diff options
Diffstat (limited to '3543/CH2')
44 files changed, 534 insertions, 0 deletions
diff --git a/3543/CH2/EX2.01/EX2_1.png b/3543/CH2/EX2.01/EX2_1.png Binary files differnew file mode 100644 index 000000000..aa6dad955 --- /dev/null +++ b/3543/CH2/EX2.01/EX2_1.png diff --git a/3543/CH2/EX2.01/Ex2_1.sce b/3543/CH2/EX2.01/Ex2_1.sce new file mode 100644 index 000000000..a432408bf --- /dev/null +++ b/3543/CH2/EX2.01/Ex2_1.sce @@ -0,0 +1,23 @@ +// Example 2.1
+// Compuatation of mode parameter
+// Page no. 479
+
+clc;
+clear;
+close;
+
+//Given data
+n1=1.503; // refractive index of core
+n2=1.50; // refractive index of cladding
+a=4*10^-6; // core radius
+lambda=1*10^-6; // light wavelength
+
+// Mode parameter computation
+V=(2*%pi*a*sqrt(n1^2-n2^2))/(lambda);
+
+//Displaying the result in command window
+printf("\n Mode parameter is = %0.3f ",V);
+
+// The answer vary due to round off error
+
+
diff --git a/3543/CH2/EX2.010/EX2_10.png b/3543/CH2/EX2.010/EX2_10.png Binary files differnew file mode 100644 index 000000000..f9efd237d --- /dev/null +++ b/3543/CH2/EX2.010/EX2_10.png diff --git a/3543/CH2/EX2.010/Ex2_10.sce b/3543/CH2/EX2.010/Ex2_10.sce new file mode 100644 index 000000000..6da717798 --- /dev/null +++ b/3543/CH2/EX2.010/Ex2_10.sce @@ -0,0 +1,21 @@ +// Example 2.10
+// Calculation of Cut off wavelength
+// Page no 482
+
+clc;
+clear;
+close;
+
+// Given data
+V=2.403; // Normalized frequency
+delta=0.25; // Refractive index of core
+n1=1.46; // Relative refractive index
+a=4.5*10^-6; // Radius of core
+
+// Cut off wavelenth
+lambda=(2*%pi*a*n1*(sqrt(2*delta)))/V;
+
+//Display result on command window
+printf("\n Cut off wavelenth(nm) = %0.0f ",lambda*10^8);
+
+// The answers vary due to round off error
diff --git a/3543/CH2/EX2.011/EX2_11.png b/3543/CH2/EX2.011/EX2_11.png Binary files differnew file mode 100644 index 000000000..c75b145c3 --- /dev/null +++ b/3543/CH2/EX2.011/EX2_11.png diff --git a/3543/CH2/EX2.011/Ex2_11.sce b/3543/CH2/EX2.011/Ex2_11.sce new file mode 100644 index 000000000..20af4c798 --- /dev/null +++ b/3543/CH2/EX2.011/Ex2_11.sce @@ -0,0 +1,23 @@ +// Example 2.11
+//Calculation of (a) reflection and (b) loss of light signal at joint areas.
+// Page no 482
+
+clc;
+clear;
+close;
+
+// Given data
+n1=1.5; // Refractive index of core
+n=1; // Refractive index of air
+
+// (a) Reflection at the fiber air interface
+R=((n1-n)/(n1+n))^2;
+
+// (b) Light loss due to fiber air interface
+l= -10*log10(1-R);
+
+//Display result on command window
+printf("\n Reflection at the fiber air interface = %0.2f ",R);
+printf("\n Light loss due to fiber air interface (dB)= %0.2f ",l);
+
+
diff --git a/3543/CH2/EX2.012/EX2_12.png b/3543/CH2/EX2.012/EX2_12.png Binary files differnew file mode 100644 index 000000000..e3ea413a5 --- /dev/null +++ b/3543/CH2/EX2.012/EX2_12.png diff --git a/3543/CH2/EX2.012/Ex2_12.sce b/3543/CH2/EX2.012/Ex2_12.sce new file mode 100644 index 000000000..a76713538 --- /dev/null +++ b/3543/CH2/EX2.012/Ex2_12.sce @@ -0,0 +1,26 @@ +// Example 2.12
+// Computation of (a) numerical aperature and (b) maximum angle of entrance
+// Page no 482
+
+clc;
+clear;
+close;
+
+//Given data
+n1=1.48; // Refractive index of core
+n2=1.46; // Refractive index of cladding
+
+// (a) Numerical Aperture
+NA=sqrt(n1^2-n2^2);
+
+//(b) Maximum angle of entrance
+theata=asind(NA);
+
+//Displaying result in the command window
+printf("\n Numerical Aperture = %0.3f ",NA);
+printf("\n Maximum angle of entrance (degress) = %0.0f ",theata);
+
+// Final answer in the book is wrong. Please refer example 2.11 of
+// Fiber Optic Communication by Gerd Keiser book.
