diff options
Diffstat (limited to '374/CH3')
-rw-r--r-- | 374/CH3/EX3.0/3.sci | 11 | ||||
-rw-r--r-- | 374/CH3/EX3.1/31.sci | 18 | ||||
-rw-r--r-- | 374/CH3/EX3.2/32.sci | 15 | ||||
-rw-r--r-- | 374/CH3/EX3.3/33.sci | 16 | ||||
-rw-r--r-- | 374/CH3/EX3.4.b/34b.sci | 10 | ||||
-rw-r--r-- | 374/CH3/EX3.4/34.sci | 16 | ||||
-rw-r--r-- | 374/CH3/EX3.5/35.sci | 12 | ||||
-rw-r--r-- | 374/CH3/EX3.6/36.sci | 14 | ||||
-rw-r--r-- | 374/CH3/EX3.7/37.sci | 12 |
9 files changed, 124 insertions, 0 deletions
diff --git a/374/CH3/EX3.0/3.sci b/374/CH3/EX3.0/3.sci new file mode 100644 index 000000000..15d08d742 --- /dev/null +++ b/374/CH3/EX3.0/3.sci @@ -0,0 +1,11 @@ +//chapter 3 example//
+clc
+clear
+//spectrum width=W,laser source emits ligth at=D,bandwidth distance product=fZ,speed of light=C//
+W=0.003//in micro meters//
+D=0.85//in micro meters//
+x=W/D;
+Ym=0.021//obtained from graph//
+C=3*(10^8);//in mts per second//
+fZ=C/(4*x*Ym)*(10^-12);
+printf("\n bandwidth distance product=%f GHz Km \n",fZ);
\ No newline at end of file diff --git a/374/CH3/EX3.1/31.sci b/374/CH3/EX3.1/31.sci new file mode 100644 index 000000000..bc8bab50b --- /dev/null +++ b/374/CH3/EX3.1/31.sci @@ -0,0 +1,18 @@ +//chapter 3 example 1//
+//length of fibre=l,average optical power=Pin,average output power=Pout,signal attenuation per km=A//
+clc
+clear
+Pin=100*(10^-6);//in watts//
+Pout=2.5*(10^-6);//in watts//
+l=10//in kilometers//
+A=(10*(log10(Pin/Pout)))/l;//per km//
+printf("\n a) signal attenuation per km=%f per km.\n",A);
+//sigmal attenuaion in db=Adb,total attenuation for 11kms=A1,attenuation for 3 splice each with 0.8db=A2,overall attenuation in the link=Anet,ratio between input and output power=x//
+Adb=(A*10);
+printf("\n b) signal attenuation in decibels=%f db.\n",Adb);
+A1=(A*11);
+A2=2.4;
+Anet=A1+A2;
+printf("\n c) overall signal attenuation in decibels=%f db.\n",Anet);
+x=(10^(Anet/10));
+printf("\n d) ratio between input and output power=%f\n",x);
\ No newline at end of file diff --git a/374/CH3/EX3.2/32.sci b/374/CH3/EX3.2/32.sci new file mode 100644 index 000000000..934b38cc8 --- /dev/null +++ b/374/CH3/EX3.2/32.sci @@ -0,0 +1,15 @@ +//chapter 3 example 2//
+//temperature of silica glass=T,isothermal compressebility=Bc,refractive index of silica=n1,photoelastic coeffcient of silica=P,boltzmann constant=Kb,optical wavelength=l,rayleigh scattering coeffcient=Tr,attenuation in km=Akm,attenuation in db=Adb//
+clc
+clear
+n1=1.46;
+P=0.286;
+Bc=7*(10^-11);//in meter sqr per newton//
+l=(10^-6)// in meters//
+T=1400//in kelvin//
+Kb=1.38*(10^-23)//in joules per kelvin//
+Tr=((8*(%pi^3))*(n1^8)*(P^2)*Bc*Kb*T)/(3*(l^4));
+printf("\n rayleigh scattering constant=%f per metre.\n",Tr);
+Akm=exp(-1*Tr*(10^3));
+Adb=10*(log10(1/Akm));
+printf("\n attenuation in db=%f db per Km.\n",Adb);
diff --git a/374/CH3/EX3.3/33.sci b/374/CH3/EX3.3/33.sci new file mode 100644 index 000000000..05ad22d0e --- /dev/null +++ b/374/CH3/EX3.3/33.sci @@ -0,0 +1,16 @@ +//chapter 3 example 3//
+clc
+clear
+//core refractive index=n1,cladding refractive index=n2,refractive index of air=na,numerical aperture=NA,acceptance angle=A,multiple time dispersion=M,relative refractive index difference=d,speed of light=C//
+n1=1.55;
+n2=1.51;
+d=n1-n2;
+n=(n1+n2)/2;
+NA=sqrt(2*d*n);
+printf("\n 1) numerical aperture=%f.\n",NA);
+A=asind(NA);
+printf("\n 2) acceptance angle=%f.\n",A);
+C=(3*(10^8));//in mts per sec//
+M=((n1*d)/(n2*C))*(10^12);
