diff options
Diffstat (limited to '3136/CH6/EX6.9')
-rwxr-xr-x | 3136/CH6/EX6.9/Ex6_9.sce | 153 |
1 files changed, 60 insertions, 93 deletions
diff --git a/3136/CH6/EX6.9/Ex6_9.sce b/3136/CH6/EX6.9/Ex6_9.sce index 7e8d593bd..1451dc707 100755 --- a/3136/CH6/EX6.9/Ex6_9.sce +++ b/3136/CH6/EX6.9/Ex6_9.sce @@ -1,93 +1,60 @@ -clear all; clc;
-
-disp("The inlet specific volume is calculated from the ideal gas equation")
-R=53.3
-T1=580
-p1=65
-nu1=(R*T1)/(144*p1)
-printf(" nu1=%0.3f ft^3/lbm=",nu1)
-
-disp("Q1=m*v1=4594 cfm")
-
-R=53.3
-T1=580
-//let y=(n/(n-1))
-y=2.625
-p2=250
-p1=65
-H_oa=R*T1*(y)*[(p2/p1)^(1/y)-1]
-printf(" The overall adiabetic head is calculated as H_o/a= %0.0f ft-lbf/lbm",H_oa)
-
-y=(0.75*1.4)/(1.4-1)
-printf("\n Where n/(n-1)=(Eta_p*k)/(k-1)=%0.3f",y)
-
-disp("From figure 6.7 , a centrifugal compressor with speed N=10000rpm is appropriate for the present application")
-
-disp("To use figure 6.7,the specific speed can be calculated from Ns=N*(V1^0.5)/(H_ad^0.75)")
-V1=4954/60
-printf(" Where V1= %0.1f cfs",V1)
-disp("H_ad=(H_o/a)/Eta_s is the head for each stage .")
-disp("Selecting the number of stages to be 2,4, and 6,the head for each stage and specific speed can be calculated,then the total-to=total adiabetic efficiencies can be read ")
-disp("The required shaft horse power can be calculated with the volumetric and mechanical efficiencies assumed to be 0.98 and 0.95 respectively")
-disp("That is Ps=(m*(H_o/a)/(33000*Eta_ad*Eta_v*Eta_m)")
-
-H_oa=54417
-V1=82.6
-Eta_v=0.98
-Eta_m=0.95
-N=10000
-
-StageNo=[2 4 6];
-Eta_ad=[0.72 0.83 0.87];
-
-
-H_ad= zeros(1,length(StageNo));
-Ns = zeros(1,length(StageNo));
-Ps = zeros(1,length(StageNo));
-
-for i = 1: length(StageNo)
-
-
- H_ad(i) =H_oa/(StageNo(i));
- Ns(i) =N*(V1^0.5)/(H_ad(i)^0.75);
- Ps(i) = (m*H_oa)/(33000*Eta_ad(i)*Eta_v*Eta_m);
-end
-
-disp("StageNo H_ad Ns Eta_ad Ps")
-disp(" (ft-lbf/lbm) (hp)")
-table = [StageNo' H_ad' Ns' Eta_ad' Ps'];
-disp(table)
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+clear; clc; + +m = 100; +disp("The inlet specific volume is calculated from the ideal gas equation") +R=53.3 +T1=580 +p1=65 +nu1=(R*T1)/(144*p1) +printf(" nu1=%0.3f ft^3/lbm=",nu1) + +disp("Q1=m*v1=4594 cfm") + +R=53.3 +T1=580 +//let y=(n/(n-1)) +y=2.625 +p2=250 +p1=65 +H_oa=R*T1*(y)*[(p2/p1)^(1/y)-1] +printf(" The overall adiabetic head is calculated as H_o/a= %0.0f ft-lbf/lbm",H_oa) + +y=(0.75*1.4)/(1.4-1) +printf("\n Where n/(n-1)=(Eta_p*k)/(k-1)=%0.3f",y) + +disp("From figure 6.7 , a centrifugal compressor with speed N=10000rpm is appropriate for the present application") + +disp("To use figure 6.7,the specific speed can be calculated from Ns=N*(V1^0.5)/(H_ad^0.75)") +V1=4954/60 +printf(" Where V1= %0.1f cfs",V1) +disp("H_ad=(H_o/a)/Eta_s is the head for each stage .") +disp("Selecting the number of stages to be 2,4, and 6,the head for each stage and specific speed can be calculated,then the total-to=total adiabetic efficiencies can be read ") +disp("The required shaft horse power can be calculated with the volumetric and mechanical efficiencies assumed to be 0.98 and 0.95 respectively") +disp("That is Ps=(m*(H_o/a)/(33000*Eta_ad*Eta_v*Eta_m)") + +H_oa=54417 +V1=82.6 +Eta_v=0.98 +Eta_m=0.95 +N=10000 + +StageNo=[2 4 6]; +Eta_ad=[0.72 0.83 0.87]; + + +H_ad= zeros(1,length(StageNo)); +Ns = zeros(1,length(StageNo)); +Ps = zeros(1,length(StageNo)); + +for i = 1: length(StageNo) + + + H_ad(i) =H_oa/(StageNo(i)); + Ns(i) =N*(V1^0.5)/(H_ad(i)^0.75); + Ps(i) = (m*H_oa)/(33000*Eta_ad(i)*Eta_v*Eta_m); +end + +disp("StageNo H_ad Ns Eta_ad Ps") +disp(" (ft-lbf/lbm) (hp)") +table = [StageNo' H_ad' Ns' Eta_ad' Ps']; +disp(table)
\ No newline at end of file |