+
+
diff --git a/3543/CH2/EX2.013/EX2_13.png b/3543/CH2/EX2.013/EX2_13.png Binary files differnew file mode 100644 index 000000000..ce0f8dd01 --- /dev/null +++ b/3543/CH2/EX2.013/EX2_13.png diff --git a/3543/CH2/EX2.013/Ex2_13.sce b/3543/CH2/EX2.013/Ex2_13.sce new file mode 100644 index 000000000..f620ab843 --- /dev/null +++ b/3543/CH2/EX2.013/Ex2_13.sce @@ -0,0 +1,31 @@ +// Example 2.13
+// Calculation of (a) core radius and (b) maximum value of angle of acceptance of the fiber
+// Page no 483
+
+clc;
+clear;
+close;
+
+//Given data
+lambda=1320*10^-9; // Wavelength of fiber
+delta=0.077; // Relative refractive index
+n1=1.48; // Refractive index of core
+n2=1.478; // Refractive index of cladding
+v=2.403; // Normalized frequency
+
+// (a) Core radius
+a=v*lambda/(2*%pi*delta);
+a=a*10^6;
+
+//Numerical Aperture
+NA=sqrt(n1^2-n2^2);
+
+// (b) Angle of acceptance
+theata = asind(NA);
+
+//Display result on command window
+printf("\n Radius of core (in micrometer) = %0.1f ",a);
+printf("\n Numerical aperture = %0.5f ",NA);
+printf("\n Angle of acceptance (degrees) = %0.0f ",theata);
+
+// The answers vary due to round off error
diff --git a/3543/CH2/EX2.014/EX2_14.png b/3543/CH2/EX2.014/EX2_14.png Binary files differnew file mode 100644 index 000000000..9b45d947c --- /dev/null +++ b/3543/CH2/EX2.014/EX2_14.png diff --git a/3543/CH2/EX2.014/Ex2_14.sce b/3543/CH2/EX2.014/Ex2_14.sce new file mode 100644 index 000000000..95bd6db03 --- /dev/null +++ b/3543/CH2/EX2.014/Ex2_14.sce @@ -0,0 +1,21 @@ +// Example 2.14
+// Calculation of critical wavelength
+// Page no 483
+
+clc;
+clear;
+close;
+
+//Given data
+a=3*10^-6; // Core diameter of fiber
+delta=0.15; // Relative refractive index
+v=2.405; // Normalized frequency
+
+// Critical wavelength
+lambda=(2*%pi*a*delta)/v;
+lambda=lambda*10^9;
+
+//Displaying The Results in Command Window
+printf("\n Critical wavelength (nm)= %0.0f ",lambda);
+
+// The answers vary due to round off error
diff --git a/3543/CH2/EX2.02/EX2_2.png b/3543/CH2/EX2.02/EX2_2.png Binary files differnew file mode 100644 index 000000000..67b85a2fd --- /dev/null +++ b/3543/CH2/EX2.02/EX2_2.png diff --git a/3543/CH2/EX2.02/Ex2_2.sce b/3543/CH2/EX2.02/Ex2_2.sce new file mode 100644 index 000000000..ce50cdfa6 --- /dev/null +++ b/3543/CH2/EX2.02/Ex2_2.sce @@ -0,0 +1,21 @@ +// Example 2.2
+// Calculation of numerical aperature
+// Page no. 479
+
+clc;
+clear;
+close;
+
+//Given data
+v=2.111; // Mode parameter
+a=4.01*10^-6; // Core radius in m
+lambda=1.3*10^-6; // Wavelength of laser light m
+
+//Numerical aperture computation
+NA=(v*lambda)/(2*%pi*a);
+
+//Displaying the result in command window
+printf("\n Numerical aperature = %0.2f",NA);
+
+
+
