diff options
Diffstat (limited to '3685/CH13')
-rw-r--r-- | 3685/CH13/EX13.1/Ex13_1.sce | 25 | ||||
-rw-r--r-- | 3685/CH13/EX13.1/Ex13_1.txt | 7 | ||||
-rw-r--r-- | 3685/CH13/EX13.10/Ex13_10.sce | 29 | ||||
-rw-r--r-- | 3685/CH13/EX13.10/Ex13_10.txt | 7 | ||||
-rw-r--r-- | 3685/CH13/EX13.11/Ex13_11.sce | 36 | ||||
-rw-r--r-- | 3685/CH13/EX13.11/Ex13_11.txt | 5 | ||||
-rw-r--r-- | 3685/CH13/EX13.2/Ex13_2.sce | 9 | ||||
-rw-r--r-- | 3685/CH13/EX13.2/Ex13_2.txt | 4 | ||||
-rw-r--r-- | 3685/CH13/EX13.3/Ex13_3.sce | 27 | ||||
-rw-r--r-- | 3685/CH13/EX13.3/Ex13_3.txt | 7 | ||||
-rw-r--r-- | 3685/CH13/EX13.4/Ex13_4.sce | 30 | ||||
-rw-r--r-- | 3685/CH13/EX13.4/Ex13_4.txt | 5 | ||||
-rw-r--r-- | 3685/CH13/EX13.5/Ex13_5.sce | 29 | ||||
-rw-r--r-- | 3685/CH13/EX13.5/Ex13_5.txt | 5 | ||||
-rw-r--r-- | 3685/CH13/EX13.6/Ex13_6.sce | 14 | ||||
-rw-r--r-- | 3685/CH13/EX13.6/Ex13_6.txt | 6 | ||||
-rw-r--r-- | 3685/CH13/EX13.7/Ex13_7.sce | 25 | ||||
-rw-r--r-- | 3685/CH13/EX13.7/Ex13_7.txt | 7 | ||||
-rw-r--r-- | 3685/CH13/EX13.8/Ex13_8.sce | 27 | ||||
-rw-r--r-- | 3685/CH13/EX13.8/Ex13_8.txt | 4 | ||||
-rw-r--r-- | 3685/CH13/EX13.9/Ex13_9.sce | 12 | ||||
-rw-r--r-- | 3685/CH13/EX13.9/Ex13_9.txt | 4 |
22 files changed, 324 insertions, 0 deletions
diff --git a/3685/CH13/EX13.1/Ex13_1.sce b/3685/CH13/EX13.1/Ex13_1.sce new file mode 100644 index 000000000..5a50b95bf --- /dev/null +++ b/3685/CH13/EX13.1/Ex13_1.sce @@ -0,0 +1,25 @@ +clc
+T1 = 35 // Air inlet temperature in degree Celsius
+P1 = 0.1 // Air inlet pressure in MPa
+Q1 = 2100 // Heat supply in kJ/kg
+R = 0.287 // gas constant
+rk = 8 // Compression ratio
+g = 1.4 // Heat capacity ratio
+n_cycle = 1-(1/rk^(g-1)) // cycle efficiency
+v1 = (R*(T1+273))/(P1*1e3) // Initial volume
+v2 = v1/8 // Volume after compression
+T2 = (T1+273)*(v1/v2)^(g-1) // Temperature after compression
+cv = 0.718 // Constant volume heat capacity in kJ/kg
+T3 = Q1/cv + T2 // Temperature at after heat addition
+P21 = (v1/v2)^g // Pressure ratio
+P2 = P21*P1 // Pressure after compression
+P3 = P2*(T3/T2) // Pressure after heat addition
+Wnet = Q1*n_cycle // Net work output
+Pm = Wnet/(v1-v2) // Mean pressure
+printf("\n Example 13.1\n")
+printf("\n Cycle efficiency is %f percent",n_cycle*100)
+printf("\n Maximum temperature in the cycle is %d K",T3)
+printf("\n Maximum pressure in the cycle is %f MPa",P3)
+printf("\n Mean effective pressure is %f MPa",Pm/1e3)
+//The answers vary due to round off error
+
diff --git a/3685/CH13/EX13.1/Ex13_1.txt b/3685/CH13/EX13.1/Ex13_1.txt new file mode 100644 index 000000000..5840bfe47 --- /dev/null +++ b/3685/CH13/EX13.1/Ex13_1.txt @@ -0,0 +1,7 @@ +
+ Example 13.1
+
+ Cycle efficiency is 56.472472 percent
+ Maximum temperature in the cycle is 3632 K
+ Maximum pressure in the cycle is 9.434777 MPa
+ Mean effective pressure is 1.533259 MPa
\ No newline at end of file diff --git a/3685/CH13/EX13.10/Ex13_10.sce b/3685/CH13/EX13.10/Ex13_10.sce new file mode 100644 index 000000000..af530b5b0 --- /dev/null +++ b/3685/CH13/EX13.10/Ex13_10.sce @@ -0,0 +1,29 @@ +clc
