summaryrefslogtreecommitdiff
path: root/3710/CH2
diff options
context:
space:
mode:
Diffstat (limited to '3710/CH2')
-rw-r--r--3710/CH2/EX2.1/Ex2_1.sce25
-rw-r--r--3710/CH2/EX2.2/Ex2_2.sce14
-rw-r--r--3710/CH2/EX2.3/Ex2_3.sce14
-rw-r--r--3710/CH2/EX2.4/Ex2_4.sce15
-rw-r--r--3710/CH2/EX2.5/Ex2_5.sce15
-rw-r--r--3710/CH2/EX2.6/Ex2_6.sce27
-rw-r--r--3710/CH2/EX2.7/Ex2_7.sce16
-rw-r--r--3710/CH2/EX2.8/Ex2_8.sce14
8 files changed, 140 insertions, 0 deletions
diff --git a/3710/CH2/EX2.1/Ex2_1.sce b/3710/CH2/EX2.1/Ex2_1.sce
new file mode 100644
index 000000000..bfb5fcbbc
--- /dev/null
+++ b/3710/CH2/EX2.1/Ex2_1.sce
@@ -0,0 +1,25 @@
+//Example 2.1, Page Number 51
+//Conductivity Calculation
+clc;
+
+dc=8.93*(10**3) //Density of Copper in Kg/meter cube
+N=63.54 //Atomic Mass Number of Copper in amu
+t=2.6*(10**-14)//Mean free time between collision (in seconds)
+m=9.1*(10**-31) //Mass of electron in kilogram
+em=0.135 //Electron Mobility in meter square per volt second
+hm=0.048 //Hole Mobility in meter square per volt second
+n=1.6*(10**16) //Concentration per meter cube
+an=6*(10**26) //Avogadro's number per mole
+e=1.6*(10**-19) //Charge of an electron in Coulombs
+
+n1=(an*dc)/N //Free electron concentration/No. of atoms per unit volume
+
+rhoc=(n1*e*em)/3 //Conductivity of Copper in per ohm m
+
+//From equation 2.24
+rhos=n*e*(em+hm) //Conductivity of Copperintrinsic silicon in per ohm m
+
+
+mprintf("Free Electron Concentration is: %.2e per meter cube\n",n1);
+mprintf(" Conductivity of copper is:%.2e per ohm meter\n",rhoc)//The answer provided for rhoc in the textbook is wrong
+mprintf(" Conductivity of intrinsic silicon is:%.2e per ohm meter\n",rhos)
diff --git a/3710/CH2/EX2.2/Ex2_2.sce b/3710/CH2/EX2.2/Ex2_2.sce
new file mode 100644
index 000000000..eee85982f
--- /dev/null
+++ b/3710/CH2/EX2.2/Ex2_2.sce
@@ -0,0 +1,14 @@
+//Example 2.2, Page Number 55
+//The Function fpround(dependency) is used to round a floating point number x to n decimal places
+//Excitation Energy Calculation
+clc;
+
+r=11.8 //Relative Permeability
+m=9.1*(10**-31) //Mass of electron in kilogram
+me=0.26*m //Effective mass
+
+//From equation 2.28
+E=13.6*(me/m)*((1/r)**2) //E is the excitation energy in eV
+E=fpround(E,4)
+
+mprintf("The Excitation Energy is given by %.3feV",E)
diff --git a/3710/CH2/EX2.3/Ex2_3.sce b/3710/CH2/EX2.3/Ex2_3.sce
new file mode 100644
index 000000000..55b513cfa
--- /dev/null
+++ b/3710/CH2/EX2.3/Ex2_3.sce
@@ -0,0 +1,14 @@
+//Example 2.3, Page Number 60
+//Effective Density Calculation
+clc;
+
+m=9.1*(10**-31) //Mass of electron in kilogram
+me=0.55*m //Effective mass
+T=300 //Temperature in Kelvin
+k=1.38*(10**-23) //Boltzmann Constant in meter square kilogram per second square Kelvin
+h=6.6*(10**-34) //Plancks Constant in meter square kilogram per second
+
+//From equation 2.33
+N=2*(((2*%pi*me*k*T)/(h*h))**1.5) //N is the Effective density of states in the conduction band
+
+mprintf("The Effective Density of States in the Conduction Band is %.2e Per Meter Cube",N);
diff --git a/3710/CH2/EX2.4/Ex2_4.sce b/3710/CH2/EX2.4/Ex2_4.sce
new file mode 100644
index 000000000..c0318eeff
--- /dev/null
+++ b/3710/CH2/EX2.4/Ex2_4.sce
@@ -0,0 +1,15 @@
+//Example 2.4, Page Number 64
+//Hole Lifetime Calculation
+clc;
+n=5*(10**24) //Donor Concentration in per meter cube
+
+//For GaAs
+B=7.2*(10**-16)//Constant of proportionality for GaAs
+t1=1/(B*n) //t1 is the Hole lifetime for GaAs
+
+//For Si
+B=1.8*(10**-21)//Constant of proportionality for Si
+t2=1/(B*n) //t2 is the Hole lifetime for Si
+
