diff options
Diffstat (limited to '278/CH9')
-rwxr-xr-x | 278/CH9/EX24.5/ex_24_5.sce | 50 | ||||
-rwxr-xr-x | 278/CH9/EX9.1/ex_9_1.sce | 54 | ||||
-rwxr-xr-x | 278/CH9/EX9.10/ex_9_10.sce | 128 | ||||
-rwxr-xr-x | 278/CH9/EX9.11/ex_9_11.sce | 75 | ||||
-rwxr-xr-x | 278/CH9/EX9.12/ex_9_12.sce | 74 | ||||
-rwxr-xr-x | 278/CH9/EX9.13/ex_9_12.sce | 74 | ||||
-rwxr-xr-x | 278/CH9/EX9.14/ex_9_14.sce | 122 | ||||
-rwxr-xr-x | 278/CH9/EX9.15/ex_9_14.sce | 122 | ||||
-rwxr-xr-x | 278/CH9/EX9.16/ex_9_16.sce | 62 | ||||
-rwxr-xr-x | 278/CH9/EX9.17/ex_9_17.sce | 74 | ||||
-rwxr-xr-x | 278/CH9/EX9.18/ex_9_18.sce | 96 | ||||
-rwxr-xr-x | 278/CH9/EX9.2/ex_9_2.sce | 52 | ||||
-rwxr-xr-x | 278/CH9/EX9.3/ex_9_3.sce | 34 | ||||
-rwxr-xr-x | 278/CH9/EX9.4/ex_9_4.sce | 54 | ||||
-rwxr-xr-x | 278/CH9/EX9.5/ex_9_5.sce | 53 | ||||
-rwxr-xr-x | 278/CH9/EX9.6/ex_9_6.sce | 52 | ||||
-rwxr-xr-x | 278/CH9/EX9.7/ex_9_6.sce | 52 | ||||
-rwxr-xr-x | 278/CH9/EX9.8/ex_9_6.sce | 52 | ||||
-rwxr-xr-x | 278/CH9/EX9.9/ex_9_9.sce | 94 |
19 files changed, 683 insertions, 691 deletions
diff --git a/278/CH9/EX24.5/ex_24_5.sce b/278/CH9/EX24.5/ex_24_5.sce index 1ca9da8cb..2b6a4dc63 100755 --- a/278/CH9/EX24.5/ex_24_5.sce +++ b/278/CH9/EX24.5/ex_24_5.sce @@ -1,26 +1,26 @@ -//find..
-clc
-//solution
-//given
-P=15000//W
-N=900//rpm
-n=4
-R=0.15//m
-u=0.25
-//let m be the mass
-w=2*%pi*N/60//rad/s
-w1=(3/4)*w//rad/s
-r=0.12//m
-//Pc=m*w^2*r=1066*m//N
-//Ps=m*w1^2*r=600m//N
-T=P*60/(2*%pi*N)//N-m
-//T=u*(Pc-Ps)*R*n=70m
-m=T/70//kg
-printf("mass of shoes is,%f kg\n",m)
-a=%pi/3
-l=R*a*1000//mm
-//A=l*n=157*b//mm^2
-//F=A*p=15.7*b//N
-//15.7*b=Pc-Ps=466m
-b=466*m/(15.7)//mm
+ +clc +//solution +//given +P=15000//W +N=900//rpm +n=4 +R=0.15//m +u=0.25 +//let m be the mass +w=2*%pi*N/60//rad/s +w1=(3/4)*w//rad/s +r=0.12//m +//Pc=m*w^2*r=1066*m//N +//Ps=m*w1^2*r=600m//N +T=P*60/(2*%pi*N)//N-m +//T=u*(Pc-Ps)*R*n=70m +m=T/70//kg +printf("mass of shoes is,%f kg\n",m) +a=%pi/3 +l=R*a*1000//mm +//A=l*n=157*b//mm^2 +//F=A*p=15.7*b//N +//15.7*b=Pc-Ps=466m +b=466*m/(15.7)//mm printf("face width is,%f mm\n",b)
\ No newline at end of file diff --git a/278/CH9/EX9.1/ex_9_1.sce b/278/CH9/EX9.1/ex_9_1.sce index 0f985f2f3..d36deaa2d 100755 --- a/278/CH9/EX9.1/ex_9_1.sce +++ b/278/CH9/EX9.1/ex_9_1.sce @@ -1,28 +1,28 @@ -//find minimum force per pitch and find actual stresses developed
-clc
-//solution
-//given
-t=15//mm
-d=25//mm
-p=75//mm
-ftu=400//N/mm^2
-tu=320//N/mm^2
-fcu=640//N/mm^2
-pi=3.14
-n=2
-FS=4//factor of safety
-//min foce per pitch which will rupture the joint
-Ptu=(p-d)*t*ftu//N//ultimate teraing reisistance
-Psu=n*(pi/4)*d^2^tu//N//ultimate shear stress
-Pcu=n*d*t*fcu//N//ultimate crushing stress
-//actual stress produced in plates and rivets
-Ac=Ptu/4//N
-//we know
-//Ac=(p-d)*t*fta
-fta=Ac/((p-d)*t)//N/mm^2
-Ta=Ac*4/(n*pi*d^2)//N/mm^2
-fca=Ac/(n*d*t)//N/mm^2
-printf("the min force required is,%f N\n",Ptu)
-printf("the actual tearing stress acting is,%f N/mm^2\n",fta)
-printf("the actual shering stress acting is,%f N/mm^2\n",Ta)
+ +clc +//solution +//given +t=15//mm +d=25//mm +p=75//mm +ftu=400//N/mm^2 +tu=320//N/mm^2 +fcu=640//N/mm^2 +pi=3.14 +n=2 +FS=4//factor of safety +//min foce per pitch which will rupture the joint +Ptu=(p-d)*t*ftu//N//ultimate teraing reisistance +Psu=n*(pi/4)*d^2^tu//N//ultimate shear stress +Pcu=n*d*t*fcu//N//ultimate crushing stress +//actual stress produced in plates and rivets +Ac=Ptu/4//N +//we know +//Ac=(p-d)*t*fta +fta=Ac/((p-d)*t)//N/mm^2 +Ta=Ac*4/(n*pi*d^2)//N/mm^2 +fca=Ac/(n*d*t)//N/mm^2 +printf("the min force required is,%f N\n",Ptu) +printf("the actual tearing stress acting is,%f N/mm^2\n",fta) +printf("the actual shering stress acting is,%f N/mm^2\n",Ta) printf("thr crushing resistance stress is ,%f N/mm^2",fca)
\ No newline at end of file diff --git a/278/CH9/EX9.10/ex_9_10.sce b/278/CH9/EX9.10/ex_9_10.sce index 868ca8ae3..71b9f5d7c 100755 --- a/278/CH9/EX9.10/ex_9_10.sce +++ b/278/CH9/EX9.10/ex_9_10.sce @@ -1,64 +1,64 @@ -//give design calculation sfor longitudinal and circumferncial joints
-clc
-//soltuion
-//given
-P=2.5//N/mm^2
-D=1600//mm
-ft=75//N/mm^2
-T=60//N/mm^2
-fc=125//N/mm^2
-//design of longitudinal joint
-t=(P*D)/(2*ft)+1//mm
-d=6*sqrt(t)//m
-pi=3.14
-//choose standard avlue fromtable 9.3
-//let p be pitch
-//Pt=(p-d)*t*ft//N//tearing resistance of plate
-//Pt=(p-34.5)*2100//N
-Ps=4*1.875*(pi/4)*d^2*T+(pi/4)*d^2*T//N//shearing resistance of rivet//N//shearing resistance of rivet
-//Ps=Pt
-//2100*(p-34.5)=Ps
-//p=Ps/(2100)+34.5//mm
-//pmax=C*t+41.28=220//mm
-//since p>pmax,therefore
-p=220//mm
-p'=220/2//mm
-d1=0.2*p + 1.15*d//mm/diatnce between outtr and row and next row
-d2=0.165*p+0.67*d//mm//distance ebtween inner row for zigzag riveting
-t1=0.75*t//mm//thickness of wide strap
-t2=0.625*t//mm//thickness of narrow strap
-m=1.5*d//mm//margin
-Pt=(p-d)*t*ft//N
-Pc=5*d*t*fc//N//crushing resistance of rivet
-P=p*t*ft//N//strength of the unriveted
-//joint may also fail due to combine teARING AND shearing reistance
-Pts=(p-2*d)*t*ft+(pi/4)*d^2*T//N
-//eff=(least of Pt,Ps,Pts)/P
-eff=Pts/P//least is Ps
-//desing for circumferential joint
-//let n be number of rivets
-//shearign resistance of revets=total shearing load acting on circumferential joint
-//n*pi*d^2*T/4=pi*D^2*P/4