diff --git a/3543/CH2/EX2.03/EX2_3.png b/3543/CH2/EX2.03/EX2_3.png Binary files differnew file mode 100644 index 000000000..faf473ef7 --- /dev/null +++ b/3543/CH2/EX2.03/EX2_3.png diff --git a/3543/CH2/EX2.03/Ex2_3.sce b/3543/CH2/EX2.03/Ex2_3.sce new file mode 100644 index 000000000..ad76693ad --- /dev/null +++ b/3543/CH2/EX2.03/Ex2_3.sce @@ -0,0 +1,23 @@ +// Example 2.3
+// Calculation of potential difference
+// page no 480
+
+clc;
+clear;
+close;
+
+// Given data
+na=10^24; // Accepter impurity level
+nd=10^22; // Donor impurity level
+ni=2.4*10^19; // Intrinsic electron
+T=290; // Room temperature
+e=1.602*10^-19; // Electric charge
+K=1.38*10^-23; // Boltzmann constant
+
+
+//Potential difference
+V=(K*T)/e*(log(na*nd/(ni)^2));
+
+//Display result on command window
+printf("\n Potential difference (V) = %0.2f ",V);
+// The potential difference varies with the variation of Na, Nd and ni
diff --git a/3543/CH2/EX2.04/EX2_4.png b/3543/CH2/EX2.04/EX2_4.png Binary files differnew file mode 100644 index 000000000..ae424c95f --- /dev/null +++ b/3543/CH2/EX2.04/EX2_4.png diff --git a/3543/CH2/EX2.04/Ex2_4.sce b/3543/CH2/EX2.04/Ex2_4.sce new file mode 100644 index 000000000..90691e287 --- /dev/null +++ b/3543/CH2/EX2.04/Ex2_4.sce @@ -0,0 +1,23 @@ +// Example 2.4
+// Calculation of (a) Numerical aperature and (b) critical angle
+// Page no 480
+
+clc;
+clear;
+close;
+
+// Given data
+n1=1.5; // Refractive index of core
+n2=1.47; // Refractive index of cladding
+
+// (a) Numerical aperature
+NA= sqrt(n1^2-n2^2);
+
+// (b) Critical angle
+theatha=asind(n2/n1);
+
+//Display result on command window
+printf("\n Numerical aperature = %0.2f ",NA);
+printf("\n Critical angle (degrees)= %0.1f ",theatha);
+
+
diff --git a/3543/CH2/EX2.05/EX2_5.png b/3543/CH2/EX2.05/EX2_5.png Binary files differnew file mode 100644 index 000000000..39fc92e3d --- /dev/null +++ b/3543/CH2/EX2.05/EX2_5.png diff --git a/3543/CH2/EX2.05/Ex2_5.sce b/3543/CH2/EX2.05/Ex2_5.sce new file mode 100644 index 000000000..451bc8f87 --- /dev/null +++ b/3543/CH2/EX2.05/Ex2_5.sce @@ -0,0 +1,22 @@ +// Example 2.5
+// Computation of (a) normalized frequency and (b) no. of guided modes
+// Page no 480
+
+clc;
+clear;
+close;
+
+//Given data
+lambda=0.85*10^-6; // wavelength of fiber
+a=40*10^-6; // core diameter of fiber
+delta=0.015; // relative refractive index
+n1=1.48; // refractive index of core
+
+// (a) Normalized frequency
+v=(2*%pi*a*n1*(2*delta)^(1/2))/lambda;
+//(b) Number of guided modes
+m=v^2/2;
+m=ceil(m);
+//Displaying results in the command window
+printf("\n Normalized frequency is = %0.1f ",v);
+printf("\n Number of guided modes = %0.0f ",m);
diff --git a/3543/CH2/EX2.06/EX2_6.png b/3543/CH2/EX2.06/EX2_6.png Binary files differnew file mode 100644 index 000000000..4e73043c9 --- /dev/null +++ b/3543/CH2/EX2.06/EX2_6.png diff --git a/3543/CH2/EX2.06/Ex2_6.sce b/3543/CH2/EX2.06/Ex2_6.sce new file mode 100644 index 000000000..f7abb36e5 --- /dev/null +++ b/3543/CH2/EX2.06/Ex2_6.sce @@ -0,0 +1,24 @@ +// Example 2.6
