summaryrefslogtreecommitdiff
path: root/3681/CH10/EX10.19/Ex10_19.sce
diff options
context:
space:
mode:
Diffstat (limited to '3681/CH10/EX10.19/Ex10_19.sce')
-rw-r--r--3681/CH10/EX10.19/Ex10_19.sce27
1 files changed, 27 insertions, 0 deletions
diff --git a/3681/CH10/EX10.19/Ex10_19.sce b/3681/CH10/EX10.19/Ex10_19.sce
new file mode 100644
index 000000000..fff460a55
--- /dev/null
+++ b/3681/CH10/EX10.19/Ex10_19.sce
@@ -0,0 +1,27 @@
+// Calculating the current in rotor bars and in end rings
+clc;
+disp('Example 10.19, Page No. = 10.50')
+// Given Data
+p = 6;// Number of poles
+ms = 3;// Number of phases of stator
+Nss = 72;// Number of stator slots
+Nc = 15;// Number of conductors per slot
+Sr = 55;// Number of stator slots
+Is = 24.1;// Stator current (in Ampere)
+Coil_Span = 11;// Coil span (slots)
+pf = 0.83;// Power factor
+// Calculation of the current in rotor bars and in end rings
+q = Nss/(ms*p);// Stator slots per pole per phase
+Kd = sin(60/2*%pi/180)/(q*sin(60/(2*4)*%pi/180));// Distribution factor
+Ns_pole = Nss/p;// Slots per pole
+alpha = 1/Ns_pole*180;// Angle of chording (in degree). Since the winding is chorded by 1 slot pitch
+Kp = cos(alpha/2*%pi/180);// Pitch factor
+Kws = Kd*Kp;// Stator winding factor
+Ir_ = Is*pf;// Stator current equivalent to rotor current (in Ampere)
+Ns = Nss*Nc;// Total stator conductors
+Ts = Ns/(ms*2);// Stator turns per phase
+Ib = 2*ms*Kws*Ts*Ir_/Sr;// Current in each rotor bar (in Ampere)
+Ie = Sr*Ib/(%pi*p);// Current in each end ring (in Ampere)
+disp(Ib,'Current in each rotor bar (Ampere) =');
+disp(Ie,'Current in each end ring (Ampere) =');
+//in book answers are 375.4 Ampere and 1095.3 Ampere respectively. The answers vary due to round off error