+printf("\n 3) multiple time dispersion=%f ns/km \n",M);
+
diff --git a/374/CH3/EX3.4.b/34b.sci b/374/CH3/EX3.4.b/34b.sci new file mode 100644 index 000000000..41816bdcc --- /dev/null +++ b/374/CH3/EX3.4.b/34b.sci @@ -0,0 +1,10 @@ +//chapter 3 example 4 b//
+clc
+clear
+//core refractive index=n1,relative refractive index difference=d,operating wavelength=l,critical radius of curvature=Rc,cladding refractive index=n2//
+d=0.03;
+n1=1.500;
+n2=sqrt((n1^2)-(2*d*(n1^2)));
+l=0.8*(10^-6);
+Rc=((3*(n1^2)*l)/(4*%pi*((n1^2)-(n2^2))^1.5))*(10^6);//critical radius of curvature//
+printf("\n critical radius of curvature=%f*(10^-6).\n",Rc);
\ No newline at end of file diff --git a/374/CH3/EX3.4/34.sci b/374/CH3/EX3.4/34.sci new file mode 100644 index 000000000..1852ad81c --- /dev/null +++ b/374/CH3/EX3.4/34.sci @@ -0,0 +1,16 @@ +//chapter 3 example 4//
+clc
+clear
+//core radius of monomode fibre=a,core refractive index=n1,refractive index difference between core and cladding=d,operating wavelength=l,critical radius of curvature=Rc,cutoff wavelength=Lc//
+a=4*(10^-6);//in mts//
+n1=1.500;
+d=0.003;
+l=1.55*(10^-6);//in mts//
+Lc=(((2*%pi*a*n1)*(sqrt(2*d)))/2.405)*(10^6);//cutoff wavelength//
+printf("\n cutoff wavelength=%f*(10^-6)m.\n",Lc);
+lc1=Lc*(10^-6);
+h=(2.748-(0.996*(l/lc1)));
+k=h^-3;
+v=(20*l)/(d^1.5);
+Rc=k*v;
+printf("\n critical radius=%f .\n",k);
\ No newline at end of file diff --git a/374/CH3/EX3.5/35.sci b/374/CH3/EX3.5/35.sci new file mode 100644 index 000000000..99c81cf8d --- /dev/null +++ b/374/CH3/EX3.5/35.sci @@ -0,0 +1,12 @@ +//chapter 3 example 5//
+clc
+clear
+//wavelength of single mode fibre=l,attenuation=A,core diameter of fibre=d,laser sourcr bandwidth=BW,threshold optical power for brillouin=Pb,threshold optical power for raman scattering=Pr//
+d=6;//in micrometer//
+l=1.3;//in micrometer//
+A=0.5;//in db per km//
+BW=0.6//in GHz//
+Pb=(4.4*(10^-3))*(d^2)*(l^2)*(A*BW)*1000;//in watts//
+printf("\n threshold optical power for brillouin=%f mW.\n",Pb);
+Pr=(5.9*(10^-2))*(d^2)*l*A;
+printf("\n threshold optical power for raman scattering=%f W.\n",Pr);
\ No newline at end of file diff --git a/374/CH3/EX3.6/36.sci b/374/CH3/EX3.6/36.sci new file mode 100644 index 000000000..e7f13281f --- /dev/null +++ b/374/CH3/EX3.6/36.sci @@ -0,0 +1,14 @@ +//chapter 3 example 6//
+clc
+clear
+//core refractive index=n1,relative refractive index difference=d,core radius=a,operating wavelength=l;waveguide dispersion=W.speed of light=C//
+l=1.3*(10^-6);//in meters//
+a=4.5*(10^-6);//in meters//
+d=0.0022;
+n1=1.48;
+V=((2*%pi*a*n1)*(sqrt(2*d)))/l;
+n2=n1*(1-d);
+C=(3*(10^8));
+S=0.480;//product of V and its double differentiation wrt v//
+W=(-1*n2*d*S)/(C*l)*(10^6);//wave guide dispersion//
+printf("\n wave guide dispersion=%f ps Km-1 nm-1\n",W);
diff --git a/374/CH3/EX3.7/37.sci b/374/CH3/EX3.7/37.sci new file mode 100644 index 000000000..11d8f12e1 --- /dev/null +++ b/374/CH3/EX3.7/37.sci @@ -0,0 +1,12 @@ +//chapter 3 example 7//
+clc
+clear
+//operating wavelength=l,total material dispersion=dtm,total waveguide dispersion=dtw,received pulse duration=Tr,transmitted pulse duration=T,approximate bit rate=Bmax,total dispersion=dtt,total intermodal dispersion=dtimd//
+dtm=2.81;//in nanoseconds//
+dtw=0.495;//in nanoseconds//
+T=0.5;//in nanoseconds//
+dtimd=0;
+dtt=sqrt((dtimd^2)+(dtm^2)+(dtw^2));//in nanoseconds//
+Tr=T+dtt;//in nanoseconds//
+Bmax=(1/(5*Tr))*1000;
+printf("\n approximate bit rate=%fMHz \n",Bmax);
|