summaryrefslogtreecommitdiff
path: root/1757/CH6
diff options
context:
space:
mode:
Diffstat (limited to '1757/CH6')
-rwxr-xr-x1757/CH6/EX6.1/EX6_1.sce22
-rwxr-xr-x1757/CH6/EX6.10/EX6_10.sce27
-rwxr-xr-x1757/CH6/EX6.11/EX6_11.sce31
-rwxr-xr-x1757/CH6/EX6.12/EX6_12.sce11
-rwxr-xr-x1757/CH6/EX6.13/EX6_13.sce15
-rwxr-xr-x1757/CH6/EX6.14/EX6_14.sce30
-rwxr-xr-x1757/CH6/EX6.15/EX6_15.sce37
-rwxr-xr-x1757/CH6/EX6.16/EX6_16.sce48
-rwxr-xr-x1757/CH6/EX6.17/EX6_17.sce30
-rwxr-xr-x1757/CH6/EX6.18/EX6_18.sce30
-rwxr-xr-x1757/CH6/EX6.19/EX6_19.sce20
-rwxr-xr-x1757/CH6/EX6.2/EX6_2.sce15
-rwxr-xr-x1757/CH6/EX6.20/EX6_20.sce25
-rwxr-xr-x1757/CH6/EX6.21/EX6_21.sce11
-rwxr-xr-x1757/CH6/EX6.22/EX6_22.sce15
-rwxr-xr-x1757/CH6/EX6.23/EX6_23.sce20
-rwxr-xr-x1757/CH6/EX6.24/EX6_24.sce25
-rwxr-xr-x1757/CH6/EX6.25/EX6_25.sce18
-rwxr-xr-x1757/CH6/EX6.26/EX6_26.sce21
-rwxr-xr-x1757/CH6/EX6.27/EX6_27.sce20
-rwxr-xr-x1757/CH6/EX6.28/EX6_28.sce20
-rwxr-xr-x1757/CH6/EX6.29/EX6_29.sce16
-rwxr-xr-x1757/CH6/EX6.3/EX6_3.sce30
-rwxr-xr-x1757/CH6/EX6.30/EX6_30.sce18
-rwxr-xr-x1757/CH6/EX6.31/EX6_31.sce18
-rwxr-xr-x1757/CH6/EX6.32/EX6_32.sce19
-rwxr-xr-x1757/CH6/EX6.33/EX6_33.sce17
-rwxr-xr-x1757/CH6/EX6.34/EX6_34.sce13
-rwxr-xr-x1757/CH6/EX6.35/EX6_35.sce19
-rwxr-xr-x1757/CH6/EX6.36/EX6_36.sce10
-rwxr-xr-x1757/CH6/EX6.37/EX6_37.sce14
-rwxr-xr-x1757/CH6/EX6.38/EX6_38.sce18
-rwxr-xr-x1757/CH6/EX6.39/EX6_39.sce34
-rwxr-xr-x1757/CH6/EX6.4/EX6_4.sce24
-rwxr-xr-x1757/CH6/EX6.40/EX6_40.sce22
-rwxr-xr-x1757/CH6/EX6.41/EX6_41.sce15
-rwxr-xr-x1757/CH6/EX6.42/EX6_42.sce15
-rwxr-xr-x1757/CH6/EX6.43/EX6_43.sce20
-rwxr-xr-x1757/CH6/EX6.5/EX6_5.sce27
-rwxr-xr-x1757/CH6/EX6.6/EX6_6.sce29
-rwxr-xr-x1757/CH6/EX6.7/EX6_7.sce29
-rwxr-xr-x1757/CH6/EX6.8/EX6_8.sce44
-rwxr-xr-x1757/CH6/EX6.9/EX6_9.sce48
43 files changed, 990 insertions, 0 deletions
diff --git a/1757/CH6/EX6.1/EX6_1.sce b/1757/CH6/EX6.1/EX6_1.sce
new file mode 100755
index 000000000..687474bf5
--- /dev/null
+++ b/1757/CH6/EX6.1/EX6_1.sce
@@ -0,0 +1,22 @@
+//Example6.1 // design an inverting amplifier with a closed loop voltage gain of Av = -5
+clc;
+clear;
+close;
+Av = -5 ;
+Is = 5*10^-6 ; // A
+Rs = 1*10^3 ; // ohm
+// input voltage source Vs = sinwt volts
+
+// in an inverting amplifier frequency effect is neglected then i/p volt Vin = 1 V and total resistance equal to Rs+R1
+
+// the input current can be written as Iin=Is
+// Is = (Vin/Rs+R1);
+Iin = Is;
+Vin = 1 ; // V
+R1 = (1-(Iin*Rs))/Iin ;
+disp('the value of resistance R1 is = '+string(R1)+' ohm');
+
+// closed loop voltage gain of an inverting amplifier
+//Av = -(R2/Rs+R1)
+R2 = -(Av*(Rs+R1));
+disp('the value of resistance R2 is = '+string(R2)+' ohm');
diff --git a/1757/CH6/EX6.10/EX6_10.sce b/1757/CH6/EX6.10/EX6_10.sce
new file mode 100755
index 000000000..2f69e7ff4
--- /dev/null
+++ b/1757/CH6/EX6.10/EX6_10.sce
@@ -0,0 +1,27 @@
+//Example6.10 // To determine the range of the differential voltage gain
+clc;
+clear;
+close;
+//R1 = 1 K ohm to 25 K ohm ;
+R2 = 50 ; // K ohm
+R3 = 10 ; // K ohm
+R4 = 10 ; // K ohm
+
+// the output of instrumentation amplifier is given by
+//Vo = (R4/R3)*(1+(2*R2/R1))*(VI@-VI1);
