diff options
Diffstat (limited to '249')
-rwxr-xr-x | 249/CH18/EX18.2/18_02.sce | 17 | ||||
-rwxr-xr-x | 249/CH18/EX18.3/18_03.sce | 77 | ||||
-rwxr-xr-x | 249/CH21/EX21.1/21_01.sce | 87 | ||||
-rwxr-xr-x | 249/CH3/EX3.1/3_01.sce | 91 | ||||
-rwxr-xr-x | 249/CH3/EX3.2/3_02.sce | 63 | ||||
-rwxr-xr-x | 249/CH5/EX5.2/5_02.sce | 85 |
6 files changed, 244 insertions, 176 deletions
diff --git a/249/CH18/EX18.2/18_02.sce b/249/CH18/EX18.2/18_02.sce index 2725ac3f5..83fd045d7 100755 --- a/249/CH18/EX18.2/18_02.sce +++ b/249/CH18/EX18.2/18_02.sce @@ -1,5 +1,18 @@ clear clc +function [coefs]=regress(x,y) +coefs=[] + if (type(x) <> 1)|(type(y)<>1) then error(msprintf(gettext("%s: Wrong type for input arguments: Numerical expected.\n"),"regress")), end + lx=length(x) + if lx<>length(y) then error(msprintf(gettext("%s: Wrong size for both input arguments: same size expected.\n"),"regress")), end + if lx==0 then error(msprintf(gettext("%s: Wrong size for input argument #%d: Must be > %d.\n"),"regress", 1, 0)), end + x=matrix(x,lx,1) + y=matrix(y,lx,1) + xbar=sum(x)/lx + ybar=sum(y)/lx + coefs(2)=sum((x-xbar).*(y-ybar))/sum((x-xbar).^2) + coefs(1)=ybar-coefs(2)*xbar +endfunction //Pressure(atm) PAo=3.2; R=0.082;//litre.atm/mol.k @@ -25,6 +38,4 @@ coeff1=regress(CA_avg,rA) k=coeff1(2) printf("\n The rate of reaction(mol/hr.kg) is %f",k) printf("CA") -disp('The answer slightly differs from those given in book as regress fn is used for calculating slope and intercept') - - +disp('The answer slightly differs from those given in book as regress fn is used for calculating slope and intercept')
\ No newline at end of file diff --git a/249/CH18/EX18.3/18_03.sce b/249/CH18/EX18.3/18_03.sce index a281ee41e..6080fb0bd 100755 --- a/249/CH18/EX18.3/18_03.sce +++ b/249/CH18/EX18.3/18_03.sce @@ -1,33 +1,44 @@ -clear
-clc
-CAo=0.1;//mol/litre
-FAo=2;//mol/hr
-eA=3;
-CA=[0.074;0.06;0.044;0.029];//mol/litre
-W=[0.02;0.04;0.08;0.16];//kg
-//Gussing 1st order,plug flow rxn
-//(1+eA)*log(1/(1-XA))-eA*XA=k*(CAo*W/FAo)
-for i=1:4
-XA(i)=(CAo-CA(i))/(CAo+eA*CA(i));
-y(i)=(1+eA)*log(1/(1-XA(i)))-eA*XA(i);
-x(i)=CAo*W(i)/FAo;
-W_by_FAo(i)=W(i)/FAo;
-CAout_by_CAo(i)=CA(i)/CAo;
-XA1(i)=(1-CAout_by_CAo(i))/(1+eA*CAout_by_CAo(i));
-end
-plot(x,y)
-coeff3=regress(x,y);
-xlabel('CAoW/FAo'),ylabel('4ln(1/1-XA)-3XA')
-k=coeff3(2);
-printf("\n Part a,using integral method of analysis")
-printf("\n The rate of reaction(mol/litre) is %f",k)
-printf("CA")
-//Part b
-//plotting W_by_FAo vs XA1,the calculating rA=dXA/d(W/FAo) for last 3 points,we get
-rA=[5.62;4.13;2.715];
-coeff2=regress(CA(2:4),rA);
-printf("\n Part b,using differential method of analysis")
-printf("\n The rate of reaction(mol/litre) is %f",coeff2(2))
-printf("CA")
-
-