-//n=D^2*P/(d^2*T)//89.6 say 90
-n=90
-n1=90/2//number of rivets per row
-//p1=pi(D+t)/n'//
-//p1=113.7,say 140mm standard value'
-p1=140//mm
-effj=(p1-d)/(p1)
-d3=0.33*p1+0.67*d//dis btw rows of rivets for zigzag
-m1=1.5*d
-printf("calcultion for longitudinal joint")
-printf("the eff is,%f\n",eff)
-printf("the pitch is,%f mm\n",p)
-printf("the thickness of wide strap is,%f mm\n",t1)
-printf("the thickness of narrow strap is,%f mm\n",t2)
-printf("the diameter of rivets is,%f mm",d)
-printf("the margine s,%f mm\n",m)
-printf("the distance btw outer and next row is,%f mm\n",d1)
-printf("the distance btw inner rows is,%f mm\n",d2)
-printf("calculation for circumferencial joint\n")
-printf("the num of rivets is,%f\n",n)
-printf("the number of rivets per rwo for cercumferencial joint is,%f\n",n1)
-printf("the distance btw rows of rivets for zigzag riveting is,%f mm\n",d3)
-printf("the margin is,%f mm",m1)
+ +clc +//soltuion +//given +P=2.5//N/mm^2 +D=1600//mm +ft=75//N/mm^2 +T=60//N/mm^2 +fc=125//N/mm^2 +//design of longitudinal joint +t=(P*D)/(2*ft)+1//mm +d=6*sqrt(t)//m +pi=3.14 +//choose standard avlue fromtable 9.3 +//let p be pitch +//Pt=(p-d)*t*ft//N//tearing resistance of plate +//Pt=(p-34.5)*2100//N +Ps=4*1.875*(pi/4)*d^2*T+(pi/4)*d^2*T//N//shearing resistance of rivet//N//shearing resistance of rivet +//Ps=Pt +//2100*(p-34.5)=Ps +//p=Ps/(2100)+34.5//mm +//pmax=C*t+41.28=220//mm +//since p>pmax,therefore +p=220//mm +p'=220/2//mm +d1=0.2*p + 1.15*d//mm/diatnce between outtr and row and next row +d2=0.165*p+0.67*d//mm//distance ebtween inner row for zigzag riveting +t1=0.75*t//mm//thickness of wide strap +t2=0.625*t//mm//thickness of narrow strap +m=1.5*d//mm//margin +Pt=(p-d)*t*ft//N +Pc=5*d*t*fc//N//crushing resistance of rivet +P=p*t*ft//N//strength of the unriveted +//joint may also fail due to combine teARING AND shearing reistance +Pts=(p-2*d)*t*ft+(pi/4)*d^2*T//N +//eff=(least of Pt,Ps,Pts)/P +eff=Pts/P//least is Ps +//desing for circumferential joint +//let n be number of rivets +//shearign resistance of revets=total shearing load acting on circumferential joint +//n*pi*d^2*T/4=pi*D^2*P/4 +//n=D^2*P/(d^2*T)//89.6 say 90 +n=90 +n1=90/2//number of rivets per row +//p1=pi(D+t)/n'// +//p1=113.7,say 140mm standard value' +p1=140//mm +effj=(p1-d)/(p1) +d3=0.33*p1+0.67*d//dis btw rows of rivets for zigzag +m1=1.5*d +printf("calcultion for longitudinal joint") +printf("the eff is,%f\n",eff) +printf("the pitch is,%f mm\n",p) +printf("the thickness of wide strap is,%f mm\n",t1) +printf("the thickness of narrow strap is,%f mm\n",t2) +printf("the diameter of rivets is,%f mm",d) +printf("the margine s,%f mm\n",m) +printf("the distance btw outer and next row is,%f mm\n",d1) +printf("the distance btw inner rows is,%f mm\n",d2) +printf("calculation for circumferencial joint\n") +printf("the num of rivets is,%f\n",n) +printf("the number of rivets per rwo for cercumferencial joint is,%f\n",n1) +printf("the distance btw rows of rivets for zigzag riveting is,%f mm\n",d3) +printf("the margin is,%f mm",m1) diff --git a/278/CH9/EX9.11/ex_9_11.sce b/278/CH9/EX9.11/ex_9_11.sce index 81007bf77..710b2d711 100755 --- a/278/CH9/EX9.11/ex_9_11.sce +++ b/278/CH9/EX9.11/ex_9_11.sce @@ -1,38 +1,37 @@ -//design joint
-clc
-//solution
-//given
-b=200//mm
-t=12.5//mm
-ft=80//N/mm^2
-T=65//N/mm^2
-fc=160//N/mm^2
-pi=3.14
-printf("the value of d is,%f mm\n",6*sqrt(t))
-//standard value of d=21.5mm
-d=21.5//mm
-//let n be number of rivets
-Pt=(b-d)*t*ft//N
-Ps=1.75*(pi/4)*d^2*T//N
-Pc=d*t*fc//N
-n=Pt/Ps
-t1=0.75*t//mm
-Pt1=(b-d)*t*ft//N
-Pt2=(b-2*d)*t*ft+Ps//N
-Pt3=(b-2*d)*t*ft+(3*Ps)//N
-Ps5=5*Ps//N//for 5 rivets
-Pc5=5*Pc//N//for 5 rivets
-P=b*t*ft//N
-printf("the value of forces is,%f N\n,%f N\n,%f N\n,%f N\n,%f N\n",Pt1,Pt2,Pt3,Ps5,Pc5)
-//eff=least(Pt1.Pt2,Pt3,Ps5,Pc5)/P
-eff=Pt1/P//since Pt1 is least
-p=3*d +5//mm//pitch
-m=1.5*d//mm
-d1=2.5*d//mm//dis btw rows of rivets
-printf("the diameter is,%f mm\n",d)
-printf("the nuber of rivets is,%f\n",n)
-printf("the thickness of strap is,%f mm\n",t1)
-printf("the eff is,%f\n",eff)
-printf("the pitch is,%f mm\n",p)
-printf("the marginl pitch is,%f mm\n",m)
-printf("the dis btw row is,%f mm",d1)
+ +//solution +//given +b=200//mm +t=12.5//mm +ft=80//N/mm^2 +T=65//N/mm^2 +fc=160//N/mm^2 +pi=3.14 +printf("the value of d is,%f mm\n",6*sqrt(t)) +//standard value of d=21.5mm +d=21.5//mm +//let n be number of rivets +Pt=(b-d)*t*ft//N +Ps=1.75*(pi/4)*d^2*T//N +Pc=d*t*fc//N +n=Pt/Ps +t1=0.75*t//mm +Pt1=(b-d)*t*ft//N +Pt2=(b-2*d)*t*ft+Ps//N +Pt3=(b-2*d)*t*ft+(3*Ps)//N +Ps5=5*Ps//N//for 5 rivets +Pc5=5*Pc//N//for 5 rivets +P=b*t*ft//N +printf("the value of forces is,%f N\n,%f N\n,%f N\n,%f N\n,%f N\n",Pt1,Pt2,Pt3,Ps5,Pc5) +//eff=least(Pt1.Pt2,Pt3,Ps5,Pc5)/P +eff=Pt1/P//since Pt1 is least +p=3*d +5//mm//pitch +m=1.5*d//mm +d1=2.5*d//mm//dis btw rows of rivets +printf("the diameter is,%f mm\n",d) +printf("the nuber of rivets is,%f\n",n) +printf("the thickness of strap is,%f mm\n",t1) +printf("the eff is,%f\n",eff) +printf("the pitch is,%f mm\n",p) +printf("the marginl pitch is,%f mm\n",m) +printf("the dis btw row is,%f mm",d1) diff --git a/278/CH9/EX9.12/ex_9_12.sce b/278/CH9/EX9.12/ex_9_12.sce index 51cf3ca09..280c06975 100755 --- a/278/CH9/EX9.12/ex_9_12.sce +++ b/278/CH9/EX9.12/ex_9_12.sce @@ -1,38 +1,38 @@ -//desing an economical joint