+
+// the differential voltage gain of the instrumentation amplifier can be written as
+//Av = (Vo/(VI2-VI1)) = (R4/R3)*(1+(2R2/R1));
+
+// For R1 = 1 K ohm the maximum differential voltage gain of the instrumentation amplifier is
+R1 = 1 ; // K ohm
+Av = (R4/R3)*(1+(2*R2/R1));
+disp('the maximum differential voltage gain of the instrumentation amplifier is = '+string(Av)+ ' ');
+
+// For R1 = 25 K ohm the mminimum differential voltage gain of the instrumentation amplifier is
+R1 = 25 ; // K ohm
+Av = (R4/R3)*(1+(2*R2/R1));
+disp('the minimum differential voltage gain of the instrumentation amplifier is = '+string(Av)+ ' ');
+
+disp(' the range of the differential voltage gain of the instrumentation amplifier is ');
+disp(' 5 <= Av <= 101 ');
diff --git a/1757/CH6/EX6.11/EX6_11.sce b/1757/CH6/EX6.11/EX6_11.sce
new file mode 100755
index 000000000..7556551eb
--- /dev/null
+++ b/1757/CH6/EX6.11/EX6_11.sce
@@ -0,0 +1,31 @@
+//Example6.11 // To design an instrumentation amplifier
+clc;
+clear;
+close;
+// 4 <= Av <= 1000 ; gain
+Ad = 2 ;
+Res = 100 ; // K ohm
+
+// we cosider the variable resistance is R1 , the maximum and the minimum range of variable resistance
+// R1min = R1 ;
+// R1max = R1+100 ;
+
+// the gain of difference amplifier
+//A3 = Ad = Vo/(Vo2-Vo1) = (R4/R3)
+
+// the maximum range of differential voltage gain Avmax = 1000 when R1min = R1
+//Avmax = R4/R3*(1+(2*R2/R1min));
+
+// by solvin we get following equation
+// 499*R1-2*R2=0 equation 1
+
+// the maximum range of differential voltage gain Avmin =4 when R1max = R1+100 K ohm
+// Avmin = (R4/R3)*(1+(2R2/R1max));
+
+// by solving above equation we get
+// R1 -2 R2 = -200 K ohm equation 2
+
+//by solving equation 1 and 2 we get
+R1 = 401 ; // ohm
+R2 = 100.2 ; // ohm
+disp('The variable resistance R1 varies is 401 ohm <= R1 <= 100.2 K-ohm ') ;
diff --git a/1757/CH6/EX6.12/EX6_12.sce b/1757/CH6/EX6.12/EX6_12.sce
new file mode 100755
index 000000000..7c027b323
--- /dev/null
+++ b/1757/CH6/EX6.12/EX6_12.sce
@@ -0,0 +1,11 @@
+//Example6.12 // Determine the time constant of the integrator
+clc;
+clear;
+close;
+Vo = 10 ;
+t = 2*10^-3 ;
+VI = -1 ; // at t =0 ;
+
+// The output voltage of an integrator is define as
+RC = t/10 ;
+disp(' The time constant of the given filter is RC = '+string(RC)+ ' sec ');
diff --git a/1757/CH6/EX6.13/EX6_13.sce b/1757/CH6/EX6.13/EX6_13.sce
new file mode 100755
index 000000000..36eaf0f70
--- /dev/null
+++ b/1757/CH6/EX6.13/EX6_13.sce
@@ -0,0 +1,15 @@
+//Example6.13 // Determine the time constant of the integrator
+clc;
+clear;
+close;
+Vo = 20 ;
+t = 1*10^-3 ;
+VI = -1 ; // at t =0 ;
+
+// The output voltage of an integrator is define as
+RC = t/10 ;
+disp(' The time constant of the given filter is RC = '+string(RC)+ ' sec ');
+
+R = 1*10^3 ; // we assume
+C = RC/R ;
+disp('The capacitor value is = '+string(C)+ ' F');
diff --git a/1757/CH6/EX6.14/EX6_14.sce b/1757/CH6/EX6.14/EX6_14.sce
new file mode 100755
index 000000000..15acf374b
--- /dev/null
+++ b/1757/CH6/EX6.14/EX6_14.sce
@@ -0,0 +1,30 @@
+//Example6.14 // to design a summing amplifier
+clc;
+clear;
+close;
+