+clear +clc +function [coefs]=regress(x,y) +coefs=[] + if (type(x) <> 1)|(type(y)<>1) then error(msprintf(gettext("%s: Wrong type for input arguments: Numerical expected.\n"),"regress")), end + lx=length(x) + if lx<>length(y) then error(msprintf(gettext("%s: Wrong size for both input arguments: same size expected.\n"),"regress")), end + if lx==0 then error(msprintf(gettext("%s: Wrong size for input argument #%d: Must be > %d.\n"),"regress", 1, 0)), end + x=matrix(x,lx,1) + y=matrix(y,lx,1) + xbar=sum(x)/lx + ybar=sum(y)/lx + coefs(2)=sum((x-xbar).*(y-ybar))/sum((x-xbar).^2) + coefs(1)=ybar-coefs(2)*xbar +endfunction +CAo=0.1;//mol/litre +FAo=2;//mol/hr +eA=3; +CA=[0.074;0.06;0.044;0.029];//mol/litre +W=[0.02;0.04;0.08;0.16];//kg +//Gussing 1st order,plug flow rxn +//(1+eA)*log(1/(1-XA))-eA*XA=k*(CAo*W/FAo) +for i=1:4 +XA(i)=(CAo-CA(i))/(CAo+eA*CA(i)); +y(i)=(1+eA)*log(1/(1-XA(i)))-eA*XA(i); +x(i)=CAo*W(i)/FAo; +W_by_FAo(i)=W(i)/FAo; +CAout_by_CAo(i)=CA(i)/CAo; +XA1(i)=(1-CAout_by_CAo(i))/(1+eA*CAout_by_CAo(i)); +end +plot(x,y) +coeff3=regress(x,y); +xlabel('CAoW/FAo'),ylabel('4ln(1/1-XA)-3XA') +k=coeff3(2); +printf("\n Part a,using integral method of analysis") +printf("\n The rate of reaction(mol/litre) is %f",k) +printf("CA") +//Part b +//plotting W_by_FAo vs XA1,the calculating rA=dXA/d(W/FAo) for last 3 points,we get +rA=[5.62;4.13;2.715]; +coeff2=regress(CA(2:4),rA); +printf("\n Part b,using differential method of analysis") +printf("\n The rate of reaction(mol/litre) is %f",coeff2(2)) +printf("CA")
\ No newline at end of file diff --git a/249/CH21/EX21.1/21_01.sce b/249/CH21/EX21.1/21_01.sce index 71fe097be..d477a76e6 100755 --- a/249/CH21/EX21.1/21_01.sce +++ b/249/CH21/EX21.1/21_01.sce @@ -1,39 +1,48 @@ -clear
-clc
-t=[0;2;4;6];
-XA=[0.75;0.64;0.52;0.39];
-t1=4000;//kg.s/m3
-density_s=1500;//kg/m3
-De=5*10^-10;
-d=2.4*10^-3;
-//Assuming -rA=kCA*a,-da/dt=kd*a
-//For this rate a plot of ln(CAo/CA-1)vs t should give a straight line
-for i=1:4
- y(i)=log((1/(1-XA(i)))-1);
-end
-plot(y,t)
-xlabel('t')
-ylabel('ln(CAo/CA-1)')
-//Guessing No Intrusion of Diffusional Resistance
-//ln(CAo/CA-1)=ln(k*t1)-kd*t
-coeff =regress(t,y);
-kd=coeff(2);
-k=exp(coeff(1))/t1;
-L=d/6;
-Mt=L*sqrt(k*density_s/De);
-//Assuming Runs were made in regime of strong resistance to pore diffusion
-k1=((exp(coeff(1)))^2)*(L^2)*density_s/(t1*t1*De);
-kd1=-2*coeff(2);
-Mt=L*sqrt(k1*density_s/De);
-printf("\n Rate equation(mol/kg.s) in diffusion free regime with deactivation is %f ",k1)
-printf("CA*a with \n -da/dt(hr-1) is %f",kd1)
-printf("a")
-//In strong pore diffusion
-k2=k1*sqrt(De/(k1*density_s));
-printf("\n Rate equation(mol/kg.s) in strong pore diffusion resistance regime with deactivation is %f ",k2)
-printf("CA*a^0.5/L with \n -da/dt(hr-1) is %f",kd1)
-printf("a")
-
-
-
-
+clear +clc +function [coefs]=regress(x,y) +coefs=[] + if (type(x) <> 1)|(type(y)<>1) then error(msprintf(gettext("%s: Wrong type for input arguments: Numerical expected.\n"),"regress")), end + lx=length(x) + if lx<>length(y) then error(msprintf(gettext("%s: Wrong size for both input arguments: same size expected.\n"),"regress")), end + if lx==0 then error(msprintf(gettext("%s: Wrong size for input argument #%d: Must be > %d.\n"),"regress", 1, 0)), end + x=matrix(x,lx,1) + y=matrix(y,lx,1) + xbar=sum(x)/lx + ybar=sum(y)/lx + coefs(2)=sum((x-xbar).*(y-ybar))/sum((x-xbar).