summaryrefslogtreecommitdiff
path: root/3526/CH4
diff options
context:
space:
mode:
Diffstat (limited to '3526/CH4')
-rw-r--r--3526/CH4/EX4.1/EX4_1.sce13
-rw-r--r--3526/CH4/EX4.2/EX4_2.sce16
-rw-r--r--3526/CH4/EX4.3/EX4_3.sce21
-rw-r--r--3526/CH4/EX4.4/EX4_4.sce10
-rw-r--r--3526/CH4/EX4.5/EX4_5.sce9
-rw-r--r--3526/CH4/EX4.6/EX4_6.sce14
-rw-r--r--3526/CH4/EX4.9/EX4_9.sce8
7 files changed, 91 insertions, 0 deletions
diff --git a/3526/CH4/EX4.1/EX4_1.sce b/3526/CH4/EX4.1/EX4_1.sce
new file mode 100644
index 000000000..0c46cbb4f
--- /dev/null
+++ b/3526/CH4/EX4.1/EX4_1.sce
@@ -0,0 +1,13 @@
+//page 87
+clc;funcprot(0);//EXAMPLE 4.1
+// Initialisation of Variables
+Lp=0.36151;........//The lattice parameter of FCC copper in nm
+T1=298;..........//Temperature of copper in K
+Qv=20000;...........//Heat required to produce a mole of vacancies in copper in cal
+R=1.987;.........//The gas constant in cal/mol-K
+//CALCULATIONS
+n=4/(Lp*10^-8)^3;..........//The number of copper atoms or lattice points per cm^3 in atoms/cm^3
+nv1=n*exp(-Qv/(T1*R));.......//concentration of vacancies in copper at 25 degree celsius in vacancies /cm^3
+nv2=nv1*1000;.......//concentration of vacancies in copper atoms at T2 temperature
+T2=-Qv/(R*log(nv2/n));.......//temperature at which this number of vacancies forms in copper in K
+disp(round(T2-273),"Temperature at which this number of vacancies forms in copper in Degree celsius:")
diff --git a/3526/CH4/EX4.2/EX4_2.sce b/3526/CH4/EX4.2/EX4_2.sce
new file mode 100644
index 000000000..61c3e2ef3
--- /dev/null
+++ b/3526/CH4/EX4.2/EX4_2.sce
@@ -0,0 +1,16 @@
+//page 88
+clc;funcprot(0);//EXAMPLE 4.2
+// Initialisation of Variables
+n1=2;..........//No. of Atoms in BCC iron Crystal
+m=55.847;..........//Atomic mass of BCC iron crystal
+a0=2.866*10^-8;......//The lattice parameter of BCC iron in cm
+Na=6.02*10^23;.......//Avogadro’s number in atoms/mol
+rho1=7.87;........//Required density of iron BCC in g/cm^3
+//CALCULATIONS
+rho2=(n1*m)/(a0^3*Na);..........//The expected theoretical density of iron BCC
+X=(rho1*a0^3*Na)/m;.........//Number of iron atoms and vacancies that would be present in each unit cell for the required density
+n2=n1-X;..........// no. of vacacies per unit cell
+V=n2/a0^3;.........//The number of vacancies per cm^3
+disp(rho2,"The expected theoretical density of iron BCC ")
+disp(X,"Number of iron atoms that would be present in each unit cell for the required density:")
+disp(V,"The number of vacancies per cm^3 :")
diff --git a/3526/CH4/EX4.3/EX4_3.sce b/3526/CH4/EX4.3/EX4_3.sce
new file mode 100644
index 000000000..bdb8eb638
--- /dev/null
+++ b/3526/CH4/EX4.3/EX4_3.sce
@@ -0,0 +1,21 @@
+//page 90
+clc;funcprot(0);//EXAMPLE 4.3
+// Initialisation of Variables
+a01=0.2866;............//The Lattice parameter of BCC in nm
+a02=0.3571;............//The Lattice parameter of FCC in nm
+r=0.071;............//Radius of carbon atom in nm
+ni1=12;..........//No. of interstitial sites per unit cell for BCC
+ni2=4;...........//No. of interstitial sites per unit cell for FCC
+//CALCULATIONS
+Rb=(sqrt(3)*a01)/4;.......//Radius of iron atom in nm
+Ri1=sqrt(0.3125*a01^2)-Rb;.......// Interstitial Radius of iron atom in nm
+Rf=(sqrt(2)*a02)/4;.........//the radius of the iron atom in nm
