diff options
Diffstat (limited to '3523/CH12')
-rw-r--r-- | 3523/CH12/EX12.17.1/Ex12_1.sce | 32 | ||||
-rw-r--r-- | 3523/CH12/EX12.17.10/Ex12_10.sce | 18 | ||||
-rw-r--r-- | 3523/CH12/EX12.17.2/Ex12_2.sce | 11 | ||||
-rw-r--r-- | 3523/CH12/EX12.17.3/Ex12_3.sce | 12 | ||||
-rw-r--r-- | 3523/CH12/EX12.17.4/Ex12_4.sce | 17 | ||||
-rw-r--r-- | 3523/CH12/EX12.17.5/Ex12_5.sce | 16 | ||||
-rw-r--r-- | 3523/CH12/EX12.17.6/Ex12_6.sce | 37 | ||||
-rw-r--r-- | 3523/CH12/EX12.17.7/Ex12_7.sce | 15 | ||||
-rw-r--r-- | 3523/CH12/EX12.17.8/Ex12_8.sce | 27 | ||||
-rw-r--r-- | 3523/CH12/EX12.17.9/Ex12_9.sce | 16 |
10 files changed, 201 insertions, 0 deletions
diff --git a/3523/CH12/EX12.17.1/Ex12_1.sce b/3523/CH12/EX12.17.1/Ex12_1.sce new file mode 100644 index 000000000..ced0d28ff --- /dev/null +++ b/3523/CH12/EX12.17.1/Ex12_1.sce @@ -0,0 +1,32 @@ +//Example 1// Ch 12
+clc;
+clear;
+close;
+// given data
+r1=2;//inner coaxial cable radius
+r2=5;//sheath radius over the insulation
+Em1=40;//max stress in the insulation in kV/cm
+Em2=25;//max stress in the insulation in kV/cm
+epsilon1=6;
+epsilon2=4;
+x=Em1/Em2;
+r=x*((epsilon1*r1)/(epsilon2));//radial thickness of the dielectric
+printf("radial thickness of the dielectric %f cm",r)
+inner=r-r1;//inner thickness of dielectric
+outer=r2-r;//outer thickness of dielectric
+printf("inner thickness of dielectric %f cm",inner)
+printf("outer thickness of dielectric %f cm",outer)
+V1=Em1*r1*log(r/r1);//voltage drop across dielectric in kV
+V2=Em2*r*log(r2/r);//voltage drop across outer dielectric
+printf("voltage drop across dielectric %f kV",V1)
+printf("voltage drop across outer dielectric %f kV",V2)
+pv = V1+V2;//peak voltage of cable
+printf("peak voltage of cable %f kV",pv)
+pvrms=pv/sqrt(2);
+printf("peak voltage in rms %f kV",pvrms)
+
+
+
+
+
+
diff --git a/3523/CH12/EX12.17.10/Ex12_10.sce b/3523/CH12/EX12.17.10/Ex12_10.sce new file mode 100644 index 000000000..61f8a1d62 --- /dev/null +++ b/3523/CH12/EX12.17.10/Ex12_10.sce @@ -0,0 +1,18 @@ +//Example 10// Ch 12
+clc;
+clear;
+close;
+// given data
+a=1;//inner thickness of cable in cm
+epsilonr1=4.5;
+epsilonr2=3.6;
+r1=2;//in cm
+b=2.65;//in cm
+V=53.8;//in kV
+Emax1=V/(a*[log(r1)+(epsilonr1/epsilonr2)*log(1.325)]);
+printf("max stress in rubber %f kV/cm",Emax1)
+Emax2=V/(r1*[((epsilonr2/epsilonr1)*log(r1))+ log(1.325)]);
+printf("max stress in paper %f kV/cm",Emax2)
+
+
+
diff --git a/3523/CH12/EX12.17.2/Ex12_2.sce b/3523/CH12/EX12.17.2/Ex12_2.sce new file mode 100644 index 000000000..d3b5bb887 --- /dev/null +++ b/3523/CH12/EX12.17.2/Ex12_2.sce @@ -0,0 +1,11 @@ +//Example 2// Ch 12
+clc;
+clear;
+close;
+// given data
+V=100;//in kV