^2) + coefs(1)=ybar-coefs(2)*xbar +endfunction +t=[0;2;4;6]; +XA=[0.75;0.64;0.52;0.39]; +t1=4000;//kg.s/m3 +density_s=1500;//kg/m3 +De=5*10^-10; +d=2.4*10^-3; +//Assuming -rA=kCA*a,-da/dt=kd*a +//For this rate a plot of ln(CAo/CA-1)vs t should give a straight line +for i=1:4 + y(i)=log((1/(1-XA(i)))-1); +end +plot(y,t) +xlabel('t') +ylabel('ln(CAo/CA-1)') +//Guessing No Intrusion of Diffusional Resistance +//ln(CAo/CA-1)=ln(k*t1)-kd*t +coeff =regress(t,y); +kd=coeff(2); +k=exp(coeff(1))/t1; +L=d/6; +Mt=L*sqrt(k*density_s/De); +//Assuming Runs were made in regime of strong resistance to pore diffusion +k1=((exp(coeff(1)))^2)*(L^2)*density_s/(t1*t1*De); +kd1=-2*coeff(2); +Mt=L*sqrt(k1*density_s/De); +printf("\n Rate equation(mol/kg.s) in diffusion free regime with deactivation is %f ",k1) +printf("CA*a with \n -da/dt(hr-1) is %f",kd1) +printf("a") +//In strong pore diffusion +k2=k1*sqrt(De/(k1*density_s)); +printf("\n Rate equation(mol/kg.s) in strong pore diffusion resistance regime with deactivation is %f ",k2) +printf("CA*a^0.5/L with \n -da/dt(hr-1) is %f",kd1) +printf("a")
\ No newline at end of file diff --git a/249/CH3/EX3.1/3_01.sce b/249/CH3/EX3.1/3_01.sce index 1bbf163bd..4897377b9 100755 --- a/249/CH3/EX3.1/3_01.sce +++ b/249/CH3/EX3.1/3_01.sce @@ -1,39 +1,52 @@ -clear
-clc
-//Given
-t=[0 20 40 60 120 180 300];
-C_A=[10 8 6 5 3 2 1];
-CAo=10;
-//Guessing 1st order kinetics
-//This means log(CAo/C_A) vs t should give a straight line
-for i=1:7
- k(i)=log(CAo/C_A(i));
- CA_inv(i)=1/C_A(i);
-end
-//plot(t,k)
-//This doesn't give straight line.
-//Guessing 2nd Order Kinetics so
-//1/C_A vs t should give a straight line
-//plot(t,CA_inv)
-//Again this doesn't give a straight line
-//Guessing nth order kinetics and using fractional life method with F=80%
-//log Tf=log(0.8^(1-n)-1/(k(n-1)))+(1-n)logCAo
-//plot(t,C_A)
-
-//Picking different values of CAo
-//Time needed for 3 runs,,from graph
-T=[18.5;23;35];
-CAo=[10;5;2];
-for i=1:3
- CA(i)=0.8*CAo(i);
- log_Tf(i)=log10(T(i));
- log_CAo(i)=log10(CAo(i));
-end
-plot(log_CAo,log_Tf)
-xlabel('log CAo');ylabel('log t');
-coeff1=regress(log_CAo,log_Tf);
-n=1-coeff1(2);
-printf("From graph we get slope and intercept for calculating rate eqn")
-k1=((0.8^(1-n))-1)*(10^(1-n))/(18.5*(n-1));
-printf("\n The rate equation is given by %f",k1)
-printf("CA^1.4 mol/litre.sec")
+clear +clc +function [coefs]=regress(x,y) +coefs=[] + if (type(x) <> 1)|(type(y)<>1) then error(msprintf(gettext("%s: Wrong type for input arguments: Numerical expected.\n"),"regress")), end + lx=length(x) + if lx<>length(y) then error(msprintf(gettext("%s: Wrong size for both input arguments: same size expected.\n"),"regress")), end + if lx==0 then error(msprintf(gettext("%s: Wrong size for input argument #%d: Must be > %d.\n"),"regress", 1, 0)), end + x=matrix(x,lx,1) + y=matrix(y,lx,1) + xbar=sum(x)/lx + ybar=sum(y)/lx + coefs(2)=sum((x-xbar).*(y-ybar))/sum((x-xbar).