diff options
Diffstat (limited to '3523/CH4')
-rw-r--r-- | 3523/CH4/EX4.10.1/Ex4_1.sce | 20 | ||||
-rw-r--r-- | 3523/CH4/EX4.10.10/Ex4_10.sce | 19 | ||||
-rw-r--r-- | 3523/CH4/EX4.10.11/Ex4_11.sce | 12 | ||||
-rw-r--r-- | 3523/CH4/EX4.10.12/Ex4_12.sce | 16 | ||||
-rw-r--r-- | 3523/CH4/EX4.10.2/Ex4_2.sce | 9 | ||||
-rw-r--r-- | 3523/CH4/EX4.10.3/Ex4_3.sce | 12 | ||||
-rw-r--r-- | 3523/CH4/EX4.10.4/Ex4_4.sce | 13 | ||||
-rw-r--r-- | 3523/CH4/EX4.10.5/Ex4_5.sce | 10 | ||||
-rw-r--r-- | 3523/CH4/EX4.10.7/Ex4_7.sce | 18 | ||||
-rw-r--r-- | 3523/CH4/EX4.10.8/Ex4_8.sce | 24 | ||||
-rw-r--r-- | 3523/CH4/EX4.10.9/Ex4_9.sce | 14 |
11 files changed, 167 insertions, 0 deletions
diff --git a/3523/CH4/EX4.10.1/Ex4_1.sce b/3523/CH4/EX4.10.1/Ex4_1.sce new file mode 100644 index 000000000..dbb15ecd1 --- /dev/null +++ b/3523/CH4/EX4.10.1/Ex4_1.sce @@ -0,0 +1,20 @@ +//Example 1// Ch 4
+clc;
+clear;
+close;
+// given data
+I1 = 2.7*10^-8;//steady state current in Amperes
+V = 10; //voltage in kV
+d1 = 0.005; //spacing between the plane electrodes in meters
+d2 = 0.01; // spacing incresed in meters
+I2 = 2.7*10^-7;//increased steady state current in amperes
+e = 1.6*10^-19;
+x = 1/(d2-d1);
+y = log(I2/I1);
+alpha = x*y;//ionization coefficient
+printf("ionization coefficient %f m^-1",alpha)
+I0 = I1*exp(-alpha*d1);//photoelctric current
+printf("photoelectric current %e A",I0)
+n0 = I0/e;
+printf("no of electrons emitted from cathode %e electrons/s",n0)
+
diff --git a/3523/CH4/EX4.10.10/Ex4_10.sce b/3523/CH4/EX4.10.10/Ex4_10.sce new file mode 100644 index 000000000..9b777c450 --- /dev/null +++ b/3523/CH4/EX4.10.10/Ex4_10.sce @@ -0,0 +1,19 @@ +//Example 10// Ch 4
+clc;
+clear;
+close;
+// given data
+d = 0.001; //in meters
+p = 101.3; //in kPa
+alpha = (17.7 + log(d))/d;//ionization coefficient in m^-1
+x = alpha/p; //in m^-1kPa^-1
+s = 11253.7; //constant in m-1kPa-1
+B = 273840; //constant in V/m kPa
+E1 = p/((-1/B)*log(x/s));// in V/m
+Vs1 = E1*d; //break down voltage in V
+printf("ionization coefficient %f m^-1 \n",alpha)
+printf("electric field %e V/m \n",E1)
+printf("breakdown voltage %f kV \n",Vs1*10^-3)
+E2 = 468*10^4;// in V/m
+Vs2 = E2*d;//breakdown voltage by meel and loeb's eq
+printf("breakdown voltage %f kV \n",Vs2*10^-3)
diff --git a/3523/CH4/EX4.10.11/Ex4_11.sce b/3523/CH4/EX4.10.11/Ex4_11.sce new file mode 100644 index 000000000..018fb93d0 --- /dev/null +++ b/3523/CH4/EX4.10.11/Ex4_11.sce @@ -0,0 +1,12 @@ +//Example 11// Ch 4
+clc;
+clear;
+close;
+// given data
+d = 0.05; //electron current of an avalanche in uniform field gap of d in meters
+t = 0.2*10^-6; //current decline abruptly in t sec
+tc = 35*10^-9; //time constant
+ve = d/t;//electron drift velocity in m/s
+alpha = 1/(tc*ve);//townsend's ionization coefficient
+printf("electron drift velocity %e m/s",ve)
+printf("ionization coefficient %f m^-1",alpha)
diff --git a/3523/CH4/EX4.10.12/Ex4_12.sce b/3523/CH4/EX4.10.12/Ex4_12.sce new file mode 100644 index 000000000..fc8682536 --- /dev/null +++ b/3523/CH4/EX4.10.12/Ex4_12.sce @@ -0,0 +1,16 @@ +//Example 12// Ch 4
+clc;
+clear;
+close;
+// given data
+V = 200;//alternating voltage in kV(rms)
+x = 0.1;//uniform gap in meters
+f = 50;//frequency of voltage in Hz
+k = 1.4*10^-4;//mobility of positive ions in m2/s.V
+Ea = V*sqrt(2)*10^3/x;//alternating field in V/m
+printf("alternating field %e V/m",Ea)
+w = k*Ea/(2*%pi*f);
+t = sinm(x/w)/314;
+printf("travel time of positive ions from one electrode to other %f sec",t)
+fmax = k*Ea/(2*%pi*x)
+printf("maximum frequency that can be applied %f Hz",fmax)
diff --git a/3523/CH4/EX4.10.2/Ex4_2.sce b/3523/CH4/EX4.10.2/Ex4_2.sce new file mode 100644 index 000000000..777c725ad --- /dev/null +++ b/3523/CH4/EX4.10.2/Ex4_2.sce @@ -0,0 +1,9 @@ +//Example 2// Ch 4
+clc;
+clear;
+close;
+// given data
+I = 10^9;
+alpha = 460.5;//ionization coefficient