+Em=55;//max permissible gradient in kV/cm
+//voltage gradient at the conductor surface is inversely proportional to the core radius
+r=V*sqrt(2)/Em;//conductor radius in cm
+printf("conductor radius %f cm",r)
+
diff --git a/3523/CH12/EX12.17.3/Ex12_3.sce b/3523/CH12/EX12.17.3/Ex12_3.sce new file mode 100644 index 000000000..b3d58c135 --- /dev/null +++ b/3523/CH12/EX12.17.3/Ex12_3.sce @@ -0,0 +1,12 @@ +//Example 3// Ch 12
+clc;
+clear;
+close;
+// given data
+l=10*10^3;//core cable length in m
+Res=0.5;//insulation resistance in Mohms
+R=1.5;//core diameter in cm
+R1=3;//sheath diameter in cm
+resistivity=Res*2*%pi*l/log(R1/R);
+printf("resistivity of the material %e Mohms.m",resistivity )
+
diff --git a/3523/CH12/EX12.17.4/Ex12_4.sce b/3523/CH12/EX12.17.4/Ex12_4.sce new file mode 100644 index 000000000..f3774afe5 --- /dev/null +++ b/3523/CH12/EX12.17.4/Ex12_4.sce @@ -0,0 +1,17 @@ +//Example 4// Ch 12
+clc;
+clear;
+close;
+// given data
+l=10;//length of cable in km
+C4=0.5*10^-6 * l;//in F
+printf("Capacitance %f F",C4)
+f=50;//in Hz
+V=10^4;//in V
+Ic=2*V*2*%pi*f*C4/sqrt(3);//line charging current in A
+chargKVA=sqrt(3)*V*Ic*10^-3;
+printf("charging KVA %f KVAr",chargKVA)
+
+
+
+
diff --git a/3523/CH12/EX12.17.5/Ex12_5.sce b/3523/CH12/EX12.17.5/Ex12_5.sce new file mode 100644 index 000000000..766f5b592 --- /dev/null +++ b/3523/CH12/EX12.17.5/Ex12_5.sce @@ -0,0 +1,16 @@ +//Example 5// Ch 12
+clc;
+clear;
+close;
+// given data
+C2 = 0.75/3;//capacitance between 3 core bunched together and lead sheath in uF/km
+C3=0.56//in uf/km
+V=33*10^3;
+f=50;//in Hz
+C4=0.5*(C2+C3)*10;//capacitance per km b/w any two cores
+printf("capacitance per km b/w any two cores %f uF",C4)
+ChargKVAr=V^2*2*%pi*f*C4/10^9;
+printf("Charging KVAr %f KVAr",ChargKVAr)
+//given ans in book is wrong the capacitance of 10km b/w 2 cores is 4.05uF
+
+
diff --git a/3523/CH12/EX12.17.6/Ex12_6.sce b/3523/CH12/EX12.17.6/Ex12_6.sce new file mode 100644 index 000000000..fe8c34f60 --- /dev/null +++ b/3523/CH12/EX12.17.6/Ex12_6.sce @@ -0,0 +1,37 @@ +//Example 6// Ch 12
+clc;
+clear;
+close;
+// given data
+l=85;//in km
+r=1;//core cables of conductore radius r in cm
+f=50;//in Hz
+Rex=3.0;//external radii in cm
+Rin=2.5;//internal radii in cm
+Rac=0.0875;//conductor AC resistance in ohms/km
+rest=23.2*10^-6;//resistivity of lead in ohms cm
+tc=0.004;//temperature coefficient
+Rc=Rac*(1+tc*f)*l;//conductor resistance in ohms
+Rsh=rest*l*10^5/(%pi*(Rex^2-Rin^2));
+printf("conductor resistance %f ohms",Rc)
+printf("resistance of sheath %f ohms",Rsh)
+rsh=0.5*(Rin+Rex);//mean radius of sheath
+D=8;//cable to cable spacing in cm