+// Computation of normalized frequency and no of guided modes
+// Page no 480
+clc;
+clear;
+close;
+
+//Given data
+lambda=1.30*10^-6; // Wavelength of fiber
+a=25*10^-6; // Core diameter of fiber
+delta=0.01; // Relative refractive index
+n1=1.50; // Refractive index of core
+
+// (a) Normalized frequency
+v=((2*%pi*a*n1)/(lambda))*((2*delta)^(1/2));
+//(b) Number of guided modes
+m=v^2/2;
+//m=ceil(m);
+
+//Displaying results in the command window
+printf("\n Normalized frequency = %0.2f ",v);
+printf("\n Number of guided modes = %0.0f ",m);
+
+//Answer varies due to round off error
diff --git a/3543/CH2/EX2.07/EX2_7.png b/3543/CH2/EX2.07/EX2_7.png Binary files differnew file mode 100644 index 000000000..fdfcdd1a3 --- /dev/null +++ b/3543/CH2/EX2.07/EX2_7.png diff --git a/3543/CH2/EX2.07/Ex2_7.sce b/3543/CH2/EX2.07/Ex2_7.sce new file mode 100644 index 000000000..d3ac93874 --- /dev/null +++ b/3543/CH2/EX2.07/Ex2_7.sce @@ -0,0 +1,23 @@ +// Example 2.7
+// Calculation of normalized frequency and no of guided modes
+// Page no 481
+
+clc;
+clear;
+close;
+
+//Given data
+lambda=1.55*10^-6; // Wavelength of fiber
+a=30*10^-6; // Core diameter of fiber
+delta=0.015; // Relative refractive index
+n1=1.48; // Refractive index of core
+
+// (a) Normalized frequency
+v=(2*%pi*a*n1*(2*delta)^(1/2))/lambda;
+//(b) Number of guided modes
+m=v^2/2;
+
+//Displaying results in the command window
+printf("\n Normalized frequency = %0.2f ",v);
+printf("\n Number of guided modes = %0.0f ",m);
+// The answers vary due to round off error
diff --git a/3543/CH2/EX2.08/EX2_8.png b/3543/CH2/EX2.08/EX2_8.png Binary files differnew file mode 100644 index 000000000..3e0938103 --- /dev/null +++ b/3543/CH2/EX2.08/EX2_8.png diff --git a/3543/CH2/EX2.08/Ex2_8.sce b/3543/CH2/EX2.08/Ex2_8.sce new file mode 100644 index 000000000..0e1deacf6 --- /dev/null +++ b/3543/CH2/EX2.08/Ex2_8.sce @@ -0,0 +1,21 @@ +// Example 2.8
+// Calculation of normalized frequency and no of guided modes
+// Page no 481
+clc;
+clear;
+close;
+
+//Given data
+lambda=1.55*10^-6; // Wavelength of fiber
+a=4*10^-6; // Core diameter of fiber
+delta=0.01; // Relative refractive index
+n1=1.48; // Refractive index of core
+// (a) Normalized frequency
+v=(2*%pi*a*n1*(2*delta)^(1/2))/lambda;
+//(b) Number of guided modes
+m=v^2/2;
+
+//Displaying results in the command window
+printf("\n Normalized frequency = %0.3f ",v);
+printf("\n Number of guided modes = %0.0f ",m);
+// The answers vary due to round off error
