summaryrefslogtreecommitdiff
path: root/3776/CH8
diff options
context:
space:
mode:
Diffstat (limited to '3776/CH8')
-rw-r--r--3776/CH8/EX8.1/Ex8_1.sce27
-rw-r--r--3776/CH8/EX8.3/Ex8_3.sce16
-rw-r--r--3776/CH8/EX8.4/Ex8_4.sce20
-rw-r--r--3776/CH8/EX8.7/Ex8_7.sce15
-rw-r--r--3776/CH8/EX8.8/Ex8_8.sce24
5 files changed, 102 insertions, 0 deletions
diff --git a/3776/CH8/EX8.1/Ex8_1.sce b/3776/CH8/EX8.1/Ex8_1.sce
new file mode 100644
index 000000000..2510958ab
--- /dev/null
+++ b/3776/CH8/EX8.1/Ex8_1.sce
@@ -0,0 +1,27 @@
+clear
+//Given
+//
+//
+o = 22.5 //degrees , The angle of infetisimal wedge
+A = 1 //mm2 The area of the element
+A_ab = 1*(cos((%pi/180)*(o))) //mm2 - The area corresponds to AB
+A_bc = 1*(sin((%pi/180)*(o))) //mm2 - The area corresponds to BC
+S_1 = 3 //MN The stresses applying on the element
+S_2 = 2 //MN
+S_3 = 2 //MN
+S_4 = 1 //MN
+F_1 = S_1*A_ab // The Forces obtained by multiplying stress by their areas
+F_2 = S_2*A_ab
+F_3 = S_3*A_bc
+F_4 = S_4*A_bc
+//sum of F_N = 0 equilibrim in normal direction
+N = (F_1-F_3)*(cos((%pi/180)*(o))) + (F_4 - F_2)*(sin((%pi/180)*(o)))
+
+//sum of F_s = 0 equilibrim in tangential direction
+
+S = (F_2-F_4)*(cos((%pi/180)*(o))) + (F_1 - F_3)*(sin((%pi/180)*(o)))
+
+Stress_Normal = N/A //MPa - The stress action in normal direction on AB
+Stress_tan = S/A //MPa - The stress action in tangential direction on AB
+printf("\n The stress action in normal direction on AB %0.2f MPa",Stress_Normal)
+printf("\n The stress action in tangential direction on AB %0.2f MPa",Stress_tan)
diff --git a/3776/CH8/EX8.3/Ex8_3.sce b/3776/CH8/EX8.3/Ex8_3.sce
new file mode 100644
index 000000000..6172f655f
--- /dev/null
+++ b/3776/CH8/EX8.3/Ex8_3.sce
@@ -0,0 +1,16 @@
+clear
+//Given
+//
+//
+S_x = -2 //MPa _ the noraml stress in x direction
+S_y = 4 //MPa _ the noraml stress in Y direction
+c = (S_x + S_y)/2 //MPa - The centre of the mohr circle
+point_x = -2 //The x coordinate of a point on mohr circle
+point_y = 4 //The y coordinate of a point on mohr circle
+Radius = ((point_x-c)**2 + point_y**2**0.5) // The radius of the mohr circle
+S_1 = Radius +1//MPa The principle stress
+S_2 = -Radius +1 //MPa The principle stress
+S_xy_max = Radius //MPa The maximum shear stress
+printf("\n The principle stresses are %0.3f MPa %0.3f MPa",S_1,S_2)
+printf("\n The maximum shear stress %0.3f MPa",S_xy_max)
+printf("\n The maximum tensile stress which is the result of all stresses must act as shown in the figure")
diff --git a/3776/CH8/EX8.4/Ex8_4.sce b/3776/CH8/EX8.4/Ex8_4.sce
new file mode 100644
index 000000000..75a4498ff
--- /dev/null
+++ b/3776/CH8/EX8.4/Ex8_4.sce
@@ -0,0 +1,20 @@
+clear
+//Given
+//
+S_x = 3.0 //MPa _ the noraml stress in x direction