+// the output of the summing amplifier is given by
+//Vo = -R2*((VIa/RIa)+(VIb/RIb)+(VIc/RIc)+(VId/RId)); equation 1
+
+// the equation given is
+//Vo = -(3*VIa+12*VIb+15*VIc+18*VId); equation 2
+
+// comparing equation 1 and 2
+//R2/RIa = 3 ;
+//R2/RIb = 12 ;
+//R2/RIc = 15 ;
+//R2/RId = 18 ;
+
+// the feedback resistance R2= 270 K ohm
+R2 = 270 ; // K ohm
+RIa = R2/3 ;
+disp('The value of resistance RIa is = '+string(RIa)+ ' K ohm ');
+
+RIb = R2/12 ;
+disp('The value of resistance RIb is = '+string(RIb)+ ' K ohm ');
+
+RIc = R2/15 ;
+disp('The value of resistance RIc is = '+string(RIc)+ ' K ohm ');
+
+RId = R2/18 ;
+disp('The value of resistance RId is = '+string(RId)+ ' K ohm ');
diff --git a/1757/CH6/EX6.15/EX6_15.sce b/1757/CH6/EX6.15/EX6_15.sce
new file mode 100755
index 000000000..ea51d1576
--- /dev/null
+++ b/1757/CH6/EX6.15/EX6_15.sce
@@ -0,0 +1,37 @@
+//Example6.15 // for the instrumentation amplifier find Vo1 , Vo2 , Vo
+clc;
+clear;
+close;
+// Vi1 = -25 sin wt ; // mV
+// Vi2 = 25 sin wt ; // mV
+R1 = 10*10^3 ;
+R2 = 20*10^3 ;
+R3 = 20*10^3 ;
+R4 = 10*10^3 ;
+
+// the output of first op-amp A1 is given by
+// Vo1 = (1+(R2/R1))*Vi1-(R2/R1)*Vi2 ;
+//by solving above equation we get
+disp('The output of first op-amp A1 is = -275*sin wt mV ');
+
+// the output of second op-amp A2 is given by
+// Vo2 = (1+(R2/R1))*Vi2-(R2/R1)*Vi1 ;
+//by solving above equation we get
+disp('The output of second op-amp A2 is = 275*sin wt mV ');
+
+// the output of third op-amp A3 is given by
+// Vo = (R4/R3)-(1+(2R2/R1)*(Vi2-Vi1) ;
+//by solving above equation we get
+disp('The output of third op-amp A3 is = 825*sin wt mV ');
+
+// current through the resistor R1 and R2 is
+//i = (Vi1-Vi2)/R1 ;
+disp('current through the resistor R1 and R2 is = 5 sin wt uA ');
+
+// current through the non-inverting terminal resistor R3 and R4
+//i3 = Vo2/(R3+R4);
+disp('current through the non-inverting terminal resistor R3 and R4 = 5.5 sin wt uA ');
+
+// current through the inverting terminal resistor R3 and R4
+//i2 = Vo1-(R3/(R3+R4))*Vo2/R3 ;
+disp('current through the inverting terminal resistor R3 and R4 = 22 sin wt uA ');
diff --git a/1757/CH6/EX6.16/EX6_16.sce b/1757/CH6/EX6.16/EX6_16.sce
new file mode 100755
index 000000000..a98bea6d6
--- /dev/null
+++ b/1757/CH6/EX6.16/EX6_16.sce
@@ -0,0 +1,48 @@
+//Example6.16 // for the a current to voltage converter show a) Rin = (Rf/1+Aop) b) Rf = 10 K ohm Aop = 1000
+clc;
+clear;
+close;
+
+//a) The input resistance given as
+//Rin = (Rf)/(1+Aop) ;
+
+// The input resistance of the circuit can be written as
+//Rin = (V1/i!);
+
+// the feedback current of the given circuit is defined as
+//i1 =(V1-Vo)/RF ;
+
+// the feedback resistance RF is
+//RF =(V1-Vo)/i1 ;
+
+// The output voltage Vo is
+//Vo = -Aop*V1 ;
+
+//by using this output feedback currenty i1 can be reformed as
+//i1 = (V1-(-Aop*V1))/RF ;
+
+//i1 = V1*(1+Aop)/RF ;
+
+// Then Rin Becomes
+//Rin =Rf/(1+Aop);
+
+Rf =10*10^3 ;
+Aop = 1000 ;
+
+// the input current and output voltage of the circuit are defined as
+//i1 =(Rs)/(Rs+Rin) ;
+// Vo = -(Aop*(RF/1+Aop))*i1 ;
+
+//the input resistance Rin is