+//Given that
+v = 300 // Aircraft velocity in m/s
+p1 = 0.35 // Pressure in bar
+t1 = -40 // Temperature in degree centigrade
+rp = 10 // The pressure ratio of compressor
+t4 = 1100 // Temperature of gases at turbine intlet in degree centigrade
+ma = 50 // Mass flow rate of air at the inlet of compressor in kg/s
+cp = 1.005 // Heat capacity of air at constant pressure in kJ/kg-K
+gama=1.4 // Ratio of heat capacities for air
+printf("\n Example 13.10 \n")
+T1 = t1+273
+T4 = t4+273
+T2 = T1 + (v^2)/(2*cp)*(10^-3)
+p2 = p1*(100)*((T2/T1)^(gama/(gama-1)))
+p3 = rp*p2
+p4 =p3
+T3 = T2*((p3/p2)^((gama-1)/gama))
+T5 = T4-T3+T2
+p5 = ((T5/T4)^(gama/(gama-1)))*(p4)
+p6 = p1*100
+T6 = T5*((p6/p5)^((gama-1)/gama))
+V6 = (2*cp*(T5-T6)*1000)^(1/2)
+Wp = ma*(V6-v)*v*(10^-6)
+Q1 = ma*cp*(T4-T3)*(10^-3)
+np = Wp/Q1
+printf("\n The temperature of the gases at the turbine exit is %f K,\n The pressure of the gases at the turbine exit is %f kN/m^2,\n The velocity of gases at the nozzle exit is %f m/sec,\n The propulsive efficiency of the cycle is %f percent",T5,p5,V6,np*100)
+//The answers vary due to round off error
+
diff --git a/3685/CH13/EX13.10/Ex13_10.txt b/3685/CH13/EX13.10/Ex13_10.txt new file mode 100644 index 000000000..64d78442e --- /dev/null +++ b/3685/CH13/EX13.10/Ex13_10.txt @@ -0,0 +1,7 @@ +
+ Example 13.10
+
+ The temperature of the gases at the turbine exit is 1114.474397 K,
+ The pressure of the gases at the turbine exit is 311.998817 kN/m^2,
+ The velocity of gases at the nozzle exit is 1020.347840 m/sec,
+ The propulsive efficiency of the cycle is 25.699731 percent
\ No newline at end of file diff --git a/3685/CH13/EX13.11/Ex13_11.sce b/3685/CH13/EX13.11/Ex13_11.sce new file mode 100644 index 000000000..034425410 --- /dev/null +++ b/3685/CH13/EX13.11/Ex13_11.sce @@ -0,0 +1,36 @@ +clc
+Ta = 15 // Atmospheric temperature in degree Celsius
+rp = 8 // pressure ratio
+g = 1.33 // heat capacity ratio for gas
+g1 = 1.40 // heat capacity ratio for air
+cv = 0.718 // Constant volume heat capacity
+cpa = 1.005 // Constant pressure heat capacity for air
+cpg = 1.11 // Constant pressure heat capacity for gas
+R = 0.287 // Gas constant
+Tb = (Ta+273)*(rp)^((g1-1)/g1) // Temperature after compression
+Tc = 800 // Temperature after heat addition in degree Celsius
+Td = (Tc+273)/((rp)^((g-1)/g)) // Temperature after expansion
+Wgt = cpg*(Tc+273-Td)-cpa*(Tb-Ta-273)
+Q1 = cpg*(Tc+273-Tb)
+Q1_ = cpg*(Tc+273-Td)
+h1 = 3775 // Enthalpy at state 1 in kJ/kg
+h2 = 2183 // Enthalpy at state2 in kJ/kg
+h3 = 138 // Enthalpy at state3 in kJ/kg
+h4 = h3 // Isenthalpic process
+Q1_st = h1-h3 // Total heat addition
+Q_fe = cpg*(Tc-100) // Heat transfer by steam
+was = Q1_st/Q_fe // air steam mass ratio
+Wst = h1-h2// work done by steam turbine
+PO = 190e03 // Power output in kW
+ws = PO/(was*Wgt+Wst)// steam flow rate
+wa = was*ws // Air flow rate