-clc
-//solution
-//given
-b=350//mm
-t=20//mm
-ft=90//N/mm^2
-T=60//N/mm^2
-fc=150//N/mm^2
-printf("the value of d is,%f mm\n",6*sqrt(t))
-//d=26.8//mm
-//standard value is d=29mm using table 9.7
-d=29//mm
-Pt=(b-d)*t*ft//N
-Ps=1.75*(pi/4)*d^2*T//N
-Pc=d*t*fc//N
-n=Pt/Ps
-t1=0.75*t//mm
-Pt1=(b-d)*t*ft//N
-Pt2=(b-2*d)*t*ft+Ps//N
-Pt3=(b-3*d)*t*ft+(3*Ps)//N
-Pt4=(b-3*d)*t*ft+(6*Ps)//N
-Ps9=9*Ps//N//for 9 rivets
-Pc9=9*Pc//N//for 9 rivets
-P=b*t*ft//N
-printf("the value of forces is,%f N\n,%f N\n,%f N\n,%f N\n,%f N\n,%f N\n",Pt1,Pt2,Pt3,Pt4,Ps9,Pc9)
-//eff=least(Pt1.Pt2,Pt3,Pt4,Ps9,Pc9)/P
-eff=Pt1/P//since Pt1 is least
-p=3*d +5//mm//pitch
-m=1.5*d//mm
-d1=2.5*d//mm//dis btw rows of rivets
-printf("the diameter is,%f mm\n",d)
-printf("the nuber of rivets is,%f\n",n)
-printf("the thickness of strap is,%f mm\n",t1)
-printf("the eff is,%f\n",eff)
-printf("the pitch is,%f mm\n",p)
-printf("the marginl pitch is,%f mm\n",m)
+clc +//solution +//given +b=350//mm +t=20//mm +pi = %pi; +ft=90//N/mm^2 +T=60//N/mm^2 +fc=150//N/mm^2 +printf("the value of d is,%f mm\n",6*sqrt(t)) +//d=26.8//mm +//standard value is d=29mm using table 9.7 +d=29//mm +Pt=(b-d)*t*ft//N +Ps=1.75*(pi/4)*d^2*T//N +Pc=d*t*fc//N +n=Pt/Ps +t1=0.75*t//mm +Pt1=(b-d)*t*ft//N +Pt2=(b-2*d)*t*ft+Ps//N +Pt3=(b-3*d)*t*ft+(3*Ps)//N +Pt4=(b-3*d)*t*ft+(6*Ps)//N +Ps9=9*Ps//N//for 9 rivets +Pc9=9*Pc//N//for 9 rivets +P=b*t*ft//N +printf("the value of forces is,%f N\n,%f N\n,%f N\n,%f N\n,%f N\n,%f N\n",Pt1,Pt2,Pt3,Pt4,Ps9,Pc9) +//eff=least(Pt1.Pt2,Pt3,Pt4,Ps9,Pc9)/P +eff=Pt1/P//since Pt1 is least +p=3*d +5//mm//pitch +m=1.5*d//mm +d1=2.5*d//mm//dis btw rows of rivets +printf("the diameter is,%f mm\n",d) +printf("the nuber of rivets is,%f\n",n) +printf("the thickness of strap is,%f mm\n",t1) +printf("the eff is,%f\n",eff) +printf("the pitch is,%f mm\n",p) +printf("the marginl pitch is,%f mm\n",m) printf("the dis btw row is,%f mm",d1)
\ No newline at end of file diff --git a/278/CH9/EX9.13/ex_9_12.sce b/278/CH9/EX9.13/ex_9_12.sce index 51cf3ca09..6ae7dccb6 100755 --- a/278/CH9/EX9.13/ex_9_12.sce +++ b/278/CH9/EX9.13/ex_9_12.sce @@ -1,38 +1,38 @@ -//desing an economical joint
-clc
-//solution
-//given
-b=350//mm
-t=20//mm
-ft=90//N/mm^2
-T=60//N/mm^2
-fc=150//N/mm^2
-printf("the value of d is,%f mm\n",6*sqrt(t))
-//d=26.8//mm
-//standard value is d=29mm using table 9.7
-d=29//mm
-Pt=(b-d)*t*ft//N
-Ps=1.75*(pi/4)*d^2*T//N
-Pc=d*t*fc//N
-n=Pt/Ps
-t1=0.75*t//mm
-Pt1=(b-d)*t*ft//N
-Pt2=(b-2*d)*t*ft+Ps//N
-Pt3=(b-3*d)*t*ft+(3*Ps)//N
-Pt4=(b-3*d)*t*ft+(6*Ps)//N
-Ps9=9*Ps//N//for 9 rivets
-Pc9=9*Pc//N//for 9 rivets
-P=b*t*ft//N
-printf("the value of forces is,%f N\n,%f N\n,%f N\n,%f N\n,%f N\n,%f N\n",Pt1,Pt2,Pt3,Pt4,Ps9,Pc9)
-//eff=least(Pt1.Pt2,Pt3,Pt4,Ps9,Pc9)/P
-eff=Pt1/P//since Pt1 is least
-p=3*d +5//mm//pitch
-m=1.5*d//mm
-d1=2.5*d//mm//dis btw rows of rivets
-printf("the diameter is,%f mm\n",d)
-printf("the nuber of rivets is,%f\n",n)
-printf("the thickness of strap is,%f mm\n",t1)
-printf("the eff is,%f\n",eff)
-printf("the pitch is,%f mm\n",p)
-printf("the marginl pitch is,%f mm\n",m)
+ +clc +//solution +//given +b=350//mm +t=20//mm +ft=90//N/mm^2 +T=60//N/mm^2 +fc=150//N/mm^2 +printf("the value of d is,%f mm\n",6*sqrt(t)) +//d=26.8//mm +//standard value is d=29mm using table 9.7 +d=29//mm +Pt=(b-d)*t*ft//N +Ps=1.75*(pi/4)*d^2*T//N +Pc=d*t*fc//N +n=Pt/Ps +t1=0.75*t//mm +Pt1=(b-d)*t*ft//N +Pt2=(b-2*d)*t*ft+Ps//N +Pt3=(b-3*d)*t*ft+(3*Ps)//N +Pt4=(b-3*d)*t*ft+(6*Ps)//N +Ps9=9*Ps//N//for 9 rivets +Pc9=9*Pc//N//for 9 rivets +P=b*t*ft//N +printf("the value of forces is,%f N\n,%f N\n,%f N\n,%f N\n,%f N\n,%f N\n",Pt1,Pt2,Pt3,Pt4,Ps9,Pc9) +//eff=least(Pt1.Pt2,Pt3,Pt4,Ps9,Pc9)/P +eff=Pt1/P//since Pt1 is least +p=3*d +5//mm//pitch +m=1.5*d//mm +d1=2.5*d//mm//dis btw rows of rivets +printf("the diameter is,%f mm\n",d) +printf("the nuber of rivets is,%f\n",n) +printf("the thickness of strap is,%f mm\n",t1) +printf("the eff is,%f\n",eff) +printf("the pitch is,%f mm\n",p) +printf("the marginl pitch is,%f mm\n",m) printf("the dis btw row is,%f mm",d1)
\ No newline at end of file diff --git a/278/CH9/EX9.14/ex_9_14.sce b/278/CH9/EX9.14/ex_9_14.sce index 415d017ec..532512913 100755 --- a/278/CH9/EX9.14/ex_9_14.sce +++ b/278/CH9/EX9.14/ex_9_14.sce @@ -1,61 +1,61 @@ -//detremine the size of rivets to be used for joint
-clc
-//refer fig 9.24,9.25
-//solution
-//given
-t=25//mm
-P=50000//N
-e=400//mm
-n=7
-T=65//N/mm^2
-fc=120//N/mm^2
-//let xb and yb be center of gravity
-//xb=(x1+x2+x3+x4+x5+x6+x7)/7
-xb=(100+200+200+200)/7//mm
-//yb=(y1+y2+y3+y4+y5+y6+y7)/7
-yb=(200+200+200+100+100)/7//mm
-Ps=P/n
-T1=P*e//turning moment due to P//N-mm
-//l1=l3
-l1=sqrt(100^2+(200-yb)^2)//mm
-l3=sqrt(100^2+(200-yb)^2)//mm
-l2=200-yb//mm
-//l4=l7
-l4=sqrt(100^2+(yb-100)^2)//mm
-l7=sqrt(100^2+(yb-100)^2)//mm
-//l5=l6
-l5=sqrt(100^2+yb^2)//mm
-l6=sqrt(100^2+yb^2)//mm
-//eqauting the moments equal to each other
-//P*e=(F1/l1)*[l1^2+l2^2+l3^2+l4^2+l5^2+l6^2+l7^2]
-F1=(P*e*l1)/(l1^2+l2^2+l3^2+l4^2+l5^2+l6^2+l7^2)//N
-F2=F1*l2/l1//N
-F3=F1*l3/l1//N
-F4=F1*l4/l1//N
-F5=F1*l5/l1//N
-F6=F1*l6/l1//N
-F7=F1*l7/l1//N
-//cos(q1)=100/l3=0.76=a
-//cos(q4)=100/l4=0.99=b
-//cos(q5)=100/l5=0.658=c
-a=0.76
-b=0.99
-c=0.658