^2) + coefs(1)=ybar-coefs(2)*xbar +endfunction +//Given +t=[0 20 40 60 120 180 300]; +C_A=[10 8 6 5 3 2 1]; +CAo=10; +//Guessing 1st order kinetics +//This means log(CAo/C_A) vs t should give a straight line +for i=1:7 + k(i)=log(CAo/C_A(i)); + CA_inv(i)=1/C_A(i); +end +//plot(t,k) +//This doesn't give straight line. +//Guessing 2nd Order Kinetics so +//1/C_A vs t should give a straight line +//plot(t,CA_inv) +//Again this doesn't give a straight line +//Guessing nth order kinetics and using fractional life method with F=80% +//log Tf=log(0.8^(1-n)-1/(k(n-1)))+(1-n)logCAo +//plot(t,C_A) + +//Picking different values of CAo +//Time needed for 3 runs,,from graph +T=[18.5;23;35]; +CAo=[10;5;2]; +for i=1:3 + CA(i)=0.8*CAo(i); + log_Tf(i)=log10(T(i)); + log_CAo(i)=log10(CAo(i)); +end +plot(log_CAo,log_Tf) +xlabel('log CAo');ylabel('log t'); +coeff1=regress(log_CAo,log_Tf); +n=1-coeff1(2); +printf("From graph we get slope and intercept for calculating rate eqn") +k1=((0.8^(1-n))-1)*(10^(1-n))/(18.5*(n-1)); +printf("\n The rate equation is given by %f",k1) +printf("CA^1.4 mol/litre.sec")
\ No newline at end of file diff --git a/249/CH3/EX3.2/3_02.sce b/249/CH3/EX3.2/3_02.sce index a2a1ef1b6..bb129725c 100755 --- a/249/CH3/EX3.2/3_02.sce +++ b/249/CH3/EX3.2/3_02.sce @@ -1,26 +1,37 @@ -clear
-clc
-CA=[10;8;6;5;3;2;1];//mol/litre
-T=[0;20;40;60;120;180;300];//sec
-//plot(T,CA)
-//xlabel('Time(sec)');ylabel('CA(mol/litre)');
-//From graph y=-dCA/dt at different points are
-y=[-0.1333;-0.1031;-0.0658;-0.0410;-0.0238;-0.0108;-0.0065];
-//Guessing nth rate order
-//rA=kCA^n
-//log(-dCA/dt)=logk+nlogCA
-for i=1:7
-log_y(i)=log10(y(i));
-log_CA(i)=log10(CA(i));
-end
-plot(log_CA,log_y)
-xlabel('logCA');ylabel('log(-dCA/dt)')
-coeff1=regress(log_CA,log_y);
-n=coeff1(2);
-k=-10^(coeff1(1));
-printf("\n After doing linear regression,the slope and intercept of the graph is %f , %f",coeff(2),coeff(1))
-printf("\n The rate equation is therefore given by %f",k)
-printf("CA^1.375 mol/litre.sec")
-disp('The answer slightly differs from those given in book as regress fn is used for calculating slope and intercept')
-
-
+clear +clc +function [coefs]=regress(x,y) +coefs=[] + if (type(x) <> 1)|(type(y)<>1) then error(msprintf(gettext("%s: Wrong type for input arguments: Numerical expected.\n"),"regress")), end + lx=length(x) + if lx<>length(y) then error(msprintf(gettext("%s: Wrong size for both input arguments: same size expected.\n"),"regress")), end + if lx==0 then error(msprintf(gettext("%s: Wrong size for input argument #%d: Must be > %d.\n"),"regress", 1, 0)), end + x=matrix(x,lx,1) + y=matrix(y,lx,1) + xbar=sum(x)/lx + ybar=sum(y)/lx + coefs(2)=sum((x-xbar).*(y-ybar))/sum((x-xbar).^2) + coefs(1)=ybar-coefs(2)*xbar +endfunction +CA=[10;8;6;5;3;2;1];//mol/litre +T=[0;20;40;60;120;180;300];//sec +//plot(T,CA) +//xlabel('Time(sec)');ylabel('CA(mol/litre)'); +//From graph y=-dCA/dt at different points are +y=[-0.1333;-0.1031;-0.0658;-0.0410;-0.0238;-0.0108;-0.0065]; +//Guessing nth rate order +//rA=kCA^n +//log(-dCA/dt)=logk+nlogCA +for i=1:7 +log_y(i)=log10(y(i)); +log_CA(i)=log10(CA(i)); +end +plot(log_CA,log_y) +xlabel('logCA');ylabel('log(-dCA/dt)') +coeff1=regress(log_CA,log_y); +n=coeff1(2); +k=-10^(coeff1(1)); +printf("\n After doing linear regression,the slope and intercept of the graph is %f , %f",coeff(2),coeff(1)) +printf("\n The rate equation is therefore given by %f",k) +printf("CA^1.375 mol/litre.sec") +disp('The answer slightly differs from those given in book as regress fn is used for calculating slope and intercept')
