summaryrefslogtreecommitdiff
path: root/339/CH6
diff options
context:
space:
mode:
Diffstat (limited to '339/CH6')
-rwxr-xr-x339/CH6/EX6.1/ex6_1.sce55
-rwxr-xr-x339/CH6/EX6.4/ex6_4.sce37
2 files changed, 49 insertions, 43 deletions
diff --git a/339/CH6/EX6.1/ex6_1.sce b/339/CH6/EX6.1/ex6_1.sce
index b44461fa8..cf22485da 100755
--- a/339/CH6/EX6.1/ex6_1.sce
+++ b/339/CH6/EX6.1/ex6_1.sce
@@ -1,27 +1,30 @@
-//define physical constants
-q=1.60218e-19;
-k=1.38066e-23;
-
-// define material properties
-Nc_300=[1.04e19 2.8e19 4.7e17];
-Nv_300=[6e18 1.04e19 7e18];
-mu_n= [3900 1500 8500];
-mu_p= [1900 450 400];
-Wg= [0.66 1.12 1.424];
-
-T0=273;
-T=-50:250; // temperature range in centigrade
-
-sigma=zeros([3 length(T)]);
-
-for s=1:3 //loop through all semi conductor materials
- Nc=Nc_300(s)*((T+T0)/300).^(3/2);
- Nv=Nv_300(s)*((T+T0)/300).^(3/2);
-sigma=[q*sqrt(Nc.*Nv).*(exp(-Wg(s)./(2*k*(T+T0)/q)))*(mu_n(s)+mu_p(s))];
-end;
-
-plot(T,sigma(1),T,sigma(2),T,sigma(3));
-legend('Ge','Si','GaAs',2);
-title('Conductivity of semiconductor at different temperatures');
-xlabel('Temperature, {\circ}C');
+//define physical constants
+q=1.60218e-19;
+k=1.38066e-23;
+
+// define material properties
+Nc_300=[1.04e19 2.8e19 4.7e17];
+Nv_300=[6e18 1.04e19 7e18];
+mu_n= [3900 1500 8500];
+mu_p= [1900 450 400];
+Wg= [0.66 1.12 1.424];
+
+T0=273;
+T=-50:250; // temperature range in centigrade
+
+sigma=zeros(3, length(T));
+
+for s=1:3 //loop through all semi conductor materials
+ Nc=Nc_300(s)*((T+T0)/300).^(3/2);
+ Nv=Nv_300(s)*((T+T0)/300).^(3/2);
+sigma(s,:)=[q*sqrt(Nc.*Nv).*(exp(-Wg(s)./(2*k*(T+T0)/q)))*(mu_n(s)+mu_p(s))];
+end;
+
+plot(T,sigma(1,:),'r');
+mtlb_hold on
+plot(T,sigma(2,:),'b')
+plot(T,sigma(3,:),'g')
+legend('Ge','Si','GaAs',2);
+title('Conductivity of semiconductor at different temperatures');
+xlabel('Temperature, {\circ}C');
ylabel('Conductivity \sigma, \Omega^{-1}cm^{-1}'); \ No newline at end of file
diff --git a/339/CH6/EX6.4/ex6_4.sce b/339/CH6/EX6.4/ex6_4.sce
index 437073e4f..c0d37eaed 100755
--- a/339/CH6/EX6.4/ex6_4.sce
+++ b/339/CH6/EX6.4/ex6_4.sce
@@ -1,18 +1,21 @@
-//doping concentrations
-Nc=2.8*10^19;
-Nd=1*10^16;
-term=Nc/Nd;
-k=1.38*10^-23; //Boltzman's constant
-q=1.6*10^-19; //charge
-Vc=(k*T)*log(term)/q;
-Vm=5.1; //workfunction
-X=4.05; //affinity
-Vd=(Vm-X)-Vc; //Barrier Voltage
-Epsilon=11.9*8.854*10^-12;
-ds=sqrt((2*Epsilon*Vd)/(q*Nd));
-A=1*10^-4; //cross-sectional area
-Cj=(A*Epsilon)/(ds); //junction capacitance
-disp("Volts",Vc,"Conduction Band potential");
-disp("Volts",Vd,"Built in Barrier Voltage");
-disp("metre",ds,"Space Charge Width");
+clc
+clear
+T=300;
+//doping concentrations
+Nc=2.8*10^19;
+Nd=1*10^16;
+term=Nc/Nd;
+k=1.38*10^-23; //Boltzman's constant
+q=1.6*10^-19; //charge
+Vc=(k*T)*log(term)/q;
+Vm=5.1; //workfunction
+X=4.05; //affinity
+Vd=(Vm-X)-Vc; //Barrier Voltage
+Epsilon=11.9*8.854*10^-12;
+ds=sqrt((2*Epsilon*Vd)/(q*Nd));
+A=1*10^-4; //cross-sectional area
+Cj=(A*Epsilon)/(ds); //junction capacitance
+disp("Volts",Vc,"Conduction Band potential");
+disp("Volts",Vd,"Built in Barrier Voltage");
+disp("metre",ds,"Space Charge Width");
disp("Farads",Cj,"Junction Capacitance"); \ No newline at end of file