-R3=sqrt(Ps^2+F3^2+2*F3*Ps*a)
-R4=sqrt(Ps^2+F4^2+2*F4*Ps*b)
-R5=sqrt(Ps^2+F5^2+2*F5*Ps*c)
-printf("the value R3,R4,R5 are respctively,%f N\n,%f N\n,%f N\n",R3,R4,R5)
-//let d be diameter
-pi=3.14
-//from above we see that max lod is R5,therefore R5=P
-//R5=(pi/4)*d^2*T
-d=sqrt(R5*4/(pi*T))//mm
-Lc=R5/(d*t)//max crushing load
-printf("the cordinates of centre of gravity are,%f mm\n,%f mm \n",xb,yb)
-printf("the direct load is,%f N\n",Ps)
-printf("the turning moment is,%f N-mm\n",T1)
-printf("the values of Li respectively is,%f mm\n,%f mm\n,%f mm\n,%f mm\n,%f mm\n,%f mm\n,%f mm\n",l1,l2,l3,l4,l5,l6,l7)
-printf("the shear loads(Forces F) acting are,%f mm\n,%f mm\n,%f mm\n,%f mm\n,%f mm\n,%f mm\n,%f mm\n",F1,F2,F3,F4,F5,F6,F7)
-printf("the crushing stress is,%f N/mm^2\n ",Lc)
-printf("the diameter is ,%f mm\n",d)
-printf("since crushing load calculted is less then 120 N/mm^2,therefore desing is safe ")
+ +clc +//refer fig 9.24,9.25 +//solution +//given +t=25//mm +P=50000//N +e=400//mm +n=7 +T=65//N/mm^2 +fc=120//N/mm^2 +//let xb and yb be center of gravity +//xb=(x1+x2+x3+x4+x5+x6+x7)/7 +xb=(100+200+200+200)/7//mm +//yb=(y1+y2+y3+y4+y5+y6+y7)/7 +yb=(200+200+200+100+100)/7//mm +Ps=P/n +T1=P*e//turning moment due to P//N-mm +//l1=l3 +l1=sqrt(100^2+(200-yb)^2)//mm +l3=sqrt(100^2+(200-yb)^2)//mm +l2=200-yb//mm +//l4=l7 +l4=sqrt(100^2+(yb-100)^2)//mm +l7=sqrt(100^2+(yb-100)^2)//mm +//l5=l6 +l5=sqrt(100^2+yb^2)//mm +l6=sqrt(100^2+yb^2)//mm +//eqauting the moments equal to each other +//P*e=(F1/l1)*[l1^2+l2^2+l3^2+l4^2+l5^2+l6^2+l7^2] +F1=(P*e*l1)/(l1^2+l2^2+l3^2+l4^2+l5^2+l6^2+l7^2)//N +F2=F1*l2/l1//N +F3=F1*l3/l1//N +F4=F1*l4/l1//N +F5=F1*l5/l1//N +F6=F1*l6/l1//N +F7=F1*l7/l1//N +//cos(q1)=100/l3=0.76=a +//cos(q4)=100/l4=0.99=b +//cos(q5)=100/l5=0.658=c +a=0.76 +b=0.99 +c=0.658 +R3=sqrt(Ps^2+F3^2+2*F3*Ps*a) +R4=sqrt(Ps^2+F4^2+2*F4*Ps*b) +R5=sqrt(Ps^2+F5^2+2*F5*Ps*c) +printf("the value R3,R4,R5 are respctively,%f N\n,%f N\n,%f N\n",R3,R4,R5) +//let d be diameter +pi=3.14 +//from above we see that max lod is R5,therefore R5=P +//R5=(pi/4)*d^2*T +d=sqrt(R5*4/(pi*T))//mm +Lc=R5/(d*t)//max crushing load +printf("the cordinates of centre of gravity are,%f mm\n,%f mm \n",xb,yb) +printf("the direct load is,%f N\n",Ps) +printf("the turning moment is,%f N-mm\n",T1) +printf("the values of Li respectively is,%f mm\n,%f mm\n,%f mm\n,%f mm\n,%f mm\n,%f mm\n,%f mm\n",l1,l2,l3,l4,l5,l6,l7) +printf("the shear loads(Forces F) acting are,%f mm\n,%f mm\n,%f mm\n,%f mm\n,%f mm\n,%f mm\n,%f mm\n",F1,F2,F3,F4,F5,F6,F7) +printf("the crushing stress is,%f N/mm^2\n ",Lc) +printf("the diameter is ,%f mm\n",d) +printf("since crushing load calculted is less then 120 N/mm^2,therefore desing is safe ") diff --git a/278/CH9/EX9.15/ex_9_14.sce b/278/CH9/EX9.15/ex_9_14.sce index 415d017ec..532512913 100755 --- a/278/CH9/EX9.15/ex_9_14.sce +++ b/278/CH9/EX9.15/ex_9_14.sce @@ -1,61 +1,61 @@ -//detremine the size of rivets to be used for joint
-clc
-//refer fig 9.24,9.25
-//solution
-//given
-t=25//mm
-P=50000//N
-e=400//mm
-n=7
-T=65//N/mm^2
-fc=120//N/mm^2
-//let xb and yb be center of gravity
-//xb=(x1+x2+x3+x4+x5+x6+x7)/7
-xb=(100+200+200+200)/7//mm
-//yb=(y1+y2+y3+y4+y5+y6+y7)/7
-yb=(200+200+200+100+100)/7//mm
-Ps=P/n
-T1=P*e//turning moment due to P//N-mm
-//l1=l3
-l1=sqrt(100^2+(200-yb)^2)//mm
-l3=sqrt(100^2+(200-yb)^2)//mm
-l2=200-yb//mm
-//l4=l7
-l4=sqrt(100^2+(yb-100)^2)//mm
-l7=sqrt(100^2+(yb-100)^2)//mm
-//l5=l6
-l5=sqrt(100^2+yb^2)//mm
-l6=sqrt(100^2+yb^2)//mm
-//eqauting the moments equal to each other
-//P*e=(F1/l1)*[l1^2+l2^2+l3^2+l4^2+l5^2+l6^2+l7^2]
-F1=(P*e*l1)/(l1^2+l2^2+l3^2+l4^2+l5^2+l6^2+l7^2)//N
-F2=F1*l2/l1//N
-F3=F1*l3/l1//N
-F4=F1*l4/l1//N
-F5=F1*l5/l1//N
-F6=F1*l6/l1//N
-F7=F1*l7/l1//N
-//cos(q1)=100/l3=0.76=a
-//cos(q4)=100/l4=0.99=b
-//cos(q5)=100/l5=0.658=c
-a=0.76
-b=0.99
-c=0.658
-R3=sqrt(Ps^2+F3^2+2*F3*Ps*a)
-R4=sqrt(Ps^2+F4^2+2*F4*Ps*b)
-R5=sqrt(Ps^2+F5^2+2*F5*Ps*c)
-printf("the value R3,R4,R5 are respctively,%f N\n,%f N\n,%f N\n",R3,R4,R5)
-//let d be diameter
-pi=3.14
-//from above we see that max lod is R5,therefore R5=P
-//R5=(pi/4)*d^2*T
-d=sqrt(R5*4/(pi*T))//mm
-Lc=R5/(d*t)//max crushing load
-printf("the cordinates of centre of gravity are,%f mm\n,%f mm \n",xb,yb)
-printf("the direct load is,%f N\n",Ps)
-printf("the turning moment is,%f N-mm\n",T1)
-printf("the values of Li respectively is,%f mm\n,%f mm\n,%f mm\n,%f mm\n,%f mm\n,%f mm\n,%f mm\n",l1,l2,l3,l4,l5,l6,l7)
-printf("the shear loads(Forces F) acting are,%f mm\n,%f mm\n,%f mm\n,%f mm\n,%f mm\n,%f mm\n,%f mm\n",F1,F2,F3,F4,F5,F6,F7)
-printf("the crushing stress is,%f N/mm^2\n ",Lc)
-printf("the diameter is ,%f mm\n",d)
-printf("since crushing load calculted is less then 120 N/mm^2,therefore desing is safe ")