\ No newline at end of file diff --git a/249/CH5/EX5.2/5_02.sce b/249/CH5/EX5.2/5_02.sce index 0f9eb6da2..be0f4e030 100755 --- a/249/CH5/EX5.2/5_02.sce +++ b/249/CH5/EX5.2/5_02.sce @@ -1,37 +1,50 @@ -clear
-clc
-//Given
-//Volumetric flow rates(litre/hr)
-vo=[10;3;1.2;0.5];
-//Concentrations (millimol/litre)
-CA=[85.7;66.7;50;33.4];
-CAo=100;
-//Volume(litre)
-V=0.1;
-//For the stoichiometry 2A-->R
-//Expansion factor is
-e=(1-2)/2;
-//Initialization
-XA=zeros(4,1);
-rA=zeros(4,1);
-//Relation between concentration and conversion
-for i=1:4
-XA(i)=(1-CA(i)/CAo)/(1+e*CA(i)/CAo);
-//Rate of reaction is given by
-rA(i)=vo(i)*CAo*XA(i)/V;
-//Testing nth order kinetics
-//-rA=k*CA^n
-//log(-rA)=logk+nlog(CA)
-m(i)=log10(CA(i));
-n(i)=log10(rA(i));
-end
-//For nth order plot between n & m should give a straight line
-plot(m,n)
-coefs=regress(m,n);
-printf("Intercept of the graph is %f\n",coefs(1))
-printf("Slope of the graph is %f\n",coefs(2))
-k=10^coefs(1)
-n=coefs(2)
-printf("\n Taking n=2,rate of equation(millimol/litre.hr) is %f",k)
-printf("CA^2 \n")
+clear +clc +function [coefs]=regress(x,y) +coefs=[] + if (type(x) <> 1)|(type(y)<>1) then error(msprintf(gettext("%s: Wrong type for input arguments: Numerical expected.\n"),"regress")), end + lx=length(x) + if lx<>length(y) then error(msprintf(gettext("%s: Wrong size for both input arguments: same size expected.\n"),"regress")), end + if lx==0 then error(msprintf(gettext("%s: Wrong size for input argument #%d: Must be > %d.\n"),"regress", 1, 0)), end + x=matrix(x,lx,1) + y=matrix(y,lx,1) + xbar=sum(x)/lx + ybar=sum(y)/lx + coefs(2)=sum((x-xbar).*(y-ybar))/sum((x-xbar).^2) + coefs(1)=ybar-coefs(2)*xbar +endfunction +//Given +//Volumetric flow rates(litre/hr) +vo=[10;3;1.2;0.5]; +//Concentrations (millimol/litre) +CA=[85.7;66.7;50;33.4]; +CAo=100; +//Volume(litre) +V=0.1; +//For the stoichiometry 2A-->R +//Expansion factor is +e=(1-2)/2; +//Initialization +XA=zeros(4,1); +rA=zeros(4,1); +//Relation between concentration and conversion +for i=1:4 +XA(i)=(1-CA(i)/CAo)/(1+e*CA(i)/CAo); +//Rate of reaction is given by +rA(i)=vo(i)*CAo*XA(i)/V; +//Testing nth order kinetics +//-rA=k*CA^n +//log(-rA)=logk+nlog(CA) +m(i)=log10(CA(i)); +n(i)=log10(rA(i)); +end +//For nth order plot between n & m should give a straight line +plot(m,n) +coefs=regress(m,n); +printf("Intercept of the graph is %f\n",coefs(1)) +printf("Slope of the graph is %f\n",coefs(2)) +k=10^coefs(1) +n=coefs(2) +printf("\n Taking n=2,rate of equation(millimol/litre.hr) is %f",k) +printf("CA^2 \n") disp('The sol slightly differ from that given in book because regress fn is used to calculate the slope')
\ No newline at end of file |