+CV = 43300 // Calorific volume of fuel in kJ/kg
+waf = CV/(Q1+Q1_) // Air fuel ratio
+FEI = (wa/waf)*CV // Fuel energy input
+noA = PO/FEI // combined cycle efficiency
+
+printf("\n Example 13.11 \n")
+printf("\n Air fuel ratio is %f ",waf)
+printf("\n Overall efficiency of combined plant is %f percent ",noA*100)
+//The answers vary due to round off error
+
diff --git a/3685/CH13/EX13.11/Ex13_11.txt b/3685/CH13/EX13.11/Ex13_11.txt new file mode 100644 index 000000000..71982ffa8 --- /dev/null +++ b/3685/CH13/EX13.11/Ex13_11.txt @@ -0,0 +1,5 @@ +
+ Example 13.11
+
+ Air fuel ratio is 39.651568
+ Overall efficiency of combined plant is 53.599355 percent
\ No newline at end of file diff --git a/3685/CH13/EX13.2/Ex13_2.sce b/3685/CH13/EX13.2/Ex13_2.sce new file mode 100644 index 000000000..07037446e --- /dev/null +++ b/3685/CH13/EX13.2/Ex13_2.sce @@ -0,0 +1,9 @@ +clc
+rk = 14 // Compression ratio
+k = 6 // cutoff percentage ratio
+rc = k/100*(rk-1)+1
+g = 1.4 // Heat capacity ratio
+n_diesel = 1-((1/g))*(1/rk^(g-1))*((rc^(g-1))/(rc-1)) // Cycle efficiency
+printf("\n Example 13.2\n")
+printf("\n Air standard efficiency is %f percent",n_diesel*100)
+//The answers vary due to round off error
diff --git a/3685/CH13/EX13.2/Ex13_2.txt b/3685/CH13/EX13.2/Ex13_2.txt new file mode 100644 index 000000000..bce0d44ee --- /dev/null +++ b/3685/CH13/EX13.2/Ex13_2.txt @@ -0,0 +1,4 @@ +
+ Example 13.2
+
+ Air standard efficiency is 59.867691 percent
\ No newline at end of file diff --git a/3685/CH13/EX13.3/Ex13_3.sce b/3685/CH13/EX13.3/Ex13_3.sce new file mode 100644 index 000000000..5109df3e6 --- /dev/null +++ b/3685/CH13/EX13.3/Ex13_3.sce @@ -0,0 +1,27 @@ +clc
+rk = 16 // Compression ratio
+T1 = 15 // Air inlet temperature in degree Celsius
+P1 = 0.1 // Air inlet pressure in MPa
+T3 = 1480 // Highest temperature in cycle in degree Celsius
+g = 1.4 // Heat capacity ratio
+R = 0.287 // Gas constant
+T2 = (T1+273)*(rk^(g-1)) // Temperature after compression
+rc = (T3+273)/T2 // cut off ratio
+cp = 1.005 // Constant pressure heat constant
+cv = 0.718 // Constant volume heat constant
+Q1 = cp*(T3+273-T2) // Heat addition
+T4 = (T3+273)*((rc/rk)^(g-1)) // Temperature after heat addition
+Q2 = cv*(T4-T1-273) // Heat rejection
+n = 1-(Q2/Q1) // cycle efficiency
+n_ = 1-((1/g))*(1/rk^(g-1))*((rc^(g-1))/(rc-1)) // cycle efficiency from another formula
+Wnet = Q1*n // Net work
+v1 = (R*(T1+273))/(P1*1e3) // Volume before compression
+v2 = v1/rk // Volume after compression
+Pm = Wnet/(v1-v2) // Mean pressure
+printf("\n Example 13.3\n")
+printf("\n Cut-off ratio is %f ",rc)
+printf("\n Heat supplied per kg of air is %f kJ/kg",Q1)
+printf("\n Cycle efficiency is %f percent",n*100)
+printf("\n Mean effective pressure is %f kPa",Pm)
+//The answers vary due to round off error
+
diff --git a/3685/CH13/EX13.3/Ex13_3.txt b/3685/CH13/EX13.3/Ex13_3.txt new file mode 100644 index 000000000..53ee460ec --- /dev/null +++ b/3685/CH13/EX13.3/Ex13_3.txt @@ -0,0 +1,7 @@ +