+ +clc +//refer fig 9.24,9.25 +//solution +//given +t=25//mm +P=50000//N +e=400//mm +n=7 +T=65//N/mm^2 +fc=120//N/mm^2 +//let xb and yb be center of gravity +//xb=(x1+x2+x3+x4+x5+x6+x7)/7 +xb=(100+200+200+200)/7//mm +//yb=(y1+y2+y3+y4+y5+y6+y7)/7 +yb=(200+200+200+100+100)/7//mm +Ps=P/n +T1=P*e//turning moment due to P//N-mm +//l1=l3 +l1=sqrt(100^2+(200-yb)^2)//mm +l3=sqrt(100^2+(200-yb)^2)//mm +l2=200-yb//mm +//l4=l7 +l4=sqrt(100^2+(yb-100)^2)//mm +l7=sqrt(100^2+(yb-100)^2)//mm +//l5=l6 +l5=sqrt(100^2+yb^2)//mm +l6=sqrt(100^2+yb^2)//mm +//eqauting the moments equal to each other +//P*e=(F1/l1)*[l1^2+l2^2+l3^2+l4^2+l5^2+l6^2+l7^2] +F1=(P*e*l1)/(l1^2+l2^2+l3^2+l4^2+l5^2+l6^2+l7^2)//N +F2=F1*l2/l1//N +F3=F1*l3/l1//N +F4=F1*l4/l1//N +F5=F1*l5/l1//N +F6=F1*l6/l1//N +F7=F1*l7/l1//N +//cos(q1)=100/l3=0.76=a +//cos(q4)=100/l4=0.99=b +//cos(q5)=100/l5=0.658=c +a=0.76 +b=0.99 +c=0.658 +R3=sqrt(Ps^2+F3^2+2*F3*Ps*a) +R4=sqrt(Ps^2+F4^2+2*F4*Ps*b) +R5=sqrt(Ps^2+F5^2+2*F5*Ps*c) +printf("the value R3,R4,R5 are respctively,%f N\n,%f N\n,%f N\n",R3,R4,R5) +//let d be diameter +pi=3.14 +//from above we see that max lod is R5,therefore R5=P +//R5=(pi/4)*d^2*T +d=sqrt(R5*4/(pi*T))//mm +Lc=R5/(d*t)//max crushing load +printf("the cordinates of centre of gravity are,%f mm\n,%f mm \n",xb,yb) +printf("the direct load is,%f N\n",Ps) +printf("the turning moment is,%f N-mm\n",T1) +printf("the values of Li respectively is,%f mm\n,%f mm\n,%f mm\n,%f mm\n,%f mm\n,%f mm\n,%f mm\n",l1,l2,l3,l4,l5,l6,l7) +printf("the shear loads(Forces F) acting are,%f mm\n,%f mm\n,%f mm\n,%f mm\n,%f mm\n,%f mm\n,%f mm\n",F1,F2,F3,F4,F5,F6,F7) +printf("the crushing stress is,%f N/mm^2\n ",Lc) +printf("the diameter is ,%f mm\n",d) +printf("since crushing load calculted is less then 120 N/mm^2,therefore desing is safe ") diff --git a/278/CH9/EX9.16/ex_9_16.sce b/278/CH9/EX9.16/ex_9_16.sce index afb4a9cb1..7716e15a2 100755 --- a/278/CH9/EX9.16/ex_9_16.sce +++ b/278/CH9/EX9.16/ex_9_16.sce @@ -1,32 +1,32 @@ -//find value of P
-clc
-//solution
-//given
-//refer fig 9.29 and 9.30
-T=100//N/mm^2
-n=4
-d=20//mm
-//Ps=P/4=0.25*P//N
-e=100//mm
-//T1=P*e//turning moment
-//la=ld=200=100//mm
-//lb=lc=100//mm
-//eqauting the moments equal to each other
-//P*e=(Fa/la)*[la^2+lb^2+lc^2+ld^2]
-//P*e=(Fa/la)*[2*300^2+2*100^2]
-//Fa=P*100*3/2000//N
-//Fa=0.15*P//N
-//Fb=Fa*lb/la=0.05*P//N
-//Fc=Fa*lc/la=0.05*P//N
-//Fd=Fa*ld/la=0.15*P//N
-//Ra=Ps-Fa=0.1*P
-//Rb=Ps-Fb=0.20*P
-//Rc=Ps+Fc=0.30*p
-//Rd=Ps+Fd=0.40*P//N
-//max load is Rd
-//therfore
-pi=3.14
-//Rd=(pi/4)*T*d^2
-//0.40*P=(pi/4)*T*d^2
-P=(pi/4)*T*d^2/0.40
+ +clc +//solution +//given +//refer fig 9.29 and 9.30 +T=100//N/mm^2 +n=4 +d=20//mm +//Ps=P/4=0.25*P//N +e=100//mm +//T1=P*e//turning moment +//la=ld=200=100//mm +//lb=lc=100//mm +//eqauting the moments equal to each other +//P*e=(Fa/la)*[la^2+lb^2+lc^2+ld^2] +//P*e=(Fa/la)*[2*300^2+2*100^2] +//Fa=P*100*3/2000//N +//Fa=0.15*P//N +//Fb=Fa*lb/la=0.05*P//N +//Fc=Fa*lc/la=0.05*P//N +//Fd=Fa*ld/la=0.15*P//N +//Ra=Ps-Fa=0.1*P +//Rb=Ps-Fb=0.20*P +//Rc=Ps+Fc=0.30*p +//Rd=Ps+Fd=0.40*P//N +//max load is Rd +//therfore +pi=3.14 +//Rd=(pi/4)*T*d^2 +//0.40*P=(pi/4)*T*d^2 +P=(pi/4)*T*d^2/0.40 printf("the value of force P is,%f N",P)
\ No newline at end of file diff --git a/278/CH9/EX9.17/ex_9_17.sce b/278/CH9/EX9.17/ex_9_17.sce index 193680bdb..3c4d96e69 100755 --- a/278/CH9/EX9.17/ex_9_17.sce +++ b/278/CH9/EX9.17/ex_9_17.sce @@ -1,37 +1,37 @@ -//find diameter of rivet
-clc
-//solution
-//given
-n=6
-P=60000//N
-e=200//mm
-T=150//N/mm^2
-Ps=P/n
-//l1=l3=l4=l6
-l1=sqrt(75^2+50^2)//mm
-l3=sqrt(75^2+50^2)//mm
-l4=sqrt(75^2+50^2)//mm
-l6=sqrt(75^2+50^2)//mm
-l2=50//mm
-l5=50//mm
-//eqauting the moments equal to each other
-//P*e=(F1/l1)*[l1^2+l2^2+l3^2+l4^2+l5^2+l6^2]
-//P*e=(F1/l1)*[4*l1^2+2*l2^2]
-F1=(P*e*l1)/(4*l1^2+2*l2^2)//N
-F2=F1*l2/l1//N
-F3=F1*l3/l1//N
-F4=F1*l4/l1//N
-F5=F1*l5/l1//N
-F6=F1*l6/l1//N
-//cos(q1)=50/l1=0.555=a
-a=0.555
-R3=sqrt(Ps^2+F3^2+2*F3*Ps*a)
-R2=Ps+F2//N
-printf("the value of forces is,%f N\n,%f N\n",R2,R3)
-//R3>R2
-pi=3.14
-P=(pi/4)*d^2*T
-//R3=P
-d=sqrt(R3/117.8)//mm
-printf("the value of diameter is,%f mm\n",d)
-printf("the standard diameter of is 19.5 mm ")
+ +clc +//solution +//given +n=6 +P=60000//N +e=200//mm +T=150//N/mm^2 +Ps=P/n +//l1=l3=l4=l6 +l1=sqrt(75^2+50^2)//mm +l3=sqrt(75^2+50^2)//mm +l4=sqrt(75^2+50^2)//mm +l6=sqrt(75^2+50^2)//mm +l2=50//mm +l5=50//mm +//eqauting the moments equal to each other +//P*e=(F1/l1)*[l1^2+l2^2+l3^2+l4^2+l5^2+l6^2] +//P*e=(F1/l1)*[4*l1^2+2*l2^2] +F1=(P*e*l1)/(4*l1^2+2*l2^2)//N +F2=F1*l2/l1//N +F3=F1*l3/l1//N +F4=F1*l4/l1//N +F5=F1*l5/l1//N +F6=F1*l6/l1//N +//cos(q1)=50/l1=0.555=a +a=0.555 +R3=sqrt(Ps^2+F3^2+2*F3*Ps*a) +R2=Ps+F2//N +printf("the value of forces is,%f N\n,%f N\n",R2,R3) +//R3>R2 +pi=3.14 +P=(pi/4)*d^2*T +//R3=P +d=sqrt(R3/117.8)//mm +printf("the value of diameter is,%f mm\n",d) +printf("the standard diameter of is 19.5 mm ") diff --git a/278/CH9/EX9.18/ex_9_18.sce b/278/CH9/EX9.18/ex_9_18.sce index 37c14bdee..c199d5153 100755 --- a/278/CH9/EX9.18/ex_9_18.sce +++ b/278/CH9/EX9.18/ex_9_18.sce @@ -1,48 +1,48 @@ -//determine diametr of diameter and thickness of plate
-clc
-//solution
-//given'
-n=4
-Ab=60//mm
-Cd=60//mm
-Bc=60//mm
-P=100000//N
-Ef=150//mm
-q=30//deg
-Ty=240//N/mm^2
-Fs=1.5
-Fb=125//N/mm^2
-b=240//mm
-//let d be diameter of rivet
-Ps=P/n//N
-e=Ef*sin(q)//mm
-la=60+30//mm
-ld=90//mm
-//la=ld
-//lb=lc
-lb=30//mm
-lc=30//mm
-//eqauting the moments equal to each other
-//P*e=(Fa/la)*[la^2+lb^2+lc^2+ld^2]
-//10000*75=(Fa/la)*[2*90^2+2*30^2]
-Fa=7500*1000*la/(2*90^2+2*30^2)//N
-Fb=Fa*lb/la//N
-Fc=Fa*lc/la//N
-Fd=Fa*ld/la//N
-a=-sqrt(3)/2//deg
-b=-sqrt(3)/2//deg
-c=sqrt(3)/2
-d=sqrt(3)/2
-Ra=sqrt(Ps^2+ Fa^2+ 2*Fa*Ps*a)
-Rb=sqrt(Ps^2+ Fb^2+ 2*Fb*Ps*b)
-Rc=sqrt(Ps^2+ Fc^2+ 2*Fc*Ps*c)