+S_y = 1.0 //MPa _ the noraml stress in Y direction
+c = (S_x + S_y)/2 //MPa - The centre of the mohr circle
+point_x = 1 //The x coordinate of a point on mohr circle
+point_y = 3 //The y coordinate of a point on mohr circle
+//Caliculations
+
+Radius = ((point_x-c)**2 + point_y**2**0.5) // The radius of the mohr circle
+//22.5 degrees line is drawn
+o = 22.5 //degrees
+a = 71.5 - 2*o //Degrees, from diagram
+stress_n = c + Radius*sin((180/%pi)*(o)) //MPa The normal stress on the plane
+stress_t = Radius*cos((180/%pi)*(o)) //MPa The tangential stress on the plane
+printf("\n The normal stress on the 22 1/2 plane %0.2f MPa",stress_n)
+printf("\n The tangential stress on the 22 1/2 plane %0.2f MPa",stress_t)
+printf("\n answer varies due to rounding off errors")
+
diff --git a/3776/CH8/EX8.7/Ex8_7.sce b/3776/CH8/EX8.7/Ex8_7.sce
new file mode 100644
index 000000000..a497ec56a
--- /dev/null
+++ b/3776/CH8/EX8.7/Ex8_7.sce
@@ -0,0 +1,15 @@
+clear
+//
+e_x = -500 //10-6 m/m The contraction in X direction
+e_y = 300 //10-6 m/m The contraction in Y direction
+e_xy = -600 //10-6 m/m discorted angle
+centre = (e_x + e_y)/2 //10-6 m/m
+point_x = -500 //The x coordinate of a point on mohr circle
+point_y = 300 //The y coordinate of a point on mohr circle
+Radius = 500 //10-6 m/m - from mohr circle
+e_1 = Radius +centre //MPa The principal strain
+e_2 = -Radius +centre //MPa The principal strain
+k = atan(300.0/900) // from geometry
+k_1 = (180/%pi)*(k)
+printf("\n The principal strains are %0.3f um/m %0.3f um/m",e_1,e_2)
+printf("\n The angle of principal plane %0.2f degrees",k_1)
diff --git a/3776/CH8/EX8.8/Ex8_8.sce b/3776/CH8/EX8.8/Ex8_8.sce
new file mode 100644
index 000000000..0c8fd0488
--- /dev/null
+++ b/3776/CH8/EX8.8/Ex8_8.sce
@@ -0,0 +1,24 @@
+clear
+//Given
+e_0 = -500 //10-6 m/m
+e_45 = 200 //10-6 m/m
+e_90 = 300 //10-6 m/m
+E = 200 //Gpa - youngs modulus of steel
+v = 0.3 // poissions ratio
+//Caliculations
+
+e_xy = 2*e_45 - (e_0 +e_90 ) //10-6 m/m from equation 8-40 in text
+// from example 8.7
+e_x = -500 //10-6 m/m The contraction in X direction
+e_y = 300 //10-6 m/m The contraction in Y direction
+e_xy = -600 //10-6 m/m discorted angle
+centre = (e_x + e_y)/2 //10-6 m/m
+point_x = -500 //The x coordinate of a point on mohr circle
+point_y = 300 //The y coordinate of a point on mohr circle
+Radius = 500 //10-6 m/m - from mohr circle
+e_1 = Radius +centre //MPa The principle strain
+e_2 = -Radius +centre //MPa The principle strain
+
+stress_1 = E*(10**-3)*(e_1+v*e_2)/(1-v**2) //MPa the stress in this direction
+stress_2 = E*(10**-3)*(e_2+v*e_1)/(1-v**2) //MPa the stress in this direction
+printf("\n The principle stresses are %0.2f MPa %0.2f MPa",stress_1,stress_2)