diff options
Diffstat (limited to '339/CH6')
-rwxr-xr-x | 339/CH6/EX6.1/ex6_1.sce | 55 | ||||
-rwxr-xr-x | 339/CH6/EX6.4/ex6_4.sce | 37 |
2 files changed, 49 insertions, 43 deletions
diff --git a/339/CH6/EX6.1/ex6_1.sce b/339/CH6/EX6.1/ex6_1.sce index b44461fa8..cf22485da 100755 --- a/339/CH6/EX6.1/ex6_1.sce +++ b/339/CH6/EX6.1/ex6_1.sce @@ -1,27 +1,30 @@ -//define physical constants
-q=1.60218e-19;
-k=1.38066e-23;
-
-// define material properties
-Nc_300=[1.04e19 2.8e19 4.7e17];
-Nv_300=[6e18 1.04e19 7e18];
-mu_n= [3900 1500 8500];
-mu_p= [1900 450 400];
-Wg= [0.66 1.12 1.424];
-
-T0=273;
-T=-50:250; // temperature range in centigrade
-
-sigma=zeros([3 length(T)]);
-
-for s=1:3 //loop through all semi conductor materials
- Nc=Nc_300(s)*((T+T0)/300).^(3/2);
- Nv=Nv_300(s)*((T+T0)/300).^(3/2);
-sigma=[q*sqrt(Nc.*Nv).*(exp(-Wg(s)./(2*k*(T+T0)/q)))*(mu_n(s)+mu_p(s))];
-end;
-
-plot(T,sigma(1),T,sigma(2),T,sigma(3));
-legend('Ge','Si','GaAs',2);
-title('Conductivity of semiconductor at different temperatures');
-xlabel('Temperature, {\circ}C');
+//define physical constants +q=1.60218e-19; +k=1.38066e-23; + +// define material properties +Nc_300=[1.04e19 2.8e19 4.7e17]; +Nv_300=[6e18 1.04e19 7e18]; +mu_n= [3900 1500 8500]; +mu_p= [1900 450 400]; +Wg= [0.66 1.12 1.424]; + +T0=273; +T=-50:250; // temperature range in centigrade + +sigma=zeros(3, length(T)); + +for s=1:3 //loop through all semi conductor materials + Nc=Nc_300(s)*((T+T0)/300).^(3/2); + Nv=Nv_300(s)*((T+T0)/300).^(3/2); +sigma(s,:)=[q*sqrt(Nc.*Nv).*(exp(-Wg(s)./(2*k*(T+T0)/q)))*(mu_n(s)+mu_p(s))]; +end; + +plot(T,sigma(1,:),'r'); +mtlb_hold on +plot(T,sigma(2,:),'b') +plot(T,sigma(3,:),'g') +legend('Ge','Si','GaAs',2); +title('Conductivity of semiconductor at different temperatures'); +xlabel('Temperature, {\circ}C'); ylabel('Conductivity \sigma, \Omega^{-1}cm^{-1}');
\ No newline at end of file diff --git a/339/CH6/EX6.4/ex6_4.sce b/339/CH6/EX6.4/ex6_4.sce index 437073e4f..c0d37eaed 100755 --- a/339/CH6/EX6.4/ex6_4.sce +++ b/339/CH6/EX6.4/ex6_4.sce @@ -1,18 +1,21 @@ -//doping concentrations
-Nc=2.8*10^19;
-Nd=1*10^16;
-term=Nc/Nd;
-k=1.38*10^-23; //Boltzman's constant
-q=1.6*10^-19; //charge
-Vc=(k*T)*log(term)/q;
-Vm=5.1; //workfunction
-X=4.05; //affinity
-Vd=(Vm-X)-Vc; //Barrier Voltage
-Epsilon=11.9*8.854*10^-12;
-ds=sqrt((2*Epsilon*Vd)/(q*Nd));
-A=1*10^-4; //cross-sectional area
-Cj=(A*Epsilon)/(ds); //junction capacitance
-disp("Volts",Vc,"Conduction Band potential");
-disp("Volts",Vd,"Built in Barrier Voltage");
-disp("metre",ds,"Space Charge Width");
+clc +clear +T=300; +//doping concentrations +Nc=2.8*10^19; +Nd=1*10^16; +term=Nc/Nd; +k=1.38*10^-23; //Boltzman's constant +q=1.6*10^-19; //charge +Vc=(k*T)*log(term)/q; +Vm=5.1; //workfunction +X=4.05; //affinity +Vd=(Vm-X)-Vc; //Barrier Voltage +Epsilon=11.9*8.854*10^-12; +ds=sqrt((2*Epsilon*Vd)/(q*Nd)); +A=1*10^-4; //cross-sectional area +Cj=(A*Epsilon)/(ds); //junction capacitance +disp("Volts",Vc,"Conduction Band potential"); +disp("Volts",Vd,"Built in Barrier Voltage"); +disp("metre",ds,"Space Charge Width"); disp("Farads",Cj,"Junction Capacitance");
\ No newline at end of file |