diff --git a/3543/CH2/EX2.09/EX2_9.png b/3543/CH2/EX2.09/EX2_9.png Binary files differnew file mode 100644 index 000000000..485b02633 --- /dev/null +++ b/3543/CH2/EX2.09/EX2_9.png diff --git a/3543/CH2/EX2.09/Ex2_9.sce b/3543/CH2/EX2.09/Ex2_9.sce new file mode 100644 index 000000000..79f0c98f7 --- /dev/null +++ b/3543/CH2/EX2.09/Ex2_9.sce @@ -0,0 +1,19 @@ +// Example 2.9
+// Calculation of Core radius
+// Page no 481
+
+clc;
+clear;
+
+//Given data
+lambda=0.85*10^-6; // Wavelength of fiber
+delta=0.015; // Relative refractive index
+n1=1.48; // Refractive index of core
+v=2.403; // Normalized frequency for single mode fiber
+// Computation of core radius
+a=v*lambda/(2*%pi*n1*sqrt(2*delta));
+a=a*10^6;
+
+//Displaying result in the command window
+printf("\n Radius of core (in micrometer) = %0.1f ",a);
+
diff --git a/3543/CH2/EX2.1/EX2_1.png b/3543/CH2/EX2.1/EX2_1.png Binary files differnew file mode 100644 index 000000000..48c7a4162 --- /dev/null +++ b/3543/CH2/EX2.1/EX2_1.png diff --git a/3543/CH2/EX2.1/Ex2_1.sce b/3543/CH2/EX2.1/Ex2_1.sce new file mode 100644 index 000000000..898f7df1c --- /dev/null +++ b/3543/CH2/EX2.1/Ex2_1.sce @@ -0,0 +1,24 @@ +// Example 2.1
+// Calculation of core diameter
+// Page no 31
+
+clc;
+clear;
+close;
+
+// Given data
+n1=1.5; // Refractive index of core
+n2=1.48; // Refractive index of cladding
+N=1000; // No of modes
+lambda=1.3; // Light wavelength
+V=sqrt(2*N); // Mode parameter
+
+//core diameter
+d=(lambda*V)/(2*%pi*sqrt(n1^2-n2^2));
+
+
+//Display result on command window
+printf("\n Mode parameter = %0.2f ",V);
+printf("\n Core diameter(micrometer)= %0.0f ",d);
+
+// Answer is wrong in the book.
diff --git a/3543/CH2/EX2.2/EX2_2.png b/3543/CH2/EX2.2/EX2_2.png Binary files differnew file mode 100644 index 000000000..be9cd2888 --- /dev/null +++ b/3543/CH2/EX2.2/EX2_2.png diff --git a/3543/CH2/EX2.2/Ex2_2.sce b/3543/CH2/EX2.2/Ex2_2.sce new file mode 100644 index 000000000..7d8e18c4a --- /dev/null +++ b/3543/CH2/EX2.2/Ex2_2.sce @@ -0,0 +1,41 @@ +// Example 2.2
+// Calculation of (a) critical angle (b) acceptance angle and oblique angle (c) numerical aperature
+// (d) percentage of light collected by the fiber and (e) diameter of fiber
+// Page no 35
+
+clc;
+clear;
+close;
+
+// Given data
+n1=1.5; // Refractive index of core
+n2=1.45; // Refractive index of cladding
+V=2.405; // Mode parameter
+lambda=1.55 // Wavelength of fiber
+
+// (a) Critical angle of the
+theatha=asind(n2/n1);
+
+// (b) Oblique angle
+oa=90-theatha;
+ //Acceptance angle
+t1=n1*sind(oa);
+th1=asind(t1);
+
+// (c) Numerical aperature
+NA=sqrt(n1^2-n2^2);
+
+// (d) Percentage of light collected in fiber
+P=(NA)^2*100;
+
+//(e) Diameter of fiber
+d=V*lambda/%pi*(1/sqrt(n1^2-n2^2));
+
+//Display result on command window
+printf("\n Critical angle (degrees) = %0.0f ",theatha);
+printf("\n Oblique angle (degrees) = %0.0f ",oa);
+printf("\n Acceptance angle (degrees) = %0.0f ",th1);