+Rin =(Rf/(1+Aop)) ;
+
+// subsituting the value of RF Aop Rin and Vo we get
+RF = 10 ;
+Rin = RF/(1+Aop)
+disp('The input resistance Rin is = '+string(Rin)+ ' ohm ');
+
+Aop = 1000 ;
+//(1000/1001)*(Rs/(Rs*0.00999))> 0.99 ;
+// by solving above equation we get
+Rs = 1.099 ; // K ohm
+disp(' The value of Resistance Rs is = '+string(Rs)+ ' K ohm ');
diff --git a/1757/CH6/EX6.17/EX6_17.sce b/1757/CH6/EX6.17/EX6_17.sce
new file mode 100755
index 000000000..01991ea68
--- /dev/null
+++ b/1757/CH6/EX6.17/EX6_17.sce
@@ -0,0 +1,30 @@
+//Example6.17 // determine the closed loop gain
+clc;
+clear;
+close;
+
+// the output of the voltage follower is given as
+//Vo = Aop(V1-Vo);
+
+// the closed loop gain of the voltage follower
+//A = 1/(1+(1/Aop));
+
+// for Aop = 10^4 closed loop gain
+Aop = 10^4 ;
+A = 1/(1+(1/Aop));
+disp('for Aop = 10^4 closed loop gain is = '+string(A)+ ' ');
+
+// for Aop = 10^3 closed loop gain
+Aop = 10^3 ;
+A = 1/(1+(1/Aop));
+disp('for Aop = 10^3 closed loop gain is = '+string(A)+ ' ');
+
+// for Aop = 10^2 closed loop gain
+Aop = 10^2 ;
+A = 1/(1+(1/Aop));
+disp('for Aop = 10^2 closed loop gain is = '+string(A)+ ' ');
+
+// for Aop = 10^1 closed loop gain
+Aop = 10^1 ;
+A = 1/(1+(1/Aop));
+disp('for Aop = 10^1 closed loop gain is = '+string(A)+ ' ');
diff --git a/1757/CH6/EX6.18/EX6_18.sce b/1757/CH6/EX6.18/EX6_18.sce
new file mode 100755
index 000000000..33bba91dd
--- /dev/null
+++ b/1757/CH6/EX6.18/EX6_18.sce
@@ -0,0 +1,30 @@
+//Example6.18 // To determine the output voltage of integrator
+clc;
+clear;
+close;
+Vin = 1 ;
+R = 150*10^3 ;// ohm
+C = 1*10^-9 ; // F
+
+// the output voltage of an integrator is given as
+//Vo = (fc/f)*Vin ;
+
+//fc = 1/(2*%pi*R*C);
+
+//Vo = (1/(2*%pi*R*C*f))*Vin;
+
+//for the frequency f = 10 Hz the output is
+f = 10 ; // Hz
+Vo = (1/(2*%pi*R*C*f))*Vin;
+disp('for the frequency f = 10 Hz the output is = '+string(Vo)+ ' V ');
+
+//for the frequency f = 1000 Hz the output is
+f = 1000 ; // Hz
+Vo = (1/(2*%pi*R*C*f))*Vin;
+disp('for the frequency f = 1000 Hz the output is = '+string(Vo)+ ' V ');
+
+//for the frequency f = 10000 Hz the output is
+f = 10000 ; // Hz
+Vo = (1/(2*%pi*R*C*f))*Vin;
+disp('for the frequency f = 10000 Hz the output is = '+string(Vo)+ ' V ');
+
diff --git a/1757/CH6/EX6.19/EX6_19.sce b/1757/CH6/EX6.19/EX6_19.sce
new file mode 100755
index 000000000..368c3b694
--- /dev/null
+++ b/1757/CH6/EX6.19/EX6_19.sce
@@ -0,0 +1,20 @@
+//Example6.19 // To determine the magnitude gain of the integrator
+clc;
+clear;
+close;
+Vin = 1 ;
+f = 50*10^3 ;
+Rf = 120*10^3 ;
+R = 10*10^3 ;
+C = 0.1*10^-9 ;
+
+// the magnitude gain of the integrator is given by
+//A = (Rf/R)/(sqrt(1+(f/fc)^2));
+
+// the cutoff frequency of the integrator
+fc = 1/(2*%pi*Rf*C);
+disp('The cutoff frequency of the integrator is = '+string(fc)+ ' Hz');
+
+
+A = (Rf/R)/(sqrt(1+(f/fc)^2));
+disp('The gain of the integrator is = '+string(A)+ ' ');
diff --git a/1757/CH6/EX6.2/EX6_2.sce b/1757/CH6/EX6.2/EX6_2.sce
new file mode 100755
index 000000000..d8fb5f7ba
--- /dev/null
+++ b/1757/CH6/EX6.2/EX6_2.sce
@@ -0,0 +1,15 @@
