diff options
Diffstat (limited to '3776/CH8')
-rw-r--r-- | 3776/CH8/EX8.1/Ex8_1.sce | 27 | ||||
-rw-r--r-- | 3776/CH8/EX8.3/Ex8_3.sce | 16 | ||||
-rw-r--r-- | 3776/CH8/EX8.4/Ex8_4.sce | 20 | ||||
-rw-r--r-- | 3776/CH8/EX8.7/Ex8_7.sce | 15 | ||||
-rw-r--r-- | 3776/CH8/EX8.8/Ex8_8.sce | 24 |
5 files changed, 102 insertions, 0 deletions
diff --git a/3776/CH8/EX8.1/Ex8_1.sce b/3776/CH8/EX8.1/Ex8_1.sce new file mode 100644 index 000000000..2510958ab --- /dev/null +++ b/3776/CH8/EX8.1/Ex8_1.sce @@ -0,0 +1,27 @@ +clear +//Given +// +// +o = 22.5 //degrees , The angle of infetisimal wedge +A = 1 //mm2 The area of the element +A_ab = 1*(cos((%pi/180)*(o))) //mm2 - The area corresponds to AB +A_bc = 1*(sin((%pi/180)*(o))) //mm2 - The area corresponds to BC +S_1 = 3 //MN The stresses applying on the element +S_2 = 2 //MN +S_3 = 2 //MN +S_4 = 1 //MN +F_1 = S_1*A_ab // The Forces obtained by multiplying stress by their areas +F_2 = S_2*A_ab +F_3 = S_3*A_bc +F_4 = S_4*A_bc +//sum of F_N = 0 equilibrim in normal direction +N = (F_1-F_3)*(cos((%pi/180)*(o))) + (F_4 - F_2)*(sin((%pi/180)*(o))) + +//sum of F_s = 0 equilibrim in tangential direction + +S = (F_2-F_4)*(cos((%pi/180)*(o))) + (F_1 - F_3)*(sin((%pi/180)*(o))) + +Stress_Normal = N/A //MPa - The stress action in normal direction on AB +Stress_tan = S/A //MPa - The stress action in tangential direction on AB +printf("\n The stress action in normal direction on AB %0.2f MPa",Stress_Normal) +printf("\n The stress action in tangential direction on AB %0.2f MPa",Stress_tan) diff --git a/3776/CH8/EX8.3/Ex8_3.sce b/3776/CH8/EX8.3/Ex8_3.sce new file mode 100644 index 000000000..6172f655f --- /dev/null +++ b/3776/CH8/EX8.3/Ex8_3.sce @@ -0,0 +1,16 @@ +clear +//Given +// +// +S_x = -2 //MPa _ the noraml stress in x direction +S_y = 4 //MPa _ the noraml stress in Y direction +c = (S_x + S_y)/2 //MPa - The centre of the mohr circle +point_x = -2 //The x coordinate of a point on mohr circle +point_y = 4 //The y coordinate of a point on mohr circle +Radius = ((point_x-c)**2 + point_y**2**0.5) // The radius of the mohr circle +S_1 = Radius +1//MPa The principle stress +S_2 = -Radius +1 //MPa The principle stress +S_xy_max = Radius //MPa The maximum shear stress +printf("\n The principle stresses are %0.3f MPa %0.3f MPa",S_1,S_2) +printf("\n The maximum shear stress %0.3f MPa",S_xy_max) +printf("\n The maximum tensile stress which is the result of all stresses must act as shown in the figure") diff --git a/3776/CH8/EX8.4/Ex8_4.sce b/3776/CH8/EX8.4/Ex8_4.sce new file mode 100644 index 000000000..75a4498ff --- /dev/null +++ b/3776/CH8/EX8.4/Ex8_4.sce @@ -0,0 +1,20 @@ +clear +//Given +// +S_x = 3.0 //MPa _ the noraml stress in x direction +S_y = 1.0 //MPa _ the noraml stress in Y direction +c = (S_x + S_y)/2 //MPa - The centre of the mohr circle +point_x = 1 //The x coordinate of a point on mohr circle +point_y = 3 //The y coordinate of a point on mohr circle +//Caliculations + +Radius = ((point_x-c)**2 + point_y**2**0.5) // The radius of the mohr circle +//22.5 degrees line is drawn +o = 22.5 //degrees +a = 71.5 - 2*o //Degrees, from diagram +stress_n = c + Radius*sin((180/%pi)*(o)) //MPa The normal stress on the plane +stress_t = Radius*cos((180/%pi)*(o)) //MPa The tangential stress on the plane +printf("\n The normal stress on the 22 1/2 plane %0.2f MPa",stress_n) +printf("\n The tangential stress on the 22 1/2 plane %0.2f MPa",stress_t) +printf("\n answer varies due to rounding off errors") + diff --git a/3776/CH8/EX8.7/Ex8_7.sce b/3776/CH8/EX8.7/Ex8_7.sce new file mode 100644 index 000000000..a497ec56a --- /dev/null +++ b/3776/CH8/EX8.7/Ex8_7.sce @@ -0,0 +1,15 @@ +clear +// +e_x = -500 //10-6 m/m The contraction in X direction +e_y = 300 //10-6 m/m The contraction in Y direction +e_xy = -600 //10-6 m/m discorted angle +centre = (e_x + e_y)/2 //10-6 m/m +point_x = -500 //The x coordinate of a point on mohr circle +point_y = 300 //The y coordinate of a point on mohr circle +Radius = 500 //10-6 m/m - from mohr circle +e_1 = Radius +centre //MPa The principal strain +e_2 = -Radius +centre //MPa The principal strain +k = atan(300.0/900) // from geometry +k_1 = (180/%pi)*(k) +printf("\n The principal strains are %0.3f um/m %0.3f um/m",e_1,e_2) +printf("\n The angle of principal plane %0.2f degrees",k_1) diff --git a/3776/CH8/EX8.8/Ex8_8.sce b/3776/CH8/EX8.8/Ex8_8.sce new file mode 100644 index 000000000..0c8fd0488 --- /dev/null +++ b/3776/CH8/EX8.8/Ex8_8.sce @@ -0,0 +1,24 @@ +clear +//Given +e_0 = -500 //10-6 m/m +e_45 = 200 //10-6 m/m +e_90 = 300 //10-6 m/m +E = 200 //Gpa - youngs modulus of steel +v = 0.3 // poissions ratio +//Caliculations + +e_xy = 2*e_45 - (e_0 +e_90 ) //10-6 m/m from equation 8-40 in text +// from example 8.7 +e_x = -500 //10-6 m/m The contraction in X direction +e_y = 300 //10-6 m/m The contraction in Y direction +e_xy = -600 //10-6 m/m discorted angle +centre = (e_x + e_y)/2 //10-6 m/m +point_x = -500 //The x coordinate of a point on mohr circle +point_y = 300 //The y coordinate of a point on mohr circle +Radius = 500 //10-6 m/m - from mohr circle +e_1 = Radius +centre //MPa The principle strain +e_2 = -Radius +centre //MPa The principle strain + +stress_1 = E*(10**-3)*(e_1+v*e_2)/(1-v**2) //MPa the stress in this direction +stress_2 = E*(10**-3)*(e_2+v*e_1)/(1-v**2) //MPa the stress in this direction +printf("\n The principle stresses are %0.2f MPa %0.2f MPa",stress_1,stress_2) |