+printf("\n Numerical aperature = %0.4f ",NA);
+printf("\n Percentage of light collected in fiber = %0.1f ",P);
+printf("\n Diameter of fiber (micrometer) = %0.2f ",d);
+
diff --git a/3543/CH2/EX2.3/EX2_3.png b/3543/CH2/EX2.3/EX2_3.png Binary files differnew file mode 100644 index 000000000..546556940 --- /dev/null +++ b/3543/CH2/EX2.3/EX2_3.png diff --git a/3543/CH2/EX2.3/Ex2_3.sce b/3543/CH2/EX2.3/Ex2_3.sce new file mode 100644 index 000000000..ab7199895 --- /dev/null +++ b/3543/CH2/EX2.3/Ex2_3.sce @@ -0,0 +1,24 @@ +// Example 2.3
+// Calculation of (a) critical angle (b) numerical aperature and (c) acceptance angle
+// Page no 38
+
+clc;
+clear;
+close;
+
+// Given data
+n1=1.5; // Refractive index of core
+n2=1.47; // Refractive index of cladding)
+
+// (a) Critical angle
+theatha=asind(n2/n1);
+// (b) Numerical aperature
+NA=sqrt(n1^2-n2^2);
+// (c) Acceptance angle
+theatha1=asind(NA);
+
+//Display result on command window
+printf("\n Critical angle (degrees) = %0.1f ",theatha);
+printf("\n Numerical aperature = %0.2f ",NA);
+printf("\n Acceptance angle (degrees) = %0.1f ",theatha1);
+
diff --git a/3543/CH2/EX2.4/EX2_4.png b/3543/CH2/EX2.4/EX2_4.png Binary files differnew file mode 100644 index 000000000..573dd6cd5 --- /dev/null +++ b/3543/CH2/EX2.4/EX2_4.png diff --git a/3543/CH2/EX2.4/Ex2_4.sce b/3543/CH2/EX2.4/Ex2_4.sce new file mode 100644 index 000000000..195073848 --- /dev/null +++ b/3543/CH2/EX2.4/Ex2_4.sce @@ -0,0 +1,20 @@ +// Example 2.4
+// Calculation of output power
+// Page no 46
+
+clc;
+clear;
+close;
+
+// Given data
+Pi=1; // Input power
+A=0.5; // Atteuation
+L=15; // Fiber link length
+
+// Output Power
+Po=Pi*10^((-A*L)/10);
+
+//Display result on command window
+printf("\n Output Power (in mW) = %0.3f ",Po);
+
+
diff --git a/3543/CH2/EX2.5/EX2_5.png b/3543/CH2/EX2.5/EX2_5.png Binary files differnew file mode 100644 index 000000000..0687cc5df --- /dev/null +++ b/3543/CH2/EX2.5/EX2_5.png diff --git a/3543/CH2/EX2.5/Ex2_5.sce b/3543/CH2/EX2.5/Ex2_5.sce new file mode 100644 index 000000000..9fd407c35 --- /dev/null +++ b/3543/CH2/EX2.5/Ex2_5.sce @@ -0,0 +1,20 @@ +// Example 2.5
+// Calculation of maximum transmission distance
+// Page no 47
+clc;
+clear;
+close;
+
+// Given data
+Pi=1*10^-3; // Input power
+A=0.5; // Atteuation
+Po=50*10^-6; // Output Power
+
+// Maximum transmission distance
+L=(10/A)*log10(Pi/Po);
+
+//Display result on command window
+printf("\n Maximum transmission distance (in km) = %0.0f ",L);
+
+
+
diff --git a/3543/CH2/EX2.6/EX2_6.png b/3543/CH2/EX2.6/EX2_6.png Binary files differnew file mode 100644 index 000000000..d42de764d --- /dev/null +++ b/3543/CH2/EX2.6/EX2_6.png diff --git a/3543/CH2/EX2.6/Ex2_6.sce b/3543/CH2/EX2.6/Ex2_6.sce new file mode 100644 index 000000000..5216051e9 --- /dev/null +++ b/3543/CH2/EX2.6/Ex2_6.sce @@ -0,0 +1,21 @@ +// Example 2.6