+d = log(I)/alpha;//electrode spacing in meter
+printf("electrode spacing %f m",d)
diff --git a/3523/CH4/EX4.10.3/Ex4_3.sce b/3523/CH4/EX4.10.3/Ex4_3.sce new file mode 100644 index 000000000..4fd8ae6e4 --- /dev/null +++ b/3523/CH4/EX4.10.3/Ex4_3.sce @@ -0,0 +1,12 @@ +//Example 3// Ch 4
+clc;
+clear;
+close;
+// given data
+a=4*1e4;
+b=15*1e5;
+lb=0;
+ub=0.0005;
+i=integrate('(a-b*sqrt(x))','x',lb,ub)
+as=exp(i);//Avalanche size
+printf('Avalache size %f',as)
diff --git a/3523/CH4/EX4.10.4/Ex4_4.sce b/3523/CH4/EX4.10.4/Ex4_4.sce new file mode 100644 index 000000000..1bdc6319d --- /dev/null +++ b/3523/CH4/EX4.10.4/Ex4_4.sce @@ -0,0 +1,13 @@ +//Example 4// Ch 4
+clc;
+clear;
+close;
+// given data
+
+a=7.5*1e5;
+b=-4*1e4;
+c=59.97;
+p = poly([c, b,a], 'x', 'c');
+alpha=roots(p);
+printf('The distance it must travel to produce an avalanche of 1E9 electrons is (in m) %f',alpha(2))
+
diff --git a/3523/CH4/EX4.10.5/Ex4_5.sce b/3523/CH4/EX4.10.5/Ex4_5.sce new file mode 100644 index 000000000..c8ee424ad --- /dev/null +++ b/3523/CH4/EX4.10.5/Ex4_5.sce @@ -0,0 +1,10 @@ +clear all
+clc
+close
+
+a=7.5*1e5;
+b=-4*1e4;
+c=43.75;
+p = poly([c, b,a], 'x', 'c');
+alpha=roots(p);
+printf('Minimum distance measured from the cathode at which an electron may start an avalanche having a size of 1E19 is (in m) %f',alpha(2))
diff --git a/3523/CH4/EX4.10.7/Ex4_7.sce b/3523/CH4/EX4.10.7/Ex4_7.sce new file mode 100644 index 000000000..5503972ee --- /dev/null +++ b/3523/CH4/EX4.10.7/Ex4_7.sce @@ -0,0 +1,18 @@ +//Example 7// Ch 4
+clc;
+clear;
+close;
+// given data
+V = 9*10^3; //in V
+d = 0.002;//two parallel plates spaced by distance d in meters
+// 1/mean free path is equal to a*p where a is constant
+s = 11253.7;//constant value in m^-1kPa^-1
+B = 273840;//constant value in V/mkPa
+p = 101.3;// in kPa
+E = V/d;
+t = (-B*p)/E;
+alpha = p * s * exp(t);
+printf("electric field %e V/m \n",E)
+printf("ionization cofficient %f m^-1 \n",alpha)
+z = 1/(exp(alpha*d)-1);//secondary coefficient of ionization
+printf("secondary coefficient of ionization %f \n",z)
diff --git a/3523/CH4/EX4.10.8/Ex4_8.sce b/3523/CH4/EX4.10.8/Ex4_8.sce new file mode 100644 index 000000000..599f0f4d0 --- /dev/null +++ b/3523/CH4/EX4.10.8/Ex4_8.sce @@ -0,0 +1,24 @@ +//Example 8// Ch 4
+clc;
+clear;
+close;
+// given data
+//current between two parallel plates were 1.22,1.82,2.22 of the initiating photocurrent I1,I2,I3
+x = 1.22;//x is I1/I0 I1=1.22I0
+y = 1.82;//y is I2/I0 I2=1.82I0
+w = 2.22;//z is I3/I0 I3=2.22I0
+d1 = 0.005; //in meters
+d2 = 0.01504; //in meters
+d3 = 0.019; //in meters
+// first ionization coefficients alpha1, alpha2 and alpha3
+alpha1 = log(x)/d1;
+alpha2 = log(y)/d2;
+alpha3 = log(w)/d3;
+printf("first ionization coefficient %f m^-1 \n",alpha1)
+printf("second ionization coefficient %f m^-1 \n",alpha2)
+printf("third ionization coefficient %f m^-1 \n",alpha3)
+// E/p and p were maintained constant so at d3 the secondary ionization coefficient mechanism must be acting without any change in alpha
+z = (w - exp(alpha1*d3))/(w*(exp(alpha1*d3)-1));//secondary ionization coefficient
+printf("secondary ionization coefficient %f \n",z)
+
+
diff --git a/3523/CH4/EX4.10.9/Ex4_9.sce b/3523/CH4/EX4.10.9/Ex4_9.sce new file mode 100644 index 000000000..2c8eafac5 --- /dev/null +++ b/3523/CH4/EX4.10.9/Ex4_9.sce @@ -0,0 +1,14 @@ +//Example 9// Ch 4
+clc;
+clear;
+close;
+// given data
+E = 1596; //in V/m
+p = 0.133; //in kPa
+a = E/p; // in V/m kPa kept constant as in example 8
+alpha1 = 39.8;//from example 8
+z = 0.0363; //from example 8
+d = (1/alpha1)*[log(1/z + 1)];//distance at the transition to a self-sustained discharge
+printf("distance at the transition to a self-sustained discharge %f m",d)
+V = E*d;//voltage at the transition to a self sustained discharge
+printf("Voltage at the transition to a self sustained discharge %f V",V)
|