+ Example 13.3
+
+ Cut-off ratio is 2.007897
+ Heat supplied per kg of air is 884.346994 kJ/kg
+ Cycle efficiency is 61.334041 percent
+ Mean effective pressure is 699.968704 kPa
\ No newline at end of file diff --git a/3685/CH13/EX13.4/Ex13_4.sce b/3685/CH13/EX13.4/Ex13_4.sce new file mode 100644 index 000000000..964a442b1 --- /dev/null +++ b/3685/CH13/EX13.4/Ex13_4.sce @@ -0,0 +1,30 @@ +clc
+T1 = 50 // Temperature before compression stroke in degree Celsius
+rk = 16 // Compression ratio
+g = 1.4 // Heat capacity ratio
+P3 = 70 // Maximum cycle pressure in bar
+cv = 0.718 // Constant volume heat addition capacity
+cp = 1.005 // Constant pressure heat addition capacity
+R = 0.287 // Gas constant
+T2 = (T1+273)*((rk^(g-1))) //Temperature after compression stroke
+P1 = 1 // Pressure before compression in bar
+P2 = P1*(rk)^g // Pressure after compression
+T3 = T2*(P3/P2) // Temperature after constant volume heat addition
+Q23 = cv*(T3-T2) // Constant volume heat added
+T4 = (Q23/cp)+T3 // Temperature after constant pressure heat addition
+v43 = T4/T3 // cut off ratio
+v54 = rk/v43 // Expansion ratio
+T5 = T4*(1/v54)^(g-1) // Temperature after expansion
+P5 = P1*(T5/(T1+273)) // Pressure after expansion
+Q1 = cv*(T3-T2)+cp*(T4-T3) // Total heat added
+Q2 = cv*(T5-T1-273) // Heat rejected
+n_cycle = 1-(Q2/Q1) // Cycle efficiency
+v1 = (R*(T1+273))/(P1*1e2) // Volume before compression
+v2 = (1/16)*v1 // Swept volume
+Wnet = Q1*n_cycle // Net work done
+Pm = Wnet/(v1-v2) // Mean pressure
+printf("\n Example 13.4\n")
+printf("\n Efficiency of the cycle is %f percent",n_cycle*100)
+printf("\n Mean effective pressure is %f bar",Pm/100)
+//The answers vary due to round off error
+
diff --git a/3685/CH13/EX13.4/Ex13_4.txt b/3685/CH13/EX13.4/Ex13_4.txt new file mode 100644 index 000000000..46f82e316 --- /dev/null +++ b/3685/CH13/EX13.4/Ex13_4.txt @@ -0,0 +1,5 @@ +
+ Example 13.4
+
+ Efficiency of the cycle is 66.314379 percent
+ Mean effective pressure is 4.755194 bar
\ No newline at end of file diff --git a/3685/CH13/EX13.5/Ex13_5.sce b/3685/CH13/EX13.5/Ex13_5.sce new file mode 100644 index 000000000..e057b5284 --- /dev/null +++ b/3685/CH13/EX13.5/Ex13_5.sce @@ -0,0 +1,29 @@ +clc
+P1 = 0.1 // Air pressure at turbine inlet in MPa
+T1 = 30 // Air temperature at turbine inlet in degree Celsius
+T3 = 900 // Maximum cycle temperature at turbine inlet in degree Celsius
+rp = 6 // Pressure ratio
+nt = 0.8 // Turbine efficiency
+nc = 0.8// Compressor efficiency
+g = 1.4 // Heat capacity ratio
+cv = 0.718 // Constant volume heat capacity
+cp = 1.005 // Constant pressure heat capacity
+R = 0.287 // Gas constant
+T2s = (T1+273)*(rp)^((g-1)/g)
+T4s = (T3+273)/((rp)^((g-1)/g))
+T21 = (T2s-T1-273)/nc // Temperature raise due to compression
+T34 = nt*(T3+273-T4s) // Temperature drop due to expansion
+Wt = cp*T34 // Turbine work
+Wc = cp*T21 // Compressor work
+T2 = T21+T1+273 // Temperature after compression