+//Example6.2 // design an inverting amplifier with a closed loop voltage gain of Av = 10
+clc;
+clear;
+close;
+Av = 10 ;
+Vin = 0.8 ; //V
+Iin = 100*10^-6 ; // A
+// in an non- inverting amplifier the input voltage Vin=V1=V2 because of vortual short effect then the i/p current In = Vin/R1
+R1 = Vin/Iin;
+disp('the value of resistance R1 is = '+string(R1)+' ohm');
+
+// closed loop voltage gain of an non-inverting amplifier
+//Av = Vo/Vin = (1+R2/R1)
+R2 = (Av-1)*R1;
+disp('the value of resistance R2 is = '+string(R2)+' ohm');
diff --git a/1757/CH6/EX6.20/EX6_20.sce b/1757/CH6/EX6.20/EX6_20.sce
new file mode 100755
index 000000000..bddfc5e34
--- /dev/null
+++ b/1757/CH6/EX6.20/EX6_20.sce
@@ -0,0 +1,25 @@
+//Example6.20 // To determine the magnitude gain of the differentiator
+clc;
+clear;
+close;
+Vin = 1 ;
+f = 50*10^3 ;
+R = 75*10^3 ;
+R1 = 50*10^3 ;
+C = 0.1*10^-9 ;
+
+// the magnitude gain of the differentiator is given by
+//A = (f/fa)/(sqrt(1+(f/fb)^2));
+
+// the break frequency fa is defined as
+fa = 1/(2*%pi*R1*C) ;
+disp('the break frequency fa is = '+string(fa)+ ' Hz ');
+
+// the break frequency fb is defined as
+fb = 1/(2*%pi*R*C) ;
+disp('the break frequency fb is = '+string(fb)+ ' Hz ');
+
+
+A = (f/fa)/(sqrt(1+(f/fb)^2));
+disp('The gain of the differentiator is = '+string(A)+ ' ');
+
diff --git a/1757/CH6/EX6.21/EX6_21.sce b/1757/CH6/EX6.21/EX6_21.sce
new file mode 100755
index 000000000..b8f0b3b46
--- /dev/null
+++ b/1757/CH6/EX6.21/EX6_21.sce
@@ -0,0 +1,11 @@
+// Example6.21 // to determine the input voltage of an op-amp
+clc;
+clear;
+close;
+Vo = 2 ; // V
+R1 = 20*10^3 ; // ohm
+R2 = 1*10^6 ; // ohm
+
+// the input voltage of an op-amp
+Vin = -(R1/R2)*Vo ;
+disp('The input voltage of an op-amp is = '+string(Vin)+ ' V');
diff --git a/1757/CH6/EX6.22/EX6_22.sce b/1757/CH6/EX6.22/EX6_22.sce
new file mode 100755
index 000000000..05ec1beda
--- /dev/null
+++ b/1757/CH6/EX6.22/EX6_22.sce
@@ -0,0 +1,15 @@
+//Example6.22 // To determine the output voltage
+clc;
+clear;
+close;
+Vin = 2 ;
+R2 = 20*10^3 ;
+R1 = 2*10^3 ;
+
+// the output voltage of follower Vo1 is
+Vo1 = Vin ;
+disp('the output voltage of follower Vo1 is = '+string(Vo1)+ ' V');
+// the output voltage of an inverting amplifier
+Vo = -(R2/R1)*Vo1 ;
+disp('The output voltage of an inverting amplifier is = '+string(Vo)+ ' V ');
+
diff --git a/1757/CH6/EX6.23/EX6_23.sce b/1757/CH6/EX6.23/EX6_23.sce
new file mode 100755
index 000000000..0274f119a
--- /dev/null
+++ b/1757/CH6/EX6.23/EX6_23.sce
@@ -0,0 +1,20 @@
+// Example6.23 // to determine the output voltage of an op-amp
+clc;
+clear;
+close;
+Vin = 5 ; // V
+R1 = 25*10^3 ; // ohm
+R2 = 75*10^3 ; // ohm
+
+// in this problem op-amp A1 perform the voltage follower and op-amp A2 perform inverting amplifier and op-amp A3 perform non-inverting amplifier
+
+// the output voltage of follower op-amp A1
+Vo1 = Vin ;
+
+// the output of the inverting amplifier A2
+Vo2 = -((R2/R1)*Vo1) ;
+disp('The output of the inverting amplifier is = '+string(Vo2)+ ' V');
+
+// the output of the non-inverting amplifier A3
+Vo =(1+(R2/R1))*Vo1 ;
+disp('The output of the non-inverting amplifier is = '+string(Vo)+ ' V');