+disp(t1,"The Hole Lifetime for GaAs in pico seconds is:");
+disp(t2,"The Hole Lifetime for Si in micro seconds is:");
diff --git a/3710/CH2/EX2.5/Ex2_5.sce b/3710/CH2/EX2.5/Ex2_5.sce
new file mode 100644
index 000000000..81c3ab51f
--- /dev/null
+++ b/3710/CH2/EX2.5/Ex2_5.sce
@@ -0,0 +1,15 @@
+//Example 2.5, Page Number 70
+//The Function fpround(dependency) is used to round a floating point number x to n decimal places
+//Contact Potential Difference
+clc;
+nd=10**22 //Donor Impurity Level in per meter cube
+na=10**24 //Acceptor Impurity Level in per meter cube
+n=2.4*(10**19) //Intrinsic Electron Concentration in per meter cube
+T=290 //Temperature in Kelvin
+k=1.38*(10**-23) //Botlzmann Constant in meter square kilogram per second square Kelvin
+e=1.6*(10**-19) //Charge of an electron in coulombs
+
+//From Equation 2.45
+v=(k*T/e)*log1p((nd*na)/(n**2)) //v is the contact potentital difference in volts
+v=fpround(v,2)
+mprintf("The Contact Potential Difference is:%.2f Volts ",v)
diff --git a/3710/CH2/EX2.6/Ex2_6.sce b/3710/CH2/EX2.6/Ex2_6.sce
new file mode 100644
index 000000000..e2a757df0
--- /dev/null
+++ b/3710/CH2/EX2.6/Ex2_6.sce
@@ -0,0 +1,27 @@
+//Example 2.6, Page Number 73
+//Saturation Current Density
+clc;
+nd=10**21 //Donor Concentration per meter cube
+na=10**22 //Acceptor Concentration per meter cube
+de=3.4*(10**-3) //Drift current-electron in meter square per second
+dh=1.2*(10**-3) //Drift current-holes in meter square per second
+le=7.1*(10**-4) //in meter
+lh=3.5*(10**-4) //in meter
+n=1.6*(10**16) //per meter cube
+e=1.6*(10**-19) //charge of an electron in coulomb
+A=10**6 //Junction area per unit area
+
+//Assuming all ions are ionized
+ni=2.56*(10**32)//per metre cube
+pn=(ni)/nd
+np=pn/10
+
+//From Equation 2.51a
+jo=e*((dh/lh)*pn+(de/le)*np) //Jo is the saturation current density
+
+io=jo/A //io is the reverse bias saturation current
+
+mprintf("P-N concentration is:%.2e per meter cube\n",pn)
+mprintf("N-P concentration is:%.2e per meter cube\n",np)
+mprintf("The Saturation Current Density is:%.1e A/meter square\n",jo)
+mprintf("The Reverse Bias Saturation Current is:%.1e A\n",io)
diff --git a/3710/CH2/EX2.7/Ex2_7.sce b/3710/CH2/EX2.7/Ex2_7.sce
new file mode 100644
index 000000000..d31d66096
--- /dev/null
+++ b/3710/CH2/EX2.7/Ex2_7.sce
@@ -0,0 +1,16 @@
+//Example 2.7, Page Number 78
+//Junction Capacitance Calculation
+clc;
+
+V=-4 //Reverse Bias voltage in volts
+nd=4*(10**21) //in per meter cube
+Vo=0.8//in volts
+A=4*(10**-7) //Junction Area in meter square
+er=11.8 //Relative permittivity
+e=1.6*(10**-19) //Charge of an Electron in coulombs
+eo=8.85*(10**-12) //Absolute permittivity in farads per meter
+
+//By equation 2.63
+Cj=(A/2)*sqrt((2*eo*er*e*nd)/(Vo-V))
+
+mprintf("The Junction Capacitance is %.2e pF",Cj)
diff --git a/3710/CH2/EX2.8/Ex2_8.sce b/3710/CH2/EX2.8/Ex2_8.sce
new file mode 100644
index 000000000..e819da115
--- /dev/null
+++ b/3710/CH2/EX2.8/Ex2_8.sce
@@ -0,0 +1,14 @@
+//Example 2.8, Page Number 84
+//Effective Increase in the width of the Energy Gap Calculation
+clc;
+Lz=10*(10**-9) //Thickness in meter
+m=9.1*(10**-31) //Mass of Electron in kilogram
+me=0.068*m //Effective mass of electron
+mh=0.56*m //Effective mass of holes
+h=6.6*(10**-34) //Plancks Constant in meter square kilogram per second
+e=1.6*(10**-19) //Charge of an electron in Coulombs
+
+Eg=((h*h)/(8*(Lz*Lz)))*((1/me)+(1/mh)) //Eg is the effective increase in the width of the energy gap
+Egn=Eg/e //Converting to eV
+Egn=fpround(Egn,3)
+mprintf("The Effective Increase in the width of the Energy Gap is %.3f eV",Egn)