-Rd=sqrt(Ps^2+ Fd^2+ 2*Fd*Ps*d)
-printf("the value of Ps is,%f N\n ",Ps)
-printf("the value fo forces rae,%f N\n,%f n\n,%f n\n,%f N\n",Fa,Fb,Fc,Fd)
-printf("the value of Ra,Rb,Rc and Rd are,%f N\n,%f N\n,%f N\n,%f N\n",Ra,Rb,Rc,Rd)
-//since greatest is Rd,therfore Rd=P
-pi=3.14
-//P=(pi/4)*d^2*Ty/Fs//N
-d1=sqrt(Rd/125.7)
-printf("the diametr of rivet is %f mm\n",d1)
-printf("choosing th standard value od d as 23.5 mm\n")
+ +clc +//solution +//given' +n=4 +Ab=60//mm +Cd=60//mm +Bc=60//mm +P=100000//N +Ef=150//mm +q=30//deg +Ty=240//N/mm^2 +Fs=1.5 +Fb=125//N/mm^2 +b=240//mm +//let d be diameter of rivet +Ps=P/n//N +e=Ef*sin(q)//mm +la=60+30//mm +ld=90//mm +//la=ld +//lb=lc +lb=30//mm +lc=30//mm +//eqauting the moments equal to each other +//P*e=(Fa/la)*[la^2+lb^2+lc^2+ld^2] +//10000*75=(Fa/la)*[2*90^2+2*30^2] +Fa=7500*1000*la/(2*90^2+2*30^2)//N +Fb=Fa*lb/la//N +Fc=Fa*lc/la//N +Fd=Fa*ld/la//N +a=-sqrt(3)/2//deg +b=-sqrt(3)/2//deg +c=sqrt(3)/2 +d=sqrt(3)/2 +Ra=sqrt(Ps^2+ Fa^2+ 2*Fa*Ps*a) +Rb=sqrt(Ps^2+ Fb^2+ 2*Fb*Ps*b) +Rc=sqrt(Ps^2+ Fc^2+ 2*Fc*Ps*c) +Rd=sqrt(Ps^2+ Fd^2+ 2*Fd*Ps*d) +printf("the value of Ps is,%f N\n ",Ps) +printf("the value fo forces rae,%f N\n,%f n\n,%f n\n,%f N\n",Fa,Fb,Fc,Fd) +printf("the value of Ra,Rb,Rc and Rd are,%f N\n,%f N\n,%f N\n,%f N\n",Ra,Rb,Rc,Rd) +//since greatest is Rd,therfore Rd=P +pi=3.14 +//P=(pi/4)*d^2*Ty/Fs//N +d1=sqrt(Rd/125.7) +printf("the diametr of rivet is %f mm\n",d1) +printf("choosing th standard value od d as 23.5 mm\n") diff --git a/278/CH9/EX9.2/ex_9_2.sce b/278/CH9/EX9.2/ex_9_2.sce index 8416bfd1c..a7a89799c 100755 --- a/278/CH9/EX9.2/ex_9_2.sce +++ b/278/CH9/EX9.2/ex_9_2.sce @@ -1,27 +1,27 @@ -//find the efficiency of following rivet joints
-clc
-//solution
-//given
-t=6//mm
-d=20//mm
-ft=120//N/mm^2
-T=90//N/mm^2
-fc=180//N/mm^2
-p=50//mm
-pi=3.14
-Pt=(p-d)*t*ft//N//tearing resistance of plate
-Ps=(pi/4)*d^2*T//N//shearing resistance of rivet
-Pc=d*t*fc//N//crushing resistance of rivet
-P=p*t*ft//N//strength of the unriveted
-//eff=(least of Pt,Ps,Pc)/P
-eff=Pt/P//least is Pt
-p1=65//mm
-Pt1=(p1-d)*t*ft//N
-Ps1=(2*pi/4)*d^2*T//N
-Pc1=2*d*t*fc//N
-P2=p1*t*ft//N
-printf("the value of forces are,%f N\n,%f N\n,%f N\n",Pt1,Ps1,Pc1)
-//eff1=least of Pt1,Ps1,Pc1/P2
-eff1=Pt1/P2//least is Pt1
-printf("the efficiency is first case is,%f\n",eff)
+ +clc +//solution +//given +t=6//mm +d=20//mm +ft=120//N/mm^2 +T=90//N/mm^2 +fc=180//N/mm^2 +p=50//mm +pi=3.14 +Pt=(p-d)*t*ft//N//tearing resistance of plate +Ps=(pi/4)*d^2*T//N//shearing resistance of rivet +Pc=d*t*fc//N//crushing resistance of rivet +P=p*t*ft//N//strength of the unriveted +//eff=(least of Pt,Ps,Pc)/P +eff=Pt/P//least is Pt +p1=65//mm +Pt1=(p1-d)*t*ft//N +Ps1=(2*pi/4)*d^2*T//N +Pc1=2*d*t*fc//N +P2=p1*t*ft//N +printf("the value of forces are,%f N\n,%f N\n,%f N\n",Pt1,Ps1,Pc1) +//eff1=least of Pt1,Ps1,Pc1/P2 +eff1=Pt1/P2//least is Pt1 +printf("the efficiency is first case is,%f\n",eff) printf("the eff is second case is,%f",eff1)
\ No newline at end of file diff --git a/278/CH9/EX9.3/ex_9_3.sce b/278/CH9/EX9.3/ex_9_3.sce index 7e5f4a5ef..e4978f85f 100755 --- a/278/CH9/EX9.3/ex_9_3.sce +++ b/278/CH9/EX9.3/ex_9_3.sce @@ -1,18 +1,18 @@ -//find efficiency of joint
-clc
-//solution
-//given
-t=10//mm
-d=25//mm
-p=100//mm
-ft=120//N/mm^2
-T=100//N/mm^2
-fc=150//N/mm^2
-pi=3.14
-Pt=(p-d)*t*ft//N//tearing resistance of plate
-Ps=(2*pi/4)*d^2*T//N//shearing resistance of rivet
-Pc=2*d*t*fc//N//crushing resistance of rivet
-P=p*t*ft//N//strength of the unriveted
-//eff=(least of Pt,Ps,Pc)/P
-eff=Pc/P//least is Pc
+ +clc +//solution +//given +t=10//mm +d=25//mm +p=100//mm +ft=120//N/mm^2 +T=100//N/mm^2 +fc=150//N/mm^2 +pi=3.14 +Pt=(p-d)*t*ft//N//tearing resistance of plate +Ps=(2*pi/4)*d^2*T//N//shearing resistance of rivet +Pc=2*d*t*fc//N//crushing resistance of rivet +P=p*t*ft//N//strength of the unriveted +//eff=(least of Pt,Ps,Pc)/P +eff=Pc/P//least is Pc printf("the eff is,%f",eff)
\ No newline at end of file diff --git a/278/CH9/EX9.4/ex_9_4.sce b/278/CH9/EX9.4/ex_9_4.sce index ba8a8e84a..f7a0a38c4 100755 --- a/278/CH9/EX9.4/ex_9_4.sce +++ b/278/CH9/EX9.4/ex_9_4.sce @@ -1,28 +1,28 @@ -//find efficiency
-clc
-//solution
-//given
-t=13//mm
-ft=80//N/mm^2
-T=60//N/mm^2
-fc=120//N/mm^2
-pi=3.14
-d=6*sqrt(t)//mm//dia of rivet
-//use standard value from table 9.3
-//let p be the picth of rivets
-//Pt=(p-d)*t*ft=(p-23)*1040//N//tearing resistance of plate
-Ps=2*(pi/4)*d^2*T//N//shearing resistance of rivet
-//p-23=Ps/1040
-p=23+(Ps/1040)//mm
-//check the limits,if p<=pmax..then it is safe design
-//pmax=C*t+41.28//mm=75.28mm which is more then p
-pb=0.33*p+ 0.67*d//distance btw rivets
-m=1.58*d//margin
-Pt=(p-d)*t*ft//N//tearing resistance of plate
-Ps=(2*pi/4)*d^2*T//N//shearing resistance of rivet
-Pc=2*d*t*fc//N//crushing resistance of rivet
-P=p*t*ft//N//strength of the unriveted
-//eff=(least of Pt,Ps,Pc)/P
-printf("the value of forces are,%f N\n,%f N\n,%f N\n",Pt,Ps,Pc)
-eff=Ps/P//least is Ps