diff --git a/1757/CH6/EX6.24/EX6_24.sce b/1757/CH6/EX6.24/EX6_24.sce
new file mode 100755
index 000000000..9eb5a0092
--- /dev/null
+++ b/1757/CH6/EX6.24/EX6_24.sce
@@ -0,0 +1,25 @@
+//Example6.24 // To determine the output voltage
+clc;
+clear;
+close;
+Vin = 2.5 ;
+Rf = 100*10^3 ;
+R1 = 10*10^3 ;
+RI1 = 25*10^3 ;
+RI2 = 10*10^3 ;
+R2 = 100*10^3 ;
+
+// the output voltage of an inverting amplifier
+Vo1 = (1+(R2/R1))*Vin ; ;
+disp('The output voltage of an inverting amplifier is = '+string(Vo1)+ ' V ');
+
+// the output voltage of follower Vo2 is
+Vo2 = Vin ;
+disp('the output voltage of follower Vo1 is = '+string(Vo2)+ ' V');
+
+// the output of the inverting summing amplifier
+R2 = 75*10^3 ;
+Vo = R2*((Vo1/RI1)+(Vo2/RI2));
+disp('the output of the inverting summing amplifier is = '+string(Vo)+ ' V ');
+
+
diff --git a/1757/CH6/EX6.25/EX6_25.sce b/1757/CH6/EX6.25/EX6_25.sce
new file mode 100755
index 000000000..760734a78
--- /dev/null
+++ b/1757/CH6/EX6.25/EX6_25.sce
@@ -0,0 +1,18 @@
+//Example6.25 // To calculate the output voltage
+clc;
+clear;
+close;
+Vin = 2.5 ;
+R1 = 10*10^3 ;
+R2 = 10*10^3 ;
+R3 = 10*10^3 ;
+Rf = 30*10^3 ;
+
+// the total gain of the circuit
+//Av =A1v*A2v*A3v ;
+Av = (1+(Rf/R1))*(-Rf/R2)*(-Rf/R3);
+disp('the total gain of the circuit is = '+string(Av)+ ' ');
+
+// The output voltage of the op-amp
+Vo = Av*Vin ;
+disp('The output voltage of the op-amp is = '+string(Vo)+ ' V');
diff --git a/1757/CH6/EX6.26/EX6_26.sce b/1757/CH6/EX6.26/EX6_26.sce
new file mode 100755
index 000000000..1133c4644
--- /dev/null
+++ b/1757/CH6/EX6.26/EX6_26.sce
@@ -0,0 +1,21 @@
+
+//Example6.26 // to calculate the output voltage of op-amp circuit
+clc;
+clear;
+close;
+Rf = 100*10^3 ; // ohm
+R1 = 10*10^3 ; // ohm
+R2 = 25*10^3 ; // ohm
+R3 = 50*10^3 ; // ohm
+
+// the output of op-amp A1 is
+// VA1 = (-Rf/R1)*V1 ;
+VA1 = (-Rf/R1);
+disp('The output of op-amp A1 is = '+string(VA1)+'V1' ); // *V1 because the output is come from 1 op-amp
+
+// the output of op-amp A2 is
+// Vo = -Rf*((VA1/R2)+(V2/R3));
+//Vo = -100*(-0.4*V1+0.02V2);
+disp('The output of op-amp A2 is Vo = 40V1 - 2V2 ');
+
+disp('The output is equal to the difference between 40V1 and 2V2 ');
diff --git a/1757/CH6/EX6.27/EX6_27.sce b/1757/CH6/EX6.27/EX6_27.sce
new file mode 100755
index 000000000..52b265985
--- /dev/null
+++ b/1757/CH6/EX6.27/EX6_27.sce
@@ -0,0 +1,20 @@
+//Example6.27 // to determine the hysteresis width of a schmitt trigger
+clc;
+clear;
+close;
+R1 = 25*10^3 ; // ohm
+R2 = 75*10^3 ; // ohm
+VTH = 4 ; // V
+VTL = -4 ; // V
+
+// the upper crossover voltage of schmitt trigger is defined as
+VU = (R1/(R1+R2))*VTH;
+disp('the upper crossover voltage of schmitt trigger is = '+string(VU)+' V' );
+
+// the lower crossover voltage of schmitt trigger is defined as
+VL = (R1/(R1+R2))*VTL;
+disp('the lower crossover voltage of schmitt trigger is = '+string(VL)+' V' );
+
+// the hysteresis width of schmitt trigger is
+HW = VU-VL ;
+disp('the hysteresis width HW of schmitt trigger is = '+string(HW)+' V' );
diff --git a/1757/CH6/EX6.28/EX6_28.sce b/1757/CH6/EX6.28/EX6_28.sce
