diff options
Diffstat (limited to '249/CH21/EX21.1/21_01.sce')
-rwxr-xr-x | 249/CH21/EX21.1/21_01.sce | 87 |
1 files changed, 48 insertions, 39 deletions
diff --git a/249/CH21/EX21.1/21_01.sce b/249/CH21/EX21.1/21_01.sce index 71fe097be..d477a76e6 100755 --- a/249/CH21/EX21.1/21_01.sce +++ b/249/CH21/EX21.1/21_01.sce @@ -1,39 +1,48 @@ -clear
-clc
-t=[0;2;4;6];
-XA=[0.75;0.64;0.52;0.39];
-t1=4000;//kg.s/m3
-density_s=1500;//kg/m3
-De=5*10^-10;
-d=2.4*10^-3;
-//Assuming -rA=kCA*a,-da/dt=kd*a
-//For this rate a plot of ln(CAo/CA-1)vs t should give a straight line
-for i=1:4
- y(i)=log((1/(1-XA(i)))-1);
-end
-plot(y,t)
-xlabel('t')
-ylabel('ln(CAo/CA-1)')
-//Guessing No Intrusion of Diffusional Resistance
-//ln(CAo/CA-1)=ln(k*t1)-kd*t
-coeff =regress(t,y);
-kd=coeff(2);
-k=exp(coeff(1))/t1;
-L=d/6;
-Mt=L*sqrt(k*density_s/De);
-//Assuming Runs were made in regime of strong resistance to pore diffusion
-k1=((exp(coeff(1)))^2)*(L^2)*density_s/(t1*t1*De);
-kd1=-2*coeff(2);
-Mt=L*sqrt(k1*density_s/De);
-printf("\n Rate equation(mol/kg.s) in diffusion free regime with deactivation is %f ",k1)
-printf("CA*a with \n -da/dt(hr-1) is %f",kd1)
-printf("a")
-//In strong pore diffusion
-k2=k1*sqrt(De/(k1*density_s));
-printf("\n Rate equation(mol/kg.s) in strong pore diffusion resistance regime with deactivation is %f ",k2)
-printf("CA*a^0.5/L with \n -da/dt(hr-1) is %f",kd1)
-printf("a")
-
-
-
-
+clear +clc +function [coefs]=regress(x,y) +coefs=[] + if (type(x) <> 1)|(type(y)<>1) then error(msprintf(gettext("%s: Wrong type for input arguments: Numerical expected.\n"),"regress")), end + lx=length(x) + if lx<>length(y) then error(msprintf(gettext("%s: Wrong size for both input arguments: same size expected.\n"),"regress")), end + if lx==0 then error(msprintf(gettext("%s: Wrong size for input argument #%d: Must be > %d.\n"),"regress", 1, 0)), end + x=matrix(x,lx,1) + y=matrix(y,lx,1) + xbar=sum(x)/lx + ybar=sum(y)/lx + coefs(2)=sum((x-xbar).*(y-ybar))/sum((x-xbar).^2) + coefs(1)=ybar-coefs(2)*xbar +endfunction +t=[0;2;4;6]; +XA=[0.75;0.64;0.52;0.39]; +t1=4000;//kg.s/m3 +density_s=1500;//kg/m3 +De=5*10^-10; +d=2.4*10^-3; +//Assuming -rA=kCA*a,-da/dt=kd*a +//For this rate a plot of ln(CAo/CA-1)vs t should give a straight line +for i=1:4 + y(i)=log((1/(1-XA(i)))-1); +end +plot(y,t) +xlabel('t') +ylabel('ln(CAo/CA-1)') +//Guessing No Intrusion of Diffusional Resistance +//ln(CAo/CA-1)=ln(k*t1)-kd*t +coeff =regress(t,y); +kd=coeff(2); +k=exp(coeff(1))/t1; +L=d/6; +Mt=L*sqrt(k*density_s/De); +//Assuming Runs were made in regime of strong resistance to pore diffusion +k1=((exp(coeff(1)))^2)*(L^2)*density_s/(t1*t1*De); +kd1=-2*coeff(2); +Mt=L*sqrt(k1*density_s/De); +printf("\n Rate equation(mol/kg.s) in diffusion free regime with deactivation is %f ",k1) +printf("CA*a with \n -da/dt(hr-1) is %f",kd1) +printf("a") +//In strong pore diffusion +k2=k1*sqrt(De/(k1*density_s)); +printf("\n Rate equation(mol/kg.s) in strong pore diffusion resistance regime with deactivation is %f ",k2) +printf("CA*a^0.5/L with \n -da/dt(hr-1) is %f",kd1) +printf("a")
\ No newline at end of file |