+// Calculation of output power
+// Page no 48
+
+clc;
+clear;
+close;
+
+// Given data
+Pin=1*10^-3; // Input power
+AL1=10; // Attenuation 1
+AL2=20; // Attenuation 2
+//Output power 1 and 2
+Po1=Pin/10;
+Po2=Pin/20;
+Po1=Po1*10^3;
+Po2=Po2*10^6;
+//Display result on command window
+printf("\n Output power(in mW) = %0.1f ",Po1);
+printf("\n Output power(in microW)= %0.0f",Po2);
+
diff --git a/3543/CH2/EX2.7/EX2_7.png b/3543/CH2/EX2.7/EX2_7.png Binary files differnew file mode 100644 index 000000000..e863983aa --- /dev/null +++ b/3543/CH2/EX2.7/EX2_7.png diff --git a/3543/CH2/EX2.7/Ex2_7.sce b/3543/CH2/EX2.7/Ex2_7.sce new file mode 100644 index 000000000..9bc4986f1 --- /dev/null +++ b/3543/CH2/EX2.7/Ex2_7.sce @@ -0,0 +1,37 @@ +
+// Example 2.7
+// Calculation of attenuation and Rayleigh scattering coefficient for fiber
+// Page no 50
+clc;
+clear;
+close;
+
+// Given data
+n=1.46; // Refractive index
+p=0.286; // Average photoelastic coefficient
+B=7.25*10^-11; // Isothermal compressibility
+k=1.38*10^-23; // Boltzmann's constant
+T=1350; // Fictive temperature
+l1=1*10^-6; // Wavelength 1
+l2=1.3*10^-6; // Wavelength 2
+L=10^3; // Length
+
+// Rayleigh scattering coefficient for length 1
+y1=8*(%pi)^3*(n)^8*(p)^2*B*k*T/(3*(l1)^4);
+// Rayleigh scattering coefficient for length 2
+y2=8*(%pi)^3*(n)^8*(p)^2*B*k*T/(3*(l2)^4);
+y1=y1;
+y2=y2;
+//Attenuation 1
+T1=exp(-(y1*L));
+//Attenuation 2
+T2=exp(-(y2*L));
+
+//Display result on command window
+printf("\n First Rayleigh scattering coefficient = %0.6f m^-1 ",y1);
+printf("\n Second Rayleigh scattering coefficient = %0.6f m^-1 ",y2);
+
+printf("\n Attenuation (@ Length 1) = %0.2f (dB/km) ",T1);
+printf("\n Attenuation (@ Length 2) = %0.2f (dB/km) ",T2);
+
+
diff --git a/3543/CH2/EX2.8/EX2_8.png b/3543/CH2/EX2.8/EX2_8.png Binary files differnew file mode 100644 index 000000000..bb10241a3 --- /dev/null +++ b/3543/CH2/EX2.8/EX2_8.png diff --git a/3543/CH2/EX2.8/Ex2_8.sce b/3543/CH2/EX2.8/Ex2_8.sce new file mode 100644 index 000000000..f3d4e3091 --- /dev/null +++ b/3543/CH2/EX2.8/Ex2_8.sce @@ -0,0 +1,26 @@ +// Example 2.8
+// Calculation of threshold power of stimulated Brillouin scattering and Raman Scattering
+// Page no 52
+
+clc;
+clear;
+close;
+
+// Given data
+A=0.5; // Attenuation
+d=5; // Core diameter
+lambda=1.3; // Operating wavelength
+v=0.7; // Bandwith of laser diode
+
+// Threshold power of stimulated Brillouin scattering
+Pb=4.4*10^-3*d^2*lambda^2*A*v;
+Pb=Pb*10^3;
+
+//Threshold power stimulated Raman Scattering
+Pr=5.9*10^-2*d^2*lambda*A;
+
+//Display result on command window
+printf("\n Threshold power of stimulated Brillouin scattering (in mW) = %0.2f ",Pb);
+printf("\n Threshold power stimulated Raman Scattering (in W)= %0.2f",Pr);
+
+
|