new file mode 100755
index 000000000..f8a62bb14
--- /dev/null
+++ b/1757/CH6/EX6.28/EX6_28.sce
@@ -0,0 +1,20 @@
+//Example6.28 // to determine the hysteresis width of a schmitt trigger
+clc;
+clear;
+close;
+R1 = 15*10^3 ; // ohm
+R2 = 90*10^3 ; // ohm
+VTH = 10 ; // V
+VTL = -10 ; // V
+
+// the upper crossover voltage of schmitt trigger is defined as
+VU = (R1/(R1+R2))*VTH;
+disp('the upper crossover voltage of schmitt trigger is = '+string(VU)+' V' );
+
+// the lower crossover voltage of schmitt trigger is defined as
+VL = (R1/(R1+R2))*VTL;
+disp('the lower crossover voltage of schmitt trigger is = '+string(VL)+' V' );
+
+// the hysteresis width of schmitt trigger is
+HW = VU-VL ;
+disp('the hysteresis width HW of schmitt trigger is = '+string(HW)+' V' );
diff --git a/1757/CH6/EX6.29/EX6_29.sce b/1757/CH6/EX6.29/EX6_29.sce
new file mode 100755
index 000000000..f3e427e56
--- /dev/null
+++ b/1757/CH6/EX6.29/EX6_29.sce
@@ -0,0 +1,16 @@
+//Example6.29 // to determine the resistance R1 when low and high saturated output states are given
+clc;
+clear;
+close;
+R2 = 20*10^3 ; // ohm
+VH = 2 ; // V crossover voltage
+VL = -2 ; // V crossover voltage
+VOH = 10 ; // V saturated output states
+VOL = -10 ; // V saturated output states
+
+// the upper crossover voltage of schmitt trigger is defined as
+// V = (R1/(R1+R2))*VOH;
+// solving above equation we get
+// 2R1+2R2 = 10R1 ;
+R1 = (2*R2)/8 ;
+disp('the value of resistance R1 is = '+string(R1)+' ohm' );
diff --git a/1757/CH6/EX6.3/EX6_3.sce b/1757/CH6/EX6.3/EX6_3.sce
new file mode 100755
index 000000000..0b258e366
--- /dev/null
+++ b/1757/CH6/EX6.3/EX6_3.sce
@@ -0,0 +1,30 @@
+//Example6.3 // design an non-inverting amplifier with colsed loop gain of 5 limited voltage of -5 V <= Vo <= 5 V and maximum i/p c/n 50 uA
+clc;
+clear;
+close;
+R1 = 8*10^3 ; // ohm
+R2 = 72*10^3 ; // ohm
+Iin = 50*10^-6 ; // A
+Vo = 5 ; // V
+
+// closed loop gain
+//Av = Vo/Vin = (1+R2/R1)
+Av = 1+(R2/R1);
+// but
+Av = 5 ;
+// then
+// (R2/R1) = 4 ;
+
+// the output voltage of the amplifier is Vo = 5 V
+//i.e
+Vin = 1 ; // V
+// Iin = Vin/R1 ;
+R1 = Vin/Iin ;
+disp('the value of resistance R1 is = '+string(R1)+' ohm');
+
+R2 = 4*R1 ;
+disp('the value of resistance R2 is = '+string(R2)+' ohm');
+
+// the output current I2 is given as
+I2 = (Vo-Vin)/R2 ;
+disp('the output current I2 is = '+string(I2)+' A');
diff --git a/1757/CH6/EX6.30/EX6_30.sce b/1757/CH6/EX6.30/EX6_30.sce
new file mode 100755
index 000000000..6343529ba
--- /dev/null
+++ b/1757/CH6/EX6.30/EX6_30.sce
@@ -0,0 +1,18 @@
+//Example6.30 // to determine the value of resistance R1 and R2 when low and high saturated output states are given
+clc;
+clear;
+close;
+VH = 3 ; // V crossover voltage
+VL = -3 ; // V crossover voltage
+VOH = 12 ; // V saturated output states
+VOL = -12 ; // V saturated output states
+
+// the upper crossover voltage of schmitt trigger is defined as
+// V = (R1/(R1+R2))*VOH;
+// solving above equation we get
+// 3R1+3R2 = 12R1 ;
+
+// 3*R1 = R2 ;
+R1 = 10*10^3 ; // ohm we assume
+R2 = 3*R1 ;
+disp('the value of resistance R2 is = '+string(R2)+' ohm' );