+ +clc +//solution +//given +t=13//mm +ft=80//N/mm^2 +T=60//N/mm^2 +fc=120//N/mm^2 +pi=3.14 +d=6*sqrt(t)//mm//dia of rivet +//use standard value from table 9.3 +//let p be the picth of rivets +//Pt=(p-d)*t*ft=(p-23)*1040//N//tearing resistance of plate +Ps=2*(pi/4)*d^2*T//N//shearing resistance of rivet +//p-23=Ps/1040 +p=23+(Ps/1040)//mm +//check the limits,if p<=pmax..then it is safe design +//pmax=C*t+41.28//mm=75.28mm which is more then p +pb=0.33*p+ 0.67*d//distance btw rivets +m=1.58*d//margin +Pt=(p-d)*t*ft//N//tearing resistance of plate +Ps=(2*pi/4)*d^2*T//N//shearing resistance of rivet +Pc=2*d*t*fc//N//crushing resistance of rivet +P=p*t*ft//N//strength of the unriveted +//eff=(least of Pt,Ps,Pc)/P +printf("the value of forces are,%f N\n,%f N\n,%f N\n",Pt,Ps,Pc) +eff=Ps/P//least is Ps printf("the eff is,%f",eff)
\ No newline at end of file diff --git a/278/CH9/EX9.5/ex_9_5.sce b/278/CH9/EX9.5/ex_9_5.sce index b69a418f8..fe90624e0 100755 --- a/278/CH9/EX9.5/ex_9_5.sce +++ b/278/CH9/EX9.5/ex_9_5.sce @@ -1,30 +1,23 @@ -//find rivet dia,distance btw rows of rivets
-clc
-//solution
-//given
-t=7//mm
-pi=3.14
-ft=90//N/mm^2
-T=60//N/mm^2
-fc=120//N/mm^2
-//let d be dia,since t<=8mm therefore d will be obtainned by equating shearing resistance to crushing
-//Ps=Pc
-//Ps=3*(pi/4)*d^2*T//N//shearing resistance of rivet
-//Pc=3*d*t*fc//N//crushing resistance of rivet
-//Ps=Pc
-//141.4*d^2=2520*d
-d=2520/141.4//mm
-//let p is pitch
-Ps=141.4*d^2//N
-//Pt=(p-d)*t*ft//N//tearing resistance of plate
-//Ps=Pt
-//630*(p-19)=51045
-//p=(51045/630)+19//mm
-//pmax=C*t+41.28//mm=66mm,since pmax<p..therefore p=pmax=66mm
-p=66//mm
-pb=0.33*p+0.67*d//distance btw the rivets
-Pt=(p-d)*t*ft
-Ps=141.4*d^2//N
-Pc=3*d*t*fc//N
-printf("the pitch is,%f mm\n",p)
-printf("the distance btw the rivets is,%f mm",pb)
\ No newline at end of file + +clc +//solution +//given +t=7//mm +pi=3.14 +ft=90//N/mm^2 +T=60//N/mm^2 +fc=120//N/mm^2 +//let d be dia,since t<=8mm therefore d will be obtainned by equating shearing resistance to crushing +//Ps=Pc +//Ps=3*(pi/4)*d^2*T//N//shearing resistance of rivet +//Pc=3*d*t*fc//N//crushing resistance of rivet +//Ps=Pc +//141.4*d^2=2520*d +d=2520/141.4//mm +//let p is pitch +Ps=141.4*d^2//N +//Pt=(p-d)*t*ft//N//tearing resistance of plate +//Ps=Pt +//630*(p-19)=51045 +//p=(51045/630)+19//mm +//pmax=C*t+41.28//mm=66mm,since pmax<p..therefore p="pmax=66mm" pb="0.33*p+0.67*d//distance" btw="" the="" rivets="" pt="(p-d)*t*ft" ps="141.4*d^2//N" pc="3*d*t*fc//N" printf("the="" pitch="" is,%f="" mm\n",p)="" distance="" mm",pb)<="" div=""></p..therefore>
\ No newline at end of file diff --git a/278/CH9/EX9.6/ex_9_6.sce b/278/CH9/EX9.6/ex_9_6.sce index 2afa1730b..1ffd3179b 100755 --- a/278/CH9/EX9.6/ex_9_6.sce +++ b/278/CH9/EX9.6/ex_9_6.sce @@ -1,27 +1,27 @@ -//find rivet dia,pitch,thickness and eff
-clc
-//solution
-//given
-t=10//mm
-ft=80//N/mm^2
-T=60//N/mm^2
-pi=3.14
-//d=6*sqrt(t)//mm
-//choose standard value of d from table 9.3
-d=19//mm
-//let p is pitch of rivets
-Ps=1*1.875*(pi/4)*d^2*T//N//shearing resistance of rivet
-//Pt=(p-d)*t*ft=(p-19)*800//N//tearing resistance of plate
-//Ps=Pt
-p=19+(31900/800)//mm
-//pmax=C*t+41.28=58.78mm whihc is equal to p
-t1=0.625*t//mm
-Pt=(p-d)*t*ft//=(p-19)*800//N
-P=p*t*ft//N//strength of the unriveted
-printf("the value of forces is,%f N\n,%f N\n",Pt,Ps)
-//eff=(least of Pt,Ps)/P
-eff=Ps/P//least is Ps
-printf("the eff is,%f\n",eff)
-printf("the pitch is,%f mm\n",p)
-printf("the thickness of cover plate is,%f mm\n",t1)
+ +clc +//solution +//given +t=10//mm +ft=80//N/mm^2 +T=60//N/mm^2 +pi=3.14 +//d=6*sqrt(t)//mm +//choose standard value of d from table 9.3 +d=19//mm +//let p is pitch of rivets +Ps=1*1.875*(pi/4)*d^2*T//N//shearing resistance of rivet +//Pt=(p-d)*t*ft=(p-19)*800//N//tearing resistance of plate +//Ps=Pt +p=19+(31900/800)//mm +//pmax=C*t+41.28=58.78mm whihc is equal to p +t1=0.625*t//mm +Pt=(p-d)*t*ft//=(p-19)*800//N +P=p*t*ft//N//strength of the unriveted +printf("the value of forces is,%f N\n,%f N\n",Pt,Ps) +//eff=(least of Pt,Ps)/P +eff=Ps/P//least is Ps +printf("the eff is,%f\n",eff) +printf("the pitch is,%f mm\n",p) +printf("the thickness of cover plate is,%f mm\n",t1) printf("the diameter of rivets is,%f mm",d)
\ No newline at end of file diff --git a/278/CH9/EX9.7/ex_9_6.sce b/278/CH9/EX9.7/ex_9_6.sce index 2afa1730b..1ffd3179b 100755 --- a/278/CH9/EX9.7/ex_9_6.sce +++ b/278/CH9/EX9.7/ex_9_6.sce @@ -1,27 +1,27 @@ -//find rivet dia,pitch,thickness and eff
-clc
-//solution
-//given
-t=10//mm
-ft=80//N/mm^2
-T=60//N/mm^2
-pi=3.14
-//d=6*sqrt(t)//mm
-//choose standard value of d from table 9.3
-d=19//mm
-//let p is pitch of rivets
-Ps=1*1.875*(pi/4)*d^2*T//N//shearing resistance of rivet
-//Pt=(p-d)*t*ft=(p-19)*800//N//tearing resistance of plate
-//Ps=Pt
-p=19+(31900/800)//mm
-//pmax=C*t+41.28=58.78mm whihc is equal to p
-t1=0.625*t//mm
-Pt=(p-d)*t*ft//=(p-19)*800//N
-P=p*t*ft//N//strength of the unriveted
-printf("the value of forces is,%f N\n,%f N\n",Pt,Ps)
-//eff=(least of Pt,Ps)/P
-eff=Ps/P//least is Ps
-printf("the eff is,%f\n",eff)
-printf("the pitch is,%f mm\n",p)
-printf("the thickness of cover plate is,%f mm\n",t1)
+ +clc +//solution +//given +t=10//mm +ft=80//N/mm^2 +T=60//N/mm^2 +pi=3.14 +//d=6*sqrt(t)//mm +//choose standard value of d from table 9.3 +d=19//mm +//let p is pitch of rivets +Ps=1*1.875*(pi/4)*d^2*T//N//shearing resistance of rivet +//Pt=(p-d)*t*ft=(p-19)*800//N//tearing resistance of plate +//Ps=Pt +p=19+(31900/800)//mm +//pmax=C*t+41.28=58.78mm whihc is equal to p +t1=0.625*t//mm +Pt=(p-d)*t*ft//=(p-19)*800//N +P=p*t*ft//N//strength of the unriveted +printf("the value of forces is,%f N\n,%f N\n",Pt,Ps) +//eff=(least of Pt,Ps)/P +eff=Ps/P//least is Ps +printf("the eff is,%f\n",eff) +printf("the pitch is,%f mm\n",p) +printf("the thickness of cover plate is,%f mm\n",t1) printf("the diameter of rivets is,%f mm",d)
