summaryrefslogtreecommitdiff
path: root/2975/CH28
diff options
context:
space:
mode:
Diffstat (limited to '2975/CH28')
-rw-r--r--2975/CH28/EX28.1w/Ex28_1w.sce21
-rw-r--r--2975/CH28/EX28.2w/Ex28_2w.sce24
-rw-r--r--2975/CH28/EX28.3w/Ex28_3w.sce20
-rw-r--r--2975/CH28/EX28.4w/Ex28_4w.sce23
-rw-r--r--2975/CH28/EX28.5w/Ex28_5w.sce26
5 files changed, 114 insertions, 0 deletions
diff --git a/2975/CH28/EX28.1w/Ex28_1w.sce b/2975/CH28/EX28.1w/Ex28_1w.sce
new file mode 100644
index 000000000..49a810dc8
--- /dev/null
+++ b/2975/CH28/EX28.1w/Ex28_1w.sce
@@ -0,0 +1,21 @@
+//developed in windows 8 operating system 64bit
+//platform Scilab 5.4.1
+//example 28_1w
+
+clc;clear;
+//Given Data
+
+latent_heat_ice=3.36*10^5; //Latent heat of fusion of ice (Unit: J/kg)
+mass=4.8*10^-3; //Mass of ice melt (Unit: kg)
+t=3600; //Time in which ice melt (Unit: second)
+area=3600*10^-4; //Area of the slab (Unit: m^2)
+thickness=10*10^-2; //Thickness of the slab (Unit: m)
+theta2=0; //Temperature of the ice (Unit : degree centigrade)
+theta1=100; //Temperature of the steam (Unit: degree centigrade)
+
+//calculation
+
+q=mass*latent_heat_ice; //Calculation of the heat transferred through the slab to the ice in one hour (Unit : Joule)
+k=q*thickness/(area*t*(theta1-theta2)); //Calculation of thermal conductivity of the stone (Unit : W/m-degree centigrade )
+
+disp(k,"The thermal conductivity of the stone is (Unit: W/m-degree centigrade)");
diff --git a/2975/CH28/EX28.2w/Ex28_2w.sce b/2975/CH28/EX28.2w/Ex28_2w.sce
new file mode 100644
index 000000000..ad784159b
--- /dev/null
+++ b/2975/CH28/EX28.2w/Ex28_2w.sce
@@ -0,0 +1,24 @@
+//developed in windows 8 operating system 64bit
+//platform Scilab 5.4.1
+//example 28_2w
+
+clc;clear;
+//Given Data
+
+thick=1.5*10^-2; //Thickness of the ice box (Unit: m)
+dim_l=60*10^-2; //Length of the ice box (Unit: m)
+dim_b=60*10^-2; //Bredth of the ice box (Unit: m)
+dim_h=30*10^-2; //Height of the ice box (Unit: m)
+latent_heat_ice=3.36*10^5*10^-3; //Latent heat of fusion of ice (kilogram is changed to gram) (Unit: J/g)
+thermal_conductivity=0.04; //Thermal conductivity of styrofoam (Unit: W/m- degree centigrade)
+theta1=40; //Room temperature (Unit: degree centigrade)
+theta2=0; //Ice temperature (Unit: degree centigrade)
+
+//Calculation
+
+total_surface_area=2*(dim_l*dim_b+dim_b*dim_h+dim_h*dim_l); //Calculation of the total surface area (Unit: m^2)
+rate_of_heat=thermal_conductivity*total_surface_area*(theta1-theta2)/thick; //Calculation of the rate of heat flow into the box (Unit: Watt)
+
+rate_ice_melt=rate_of_heat/latent_heat_ice; //Calculation of rate at which the ice melts (Unit: gram/sec)
+
+disp(rate_ice_melt,"The rate at which ice melts is (Unit: gram/sec)")
diff --git a/2975/CH28/EX28.3w/Ex28_3w.sce b/2975/CH28/EX28.3w/Ex28_3w.sce
new file mode 100644
index 000000000..d11610e26
--- /dev/null
+++ b/2975/CH28/EX28.3w/Ex28_3w.sce
@@ -0,0 +1,20 @@
+//developed in windows 8 operating system 64bit
+//platform Scilab 5.4.1
+//example 28_3w
+
+clc;clear;
+//Given Data
+
+rate_heat_gen_box=13; //The rate of heat generation in the box (Unit: Watt)
+theta1=100; //Temperature at one end (Unit: degree centigrade)