diff --git a/1757/CH6/EX6.31/EX6_31.sce b/1757/CH6/EX6.31/EX6_31.sce
new file mode 100755
index 000000000..c141bc420
--- /dev/null
+++ b/1757/CH6/EX6.31/EX6_31.sce
@@ -0,0 +1,18 @@
+//Example6_31 // Design an inverting amplifier
+clc;
+clear;
+close;
+Av = -5 ;
+//V1 = 0.1 sin wt ;
+V1 = 0.1 ; // *sin wt ;
+i = 5*10^-6 ;
+
+// the input resistance
+R1 = V1/i ;
+disp('the input resistance is = '+string(R1)+ ' ohm');
+
+// The resistance R2
+//Av = -(R2/R1);
+R2 = -(Av*R1);
+disp('The resistance R2 is = '+string(R2)+ ' ohm');
+
diff --git a/1757/CH6/EX6.32/EX6_32.sce b/1757/CH6/EX6.32/EX6_32.sce
new file mode 100755
index 000000000..dd5e88e11
--- /dev/null
+++ b/1757/CH6/EX6.32/EX6_32.sce
@@ -0,0 +1,19 @@
+//Example 6_32 // Design an non inverting amplifier
+clc;
+clear;
+close;
+Av = 5 ;
+//V1 = 0.1 sin wt ;
+V1 = 0.1 ;
+i = -5*10^-6 ;
+
+// the input resistance
+R1 = -V1/i ;
+disp('the input resistance is = '+string(R1)+ ' ohm');
+
+// The resistance R2
+//Av = 1+(R2/R1);
+R2 = (Av-1)*R1;
+disp('The resistance R2 is = '+string(R2)+ ' ohm');
+
+
diff --git a/1757/CH6/EX6.33/EX6_33.sce b/1757/CH6/EX6.33/EX6_33.sce
new file mode 100755
index 000000000..3393ca5a1
--- /dev/null
+++ b/1757/CH6/EX6.33/EX6_33.sce
@@ -0,0 +1,17 @@
+//Example6_33 // To calculate phase shift between two extremes
+clc;
+clear;
+close;
+C = 0.22*10^-6 ;
+R = 1*10^3 ;
+f = 1*10^3 ;
+
+// the cut off frequency of phase shifter
+fc = 1/(2*%pi*R*C) ;
+disp('the cut off frequency of phase shifter is = ' +string(fc)+ 'Hz');
+
+// the phase shift
+f = 1 ; // KHz
+fc = 7.23 ; // KHz
+PS = -2*atand(f/fc);
+disp('The phase shift is = '+string(PS)+ ' ');
diff --git a/1757/CH6/EX6.34/EX6_34.sce b/1757/CH6/EX6.34/EX6_34.sce
new file mode 100755
index 000000000..0769e3434
--- /dev/null
+++ b/1757/CH6/EX6.34/EX6_34.sce
@@ -0,0 +1,13 @@
+//Example6_34 // To design a phase shifter
+clc;
+clear;
+close;
+f = 2*10^3 ;
+PS = -135 ;
+// the phase shift
+// PS = -2*atand(2*%pi*R*C);
+//RC = 192.1*10^-6 ;
+C = 0.1*10^-6 ;
+R = (192.1*10^-6)/C
+disp('The value of resistance is = '+string(R)+ ' ohm');
+
diff --git a/1757/CH6/EX6.35/EX6_35.sce b/1757/CH6/EX6.35/EX6_35.sce
new file mode 100755
index 000000000..2edb5f81b
--- /dev/null
+++ b/1757/CH6/EX6.35/EX6_35.sce
@@ -0,0 +1,19 @@
+//Example6_35 // Design a difference amplifier
+clc;
+clear;
+close;
+Ri = 50*10^3 ;
+Ad = 30
+
+R1 = Ri/2 ;
+disp('The value of resistance R1 is = '+string(R1)+ ' ohm');
+R3 = R1 ;
+disp('The value of resistance R3 is = '+string(R3)+ ' ohm');
+
+// the differential gain
+//Ad = R2/R1 ;
+R2 = 30*R1 ;
+disp('The value of resistance R2 is = '+string(R2)+ ' ohm');
+
+R4 = R2 ;
+disp('The value of resistance R4 is = '+string(R4)+ ' ohm');
diff --git a/1757/CH6/EX6.36/EX6_36.sce b/1757/CH6/EX6.36/EX6_36.sce
new file mode 100755
index 000000000..1e7d95a67
--- /dev/null
+++ b/1757/CH6/EX6.36/EX6_36.sce
@@ -0,0 +1,10 @@
+//Example6_36 // Calculate CMRR ratio
+clc;
+clear;
+close;
+Ad = 10.24 ;
+Acm = 0.48 ;
+
+// the common mode rejection ratio CMRR is defined as
+CMRRdB = 20*log10(Ad/Acm);
+disp('THe common mode rejection ratio is = '+string(CMRRdB)+ ' dB' );
diff