+Q1 = cp*(T3+273-T2) // Heat added
+n = (Wt-Wc)/Q1 // First law efficiency
+T4 = T3+273-T34 // Temperature after expansion
+T6 = 0.75*(T4-T2) + T2 // Regeneration temperature
+Q1_ = cp*(T3+273-T6)// Heat added
+n_ = (Wt-Wc)/Q1_ //cycle efficiency
+I = (n_-n)/n // Fractional increase in cycle efficiency
+printf("\n Example 13.5\n")
+printf("\n The percentage increase in cycle efficiency \n due to regeneration is %f percent",I*100)
+//The answers vary due to round off error
+
diff --git a/3685/CH13/EX13.5/Ex13_5.txt b/3685/CH13/EX13.5/Ex13_5.txt new file mode 100644 index 000000000..c0735e231 --- /dev/null +++ b/3685/CH13/EX13.5/Ex13_5.txt @@ -0,0 +1,5 @@ +
+ Example 13.5
+
+ The percentage increase in cycle efficiency
+ due to regeneration is 41.407606 percent
\ No newline at end of file diff --git a/3685/CH13/EX13.6/Ex13_6.sce b/3685/CH13/EX13.6/Ex13_6.sce new file mode 100644 index 000000000..1f9ea3e1c --- /dev/null +++ b/3685/CH13/EX13.6/Ex13_6.sce @@ -0,0 +1,14 @@ +clc
+cp = 1.005 // Constant pressure heat capacity
+Tmax = 1073 // Maximum cycle temperature in K
+Tmin = 300// Minimum cycle temperature in K
+Wnet_max = cp*(sqrt(Tmax)-sqrt(Tmin))^2 // maximum work
+n_cycle = 1-sqrt(Tmin/Tmax) // cycle efficiency
+n_carnot = 1-(Tmin/Tmax) // Carnot efficiency
+r = n_cycle/n_carnot // Efficiency ratio
+printf("\n Example 13.6\n")
+printf("\n Maximum work done per kg of air is %f kJ/kg",Wnet_max)
+printf("\n Cycle efficiency is %d percent",n_cycle*100)
+printf("\n Ratio of Brayton and Carnot efficiency is %f",r)
+//The answers vary due to round off error
+
diff --git a/3685/CH13/EX13.6/Ex13_6.txt b/3685/CH13/EX13.6/Ex13_6.txt new file mode 100644 index 000000000..4e96ca461 --- /dev/null +++ b/3685/CH13/EX13.6/Ex13_6.txt @@ -0,0 +1,6 @@ +
+ Example 13.6
+
+ Maximum work done per kg of air is 239.466741 kJ/kg
+ Cycle efficiency is 47 percent
+ Ratio of Brayton and Carnot efficiency is 0.654124
\ No newline at end of file diff --git a/3685/CH13/EX13.7/Ex13_7.sce b/3685/CH13/EX13.7/Ex13_7.sce new file mode 100644 index 000000000..293ba1ba0 --- /dev/null +++ b/3685/CH13/EX13.7/Ex13_7.sce @@ -0,0 +1,25 @@ +clc
+rp = 6 // pressure ratio
+g = 1.4 // Heat capacity ratio
+cv = 0.718 // Constant volume heat capacity
+cp = 1.005 //Constant pressure heat capacity
+R = 0.287 // Gas constant
+T1 = 300 // Minimum temperature in K
+T3 = 1100 // Maximum cycle temperature in K
+T0 = 300 // Atmospheric temperature in K
+n_cycle = 1-(1/rp^((g-1)/g)) // cycle efficiency
+T2 = (T1)*(rp^((g-1)/g)) // Temperature after compression
+T4 = (T3)/(rp^((g-1)/g)) // Temperature after expansion
+Wc = cp*(T2-T1) // Compressor work
+Wt = cp*(T3-T4) // Turbine work
+WR = (Wt-Wc)/Wt // Work ratio
+Q1 = 100 // Heat addition in MW
+PO = n_cycle*Q1 // Power output
+m_dot = (Q1*1e06)/(cp*(T3-T2)) // Mass flow rate
+R = m_dot*cp*T0*((T4/T0)-1-log(T4/T0)) // Exergy flow rate
+printf("\n Example 13.7\n")