\ No newline at end of file diff --git a/278/CH9/EX9.8/ex_9_6.sce b/278/CH9/EX9.8/ex_9_6.sce index 2afa1730b..1ffd3179b 100755 --- a/278/CH9/EX9.8/ex_9_6.sce +++ b/278/CH9/EX9.8/ex_9_6.sce @@ -1,27 +1,27 @@ -//find rivet dia,pitch,thickness and eff
-clc
-//solution
-//given
-t=10//mm
-ft=80//N/mm^2
-T=60//N/mm^2
-pi=3.14
-//d=6*sqrt(t)//mm
-//choose standard value of d from table 9.3
-d=19//mm
-//let p is pitch of rivets
-Ps=1*1.875*(pi/4)*d^2*T//N//shearing resistance of rivet
-//Pt=(p-d)*t*ft=(p-19)*800//N//tearing resistance of plate
-//Ps=Pt
-p=19+(31900/800)//mm
-//pmax=C*t+41.28=58.78mm whihc is equal to p
-t1=0.625*t//mm
-Pt=(p-d)*t*ft//=(p-19)*800//N
-P=p*t*ft//N//strength of the unriveted
-printf("the value of forces is,%f N\n,%f N\n",Pt,Ps)
-//eff=(least of Pt,Ps)/P
-eff=Ps/P//least is Ps
-printf("the eff is,%f\n",eff)
-printf("the pitch is,%f mm\n",p)
-printf("the thickness of cover plate is,%f mm\n",t1)
+ +clc +//solution +//given +t=10//mm +ft=80//N/mm^2 +T=60//N/mm^2 +pi=3.14 +//d=6*sqrt(t)//mm +//choose standard value of d from table 9.3 +d=19//mm +//let p is pitch of rivets +Ps=1*1.875*(pi/4)*d^2*T//N//shearing resistance of rivet +//Pt=(p-d)*t*ft=(p-19)*800//N//tearing resistance of plate +//Ps=Pt +p=19+(31900/800)//mm +//pmax=C*t+41.28=58.78mm whihc is equal to p +t1=0.625*t//mm +Pt=(p-d)*t*ft//=(p-19)*800//N +P=p*t*ft//N//strength of the unriveted +printf("the value of forces is,%f N\n,%f N\n",Pt,Ps) +//eff=(least of Pt,Ps)/P +eff=Ps/P//least is Ps +printf("the eff is,%f\n",eff) +printf("the pitch is,%f mm\n",p) +printf("the thickness of cover plate is,%f mm\n",t1) printf("the diameter of rivets is,%f mm",d)
\ No newline at end of file diff --git a/278/CH9/EX9.9/ex_9_9.sce b/278/CH9/EX9.9/ex_9_9.sce index 8125d075e..7c8aafe31 100755 --- a/278/CH9/EX9.9/ex_9_9.sce +++ b/278/CH9/EX9.9/ex_9_9.sce @@ -1,48 +1,48 @@ -//desing longitudinal joint
-clc
-//soltuion
-//given
-D=1250//mm
-P=2.5//N/mm^2
-ftu=420//N/mm^2
-fcu=650//N/mm^2
-Tu=300//N/mm^2
-eff=0.8
-Fs=5//factor of safety
-pi=3.14
-ft=ftu/Fs
-fc=fcu/Fs
-T=Tu/Fs
-t=P*D/(2*ft*eff)//mm//thickness of plate
-d=6*sqrt(t)//mm//DIA
-//Pt=(p-d)*t*ft=(p-31.5)*2100//N//tearing resistance of plate
-Ps=4*1.875*(pi/4)*d^2*T+(pi/4)*d^2*T//=8.5*(pi/4)*d^2*T//N//shearing resistance of rivet//N//shearing resistance of rivet
-//Pt=Ps
-//p-31.5=(397500/2100)
-//p=31.5+(397500/2100)//mm
-//pmax=C*t+41.28//mm=196mm
-//since p>pmax,therefore
-//p=pmax
-p=196//mm
-p'=196/2//mm
-d1=0.2*p+1.15*d//mm//diatnce between outtr and row and next row
-d2=0.165*p+0.67*d//mm//distance ebtween inner row for zigzag riveting
-t1=0.75*t//mm//thickness of wide strap
-t2=0.625*t//mm//thickness of narrow strap
-m=1.5*d//mm//margin
-Pt=(p-d)*t*ft//(p-31.5)*2100//N
-Pc=5*d*t*fc//N//crushing resistance of rivet
-P=p*t*ft//N//strength of the unriveted
-//joint may also fail due to combine teARING AND shearing reistance
-Pts=(p-2*d)*t*ft+(pi/4)*d^2*T//N
-printf("the value of forces calculted are,%f N\n,%f N\n,%f N\n",Pt,Pc,Pts)
-//eff=(least of Pt,Pc,Pts)/P
-eff=Pts/P//least is Ps
-printf("the eff is,%f\n",eff)
-printf("the pitch is,%f mm\n",p)
-printf("the thickness of wide strap is,%f mm\n",t1)
-printf("the thickness of narrow strap is,%f mm\n",t2)
-printf("the diameter of rivets is,%f mm",d)
-printf("the margine s,%f mm\n",m)
-printf("the distance btw outer and next row is,%f mm\n",d1)
+ +clc +//soltuion +//given +D=1250//mm +P=2.5//N/mm^2 +ftu=420//N/mm^2 +fcu=650//N/mm^2 +Tu=300//N/mm^2 +eff=0.8 +Fs=5//factor of safety +pi=3.14 +ft=ftu/Fs +fc=fcu/Fs +T=Tu/Fs +t=P*D/(2*ft*eff)//mm//thickness of plate +d=6*sqrt(t)//mm//DIA +//Pt=(p-d)*t*ft=(p-31.5)*2100//N//tearing resistance of plate +Ps=4*1.875*(pi/4)*d^2*T+(pi/4)*d^2*T//=8.5*(pi/4)*d^2*T//N//shearing resistance of rivet//N//shearing resistance of rivet +//Pt=Ps +//p-31.5=(397500/2100) +//p=31.5+(397500/2100)//mm +//pmax=C*t+41.28//mm=196mm +//since p>pmax,therefore +//p=pmax +p=196//mm +p'=196/2//mm +d1=0.2*p+1.15*d//mm//diatnce between outtr and row and next row +d2=0.165*p+0.67*d//mm//distance ebtween inner row for zigzag riveting +t1=0.75*t//mm//thickness of wide strap +t2=0.625*t//mm//thickness of narrow strap +m=1.5*d//mm//margin +Pt=(p-d)*t*ft//(p-31.5)*2100//N +Pc=5*d*t*fc//N//crushing resistance of rivet +P=p*t*ft//N//strength of the unriveted +//joint may also fail due to combine teARING AND shearing reistance +Pts=(p-2*d)*t*ft+(pi/4)*d^2*T//N +printf("the value of forces calculted are,%f N\n,%f N\n,%f N\n",Pt,Pc,Pts) +//eff=(least of Pt,Pc,Pts)/P +eff=Pts/P//least is Ps +printf("the eff is,%f\n",eff) +printf("the pitch is,%f mm\n",p) +printf("the thickness of wide strap is,%f mm\n",t1) +printf("the thickness of narrow strap is,%f mm\n",t2) +printf("the diameter of rivets is,%f mm",d) +printf("the margine s,%f mm\n",m) +printf("the distance btw outer and next row is,%f mm\n",d1) printf("the distance btw inner rows is,%f mm\n",d2)
\ No newline at end of file |