+theta2=4; //Temperature at second end (Unit: degree centigrade)
+thermal_conductivity=2; //Thermal conductivity of material (Unit: W/m- degree centigrade)
+len=8*10^-2; //Length of the material (Unit: m)
+area=12*10^-4; //Area of the cross section (Unit: m^2)
+
+//Calculation
+
+theta=((theta1+theta2)/2)+(rate_heat_gen_box*len/(2*thermal_conductivity*area)); //Calculation of the equlibrium temperature of the inner surface of the box (Unit: degree centigrade)
+
+disp(theta,"The equlibrium temperature of the inner surface of the box is (Unit: degree centigrade)");
+
diff --git a/2975/CH28/EX28.4w/Ex28_4w.sce b/2975/CH28/EX28.4w/Ex28_4w.sce
new file mode 100644
index 000000000..11716ed9f
--- /dev/null
+++ b/2975/CH28/EX28.4w/Ex28_4w.sce
@@ -0,0 +1,23 @@
+//developed in windows 8 operating system 64bit
+//platform Scilab 5.4.1
+//example 28_4w
+
+clc;clear;
+//Given Data
+
+len_copper=75*10^-2; //Length of the steel section(Unit:m)
+len_steel=125*10^-2; //Length of the steel section(Unit:m)
+temp_copper=100; //Temperature at the end of copper (Unit: degree centigrade)
+temp_steel=0; //Temperature at the end of steel (Unit: degree centigrade)
+k_copper=386; //Thermal conductivity of the copper (Unit:J/m-s-degree centigrade)
+k_steel=46; //Thermal conductivity of the steel (Unit:J/m-s-degree centigrade)
+diameter=2*10^-2; //Diameter of the cross section (Unit:m^2)
+
+//calculation
+
+theta=(temp_copper-temp_steel)/((len_copper*k_steel/(len_steel*k_copper))+1); //Calculation of The temperature at the junction (Unit: degree centigrade)
+
+rate_heat=k_steel*(%pi*diameter^2/4)*theta/len_steel; //Calculation of The rate of heat flow (Unit: J/s)
+
+disp(theta,"The temperature at the junction is (Unit: degree centigrade)");
+disp(rate_heat,"The rate of heat flow is (Unit: J/s)");
diff --git a/2975/CH28/EX28.5w/Ex28_5w.sce b/2975/CH28/EX28.5w/Ex28_5w.sce
new file mode 100644
index 000000000..20d19fdc0
--- /dev/null
+++ b/2975/CH28/EX28.5w/Ex28_5w.sce
@@ -0,0 +1,26 @@
+//developed in windows 8 operating system 64bit
+//platform Scilab 5.4.1
+//example 28_5w
+
+clc;clear;
+//Given Data
+
+area=100*10^-4; //Area of the cross section (Unit:m^-2)
+thick_a=0.04; //Thickness of part A (Unit: m)
+thick_b=0.025; //Thickness of part B (Unit:m)
+k_a=200; //Thermal conductivity of A (Unit: W/m-degree centigrade)
+k_b=400; //Thermal conductivity of B (Unit: W/m-degree centigrade)
+theta_a=100; //Temperature at A (Unit:degree centigrade)
+theta_b=0; //Temperature at B (Unit:degree centigrade)
+
+//calculation
+
+rate_heat_flow=area*(theta_a-theta_b)/(thick_a/k_a+thick_b/k_b); //Calculation of The rate of heat flow through any cross section (Unit:Watt)
+
+temp=rate_heat_flow*thick_b/(area*k_b); //Calculation of The temperature at the interface (Unit: degree centigrade)
+
+equivalent_k=(thick_a+thick_b)/(thick_a/k_a+thick_b/k_b); //Calculation of The equivalent thermal conductivity of the compound plate (Unit: W/m-degree centigrade)
+
+disp(rate_heat_flow,"The rate of heat flow through any cross section is (Unit:Watt)");
+disp(temp,"The temperature at the interface is (Unit: degree centigrade)");
+disp(equivalent_k,"The equivalent thermal conductivity of the compound plate is (Unit: W/m-degree centigrade)");