+Ri2=(a02-(2*Rf))/2;................//the radius of the interstitial site in nm
+%C1=(ni1/(ni1+2))*100;...........//The atomic percentage of carbon contained in the BCC iron in percent
+%C2=(ni2/(ni2+4))*100;...........//The atomic percentage of carbon contained in the FCC iron in percent
+disp(Rb,"Radius of iron atom in nm")
+disp(Ri1,"Interstitial Radius of iron atom in nm:")
+disp(Rf,"the radius of the iron atom in nm:")
+disp(Ri2,"the radius of the interstitial site in nm:")
+disp(%C1,"The atomic percentage of carbon contained in BCC iron in percent:")
+disp(%C2,"The atomic percentage of carbon contained in FCC iron in percent:")
diff --git a/3526/CH4/EX4.4/EX4_4.sce b/3526/CH4/EX4.4/EX4_4.sce
new file mode 100644
index 000000000..b88232c14
--- /dev/null
+++ b/3526/CH4/EX4.4/EX4_4.sce
@@ -0,0 +1,10 @@
+//page 96
+clc;funcprot(0);//EXAMPLE 4.4
+// Initialisation of Variable
+a0=0.396;.........//Lattice parameter of magnesium oxide
+h=1;..............//Because b is a [110] direction
+k=1;..............//Because b is a [110] direction
+l=0;............//Because b is a [110] direction
+//CALCULATIONS
+b=a0/sqrt(2);..........//The length of Burgers vector in nm
+disp(b,"The length of Burgers vector in nm:")
diff --git a/3526/CH4/EX4.5/EX4_5.sce b/3526/CH4/EX4.5/EX4_5.sce
new file mode 100644
index 000000000..f1caaefd1
--- /dev/null
+++ b/3526/CH4/EX4.5/EX4_5.sce
@@ -0,0 +1,9 @@
+//page 97
+clc;funcprot(0);//EXAMPLE 4.5
+// Initialisation of Variables
+a01=0.36151;......//The lattice parameter of copper in nm
+//CALCULATIONS
+F=sqrt(2)*a01;........//Face Diagonal of copperin nm
+b=(1/2)*(F);..........//The length of the Burgers vector, or the repeat distance in nm
+disp(F,"Face Diagonal of copperin nm:")
+disp(b,"The length of the Burgers vector in nm:")
diff --git a/3526/CH4/EX4.6/EX4_6.sce b/3526/CH4/EX4.6/EX4_6.sce
new file mode 100644
index 000000000..69da0514e
--- /dev/null
+++ b/3526/CH4/EX4.6/EX4_6.sce
@@ -0,0 +1,14 @@
+//page 98
+clc;funcprot(0);//EXAMPLE 4.6
+// Initialisation of Variables
+n=2;........//No. of Atoms present per cell in BCC
+a0=2.866*10^-8;.....//The lattice parameter of BCC iron in cm
+rho1=0.994*10^15;.......//Planar density of (112)BCC in atoms/cm^2
+//CALCULATIONS
+a=sqrt(2)*a0^2;.........//Area of BCC iron in cm^2
+rho2=n/a;........//Planar density of (110)BCC in atoms/cm^2
+d1=a0*10^-9/(sqrt(1^2+1^2+0));......//The interplanar spacings for (110)BCC in cm
+d2=a0*10^-9/(sqrt(1^2+1^2+2^2));......//The interplanar spacings for (112)BCC in cm
+disp(rho2,"Planar density of (110)BCC in atoms/cm^2:")
+disp(d1,"The interplanar spacings for (110)BCC in cm:")
+disp(d2,"The interplanar spacings for (112)BCC in cm:")
diff --git a/3526/CH4/EX4.9/EX4_9.sce b/3526/CH4/EX4.9/EX4_9.sce
new file mode 100644
index 000000000..12be5d1d7
--- /dev/null
+++ b/3526/CH4/EX4.9/EX4_9.sce
@@ -0,0 +1,8 @@
+//page 105
+clc;funcprot(0);//EXAMPLE 4.10
+// Initialisation of Variables
+g=16;.......// No. of grains per square inch in a photomicrograph
+M=250;..........//Magnification in a photomicrograph
+N=(M/g)*100;........//The number of grains per square inch
+n=(log10(100)/log10(2))+1;........//the ASTM grain size number
+disp(n,"the ASTM grain size number:")