+printf("\n The thermal efficiency of the cycle is %f percent",n_cycle*100)
+printf("\n Work ratio is %f ",WR)
+printf("\n Power output is %f MW",PO)
+printf("\n Energy flow rate of the exhaust gas stream is %f MW",R/1e6)
+//The answers vary due to round off error
diff --git a/3685/CH13/EX13.7/Ex13_7.txt b/3685/CH13/EX13.7/Ex13_7.txt new file mode 100644 index 000000000..d26c555ac --- /dev/null +++ b/3685/CH13/EX13.7/Ex13_7.txt @@ -0,0 +1,7 @@ +
+ Example 13.7
+
+ The thermal efficiency of the cycle is 40.066303 percent
+ Work ratio is 0.544952
+ Power output is 40.066303 MW
+ Energy flow rate of the exhaust gas stream is 20.529786 MW
\ No newline at end of file diff --git a/3685/CH13/EX13.8/Ex13_8.sce b/3685/CH13/EX13.8/Ex13_8.sce new file mode 100644 index 000000000..93a7e2cfb --- /dev/null +++ b/3685/CH13/EX13.8/Ex13_8.sce @@ -0,0 +1,27 @@ +clc
+nc = 0.87 // Compressor efficiency
+nt = 0.9 // Turbine efficiency
+T1 = 311 // Compressor inlet temperature in K
+rp = 8 // compressor pressure ratio
+P1 = 1 // Initial pressure in atm
+T3 = 1367 // Turbine inlet temperature
+P2 = P1*rp // Final pressure
+P3 = 0.95*P2 // Actual pressure after compression
+P4 = 1 // Atmospheric pressure
+g = 1.4 // Heat capacity ratio
+cv = 0.718 // Constant volume heat capacity
+cp = 1.005 // Constant pressure heat capacity
+R = 0.287 // Gas constant
+// With no cooling
+T2s = T1*((P2/P1)^((g-1)/g)) // Ideal temperature after compression
+T2 = T1 + (T2s-T1)/0.87 // Actual temperature after compression
+T4s = T3*(P4/P3)^((g-1)/g) // Ideal temperature after expansion
+n = (((T3-T4s)*nt)-((T2s-T1)/nc))/(T3-T2) // cycle efficiency
+// With cooling
+n_cycle = n-0.05
+x = 0.13 // Fluid quality
+r = x/(x+1) //
+printf("\n Example 13.8\n")
+printf("\n Percentage of air that may be taken from the compressor is %f percent",r*100)
+//The answers vary due to round off error
+
diff --git a/3685/CH13/EX13.8/Ex13_8.txt b/3685/CH13/EX13.8/Ex13_8.txt new file mode 100644 index 000000000..80c67633f --- /dev/null +++ b/3685/CH13/EX13.8/Ex13_8.txt @@ -0,0 +1,4 @@ +
+ Example 13.8
+
+ Percentage of air that may be taken from the compressor is 11.504425 percent
\ No newline at end of file diff --git a/3685/CH13/EX13.9/Ex13_9.sce b/3685/CH13/EX13.9/Ex13_9.sce new file mode 100644 index 000000000..1d325db7e --- /dev/null +++ b/3685/CH13/EX13.9/Ex13_9.sce @@ -0,0 +1,12 @@ +clc
+//Given that
+nc = 0.85 // Compressor efficiency
+nt = 0.9 // Turbine efficiency
+r = 3.5 // Ratio of max and min temperature
+gama = 1.4 // Ratio of heat capacities for air
+printf("\n Example 13.9 \n")
+x = (gama-1)/gama
+r_opt = ((nc*nt*r)^(2/3))^(1/x)
+printf("\n Optimum specific output is %f ",r_opt)
+//The answers vary due to round off error
+
diff --git a/3685/CH13/EX13.9/Ex13_9.txt b/3685/CH13/EX13.9/Ex13_9.txt new file mode 100644 index 000000000..5fa831c9b --- /dev/null +++ b/3685/CH13/EX13.9/Ex13_9.txt @@ -0,0 +1,4 @@ +
+ Example 13.9
+
+ Optimum specific output is 9.954867
\ No newline at end of file |