variable initialisation
+Vm=400 //input of motor in volt
+F=50 //supply frequency in hrtz
+P=4 //Number Of Poles
+R1=1 //resistance of stator in ohm
+R2=0.4 //resistance of rotor in ohm
+X1=1 //reactance of Motor in ohm
+X2=1 //reactance of Motor in ohm
+Xm=50 //reactance of Motor in ohm
+Vc=231 //Constant Voltage Source In Volt
+I1=28//Current from Constant Current Source in Amp
+//Solution
+Xe=(X1*Xm)/(X2+Xm)
+Sm=R2/(Xe+X2)
+Sm1=R2/(X2+Xm)
+Ve=(Vc*Xm)/(X1+Xm)
+Ws=(4*%pi*F)/(P)
+Test=(3/Ws)*(((Ve)^2)/(R2^2+(X2+Xe)^2))*R2
+Tem=(3/Ws)*(((Ve)^2)/(2*(X2+Xe)))
+Test1=(3/Ws)*(((I1*Xm)^2)/(R2^2+(X2+Xm)^2))*R2
+Tem1=(3/Ws)*(((I1*Xm)^2)/(2*(X2+Xm)))
+Im=I1*((R2/Sm1)+(%i*X2))/((R2/Sm1)+%i*(X2+Xm))
+V1=sqrt(3)*abs(Im)*Xm
+printf('\n\n The Slip for maximum torque for Voltage source=%0.1f\n\n',Sm)
+printf('\n\n The Slip for maximum torque for current source=%0.1f\n\n',Sm1)
+printf('\n\n The Starting Torque for Voltage source=%0.1f N-m\n\n',Test)
+printf('\n\n The Maximum Torque for Voltage Source=%0.1f N-m\n\n',Tem)
+printf('\n\n The Starting Torque for Current Source=%0.1f N-m\n\n',Test1)
+printf('\n\n The Maximum Torque for Current Source=%0.1f N-m\n\n',Tem1)
+printf('\n\n The Supply voltage required=%0.1f Volt\n\n',V1)
+//The answers vary due to round off error
diff --git a/3784/CH5/EX5.9/Ex5_9.sce b/3784/CH5/EX5.9/Ex5_9.sce
new file mode 100644
index 000000000..7591a0679
--- /dev/null
+++ b/3784/CH5/EX5.9/Ex5_9.sce
@@ -0,0 +1,42 @@
+clc
+//variable initialisation
+Vph=2200 //Supply Voltage in volt
+F=50 //supply frequency in Hz
+Pout=2600 // Output Of Motor In KW
+P=8 //Number Of Poles
+N1=735 //Speed OF Motor In rpm
+Rs=0.075 //Resistance of stator in ohm
+Rr=0.1 //Resistance of rotor in ohm
+Xs=0.45 //Reactance of Motor in ohm
+Xr=0.55 //Reactance of Motor in ohm
+
+//Solution
+Ns=(120*F)/P
+S=(Ns-N1)/Ns
+Iph=Vph/sqrt((Rs+((Rr/S)^2))+((Xs+Xr)^2))
+Il=sqrt(3)*Iph
+Wms=(2*%pi*Ns)/60
+Tl=(3*((Iph)^2))/(S*(Wms))
+Ilm=Vph/(sqrt(3)*sqrt(((Rs+Rr)^2)+((Xs+Xr)^2)))
+S2=1
+Tst=(3*(((Ilm)^2)*0.1))/(S2*Wms)
+r1=Tst/Tl//ratio of Tst and Tl
+Tmax=(3/(2*Wms))*(((Vph/sqrt(3))^2)/((Rs+sqrt((Rs^2)+((Xs+Xr)^2)))))
+r2=Tmax/Tl//ratio of Tmax and Tl
+Rr2=0.15
+Xr2=0.9
+Il1=(sqrt(3)*Vph)/(sqrt(((Rs+Rr)^2)+((Xs+Xr2)^2)))
+Iph1=Il1/(sqrt(3))
+Tst1=(3*((Iph1)^2)*(Rr))/(Wms)
+Rs1=Rs/3
+Rr1=Rr/3
+Xs1=Xs/3
+Xr1=Xr/3
+Inew=2*Il
+X=sqrt(((Vph/(sqrt(3)*Inew))^2)-((Rs1+Rr1)^2))
+Xe=X-Xs1-Xr1
+printf('\n\n Ratio of starting torque and load torque=%0.1f \n\n',r1)//The answer provided in the textbook is wrong
+printf('\n\n Ratio of maximum torque and load torque=%0.1f \n\n',r2)
+printf('\n\n The Maximum line current during starting=%0.1f Amp\n\n',Il1)//The answer provided in the textbook is wrong
+printf('\n\n The maximum torque at starting=%0.1f N-m\n\n',Tst1)//The answer provided in the textbook is wrong
+printf('\n\n The required value of reactor=%0.1f ohm\n\n',Xe)