+Xm=2*%pi*f*2*log(D/rsh)*10^-7*l*10^3;//conductor to sheath mutual inductive reactance for 85km length
+printf("inductive reactance %f ohms",Xm)
+Ref=Rc+(Xm^2*Rsh)/(Rsh^2+Xm^2);//effective AC resistance of conductor
+printf("effective resistance %f ohms",Ref)
+Xc=11.1;//resistance with sheaths open ckt in ohms
+Xef=Xc-(Xm^2)/(Rsh^2+Xm^2);//effective reactance per cable
+printf("effective reactance per cable %f ohms",Xef)
+s=Rsh*(Xm^2)/(Rc*(Rsh^2 + Xm^2));//sheath loss to conductor loss
+printf("sheath loss to conductor loss %f",s)
+I=400;//current in A
+emf=I*Xm;//emf induced without bonding per sheath in V
+printf("emf induced %f V",emf)
+
+
+
+
+
+
diff --git a/3523/CH12/EX12.17.7/Ex12_7.sce b/3523/CH12/EX12.17.7/Ex12_7.sce new file mode 100644 index 000000000..d4adf50df --- /dev/null +++ b/3523/CH12/EX12.17.7/Ex12_7.sce @@ -0,0 +1,15 @@ +//Example 7// Ch 12
+clc;
+clear;
+close;
+// given data
+D=15;//conductor spacing in cm
+rsh=2.75;//sheath radius in cm
+I=250;//current in A
+f=50;//in Hz
+Xm=2*%pi*f*2*log(D/rsh)*10^-7*10^3;//conductor to sheath mutual inductive reactance
+E=I*Xm;//indused sheath field in V/km
+printf("indused sheath field %f V/km",E)
+E1=sqrt(3)*E;//voltage b/w sheaths when bonded at one end
+printf("voltage b/w sheaths when bonded at one end %f V/km",E1)
+
diff --git a/3523/CH12/EX12.17.8/Ex12_8.sce b/3523/CH12/EX12.17.8/Ex12_8.sce new file mode 100644 index 000000000..c0b40cb69 --- /dev/null +++ b/3523/CH12/EX12.17.8/Ex12_8.sce @@ -0,0 +1,27 @@ +//Example 8// Ch 12
+clc;
+clear;
+close;
+// given data
+a=2;
+b=5.3;
+alpha=(b/a)^0.33;
+r1=1.385;//radii of intersheaths in cm
+r2=1.92;//radii of intersheaths in cm
+r=1;//conductor radius in cm
+ri=2.65;//sheath of inside radius in cm
+V=66;//voltage in kv
+Vpeak=66*sqrt(2)/sqrt(3);//peak voltage
+V2=Vpeak/(1+1/alpha+(1/alpha)^2);//in kV
+V1=(1+1/r1)*V2;//in kV
+printf("%f kV",V2)
+printf("%f kV",V1)
+Emax0=Vpeak/(r*log(ri/r));
+printf("max stress without sheaths %f kV/cm",Emax0)
+Emin0=Vpeak/(ri*log(ri/r));
+printf("min stress without sheaths %f kV/cm",Emin0)
+Emax=3*Emax0/(1+alpha+alpha^2);
+printf("max stress %f kV/cm",Emax)
+Emin=Emax/alpha;
+printf("min stress %f kV/cm",Emin)
+
diff --git a/3523/CH12/EX12.17.9/Ex12_9.sce b/3523/CH12/EX12.17.9/Ex12_9.sce new file mode 100644 index 000000000..9dc85908f --- /dev/null +++ b/3523/CH12/EX12.17.9/Ex12_9.sce @@ -0,0 +1,16 @@ +//Example 9// Ch 12
+clc;
+clear;
+close;
+// given data
+V = -18.2;//in kV
+V1 = 45.2;//in kV
+V2 = 23;//in kV
+
+E1max = 2.28*(V-V1);//max stress in layers
+E2max = 2.12*(V1-V2);//max stress in layers
+E3max = 2.06*V2;//max stress in layers
+
+// as E1max=E2max=E3max=Emax
+Emax = 2.06*V2;
+printf("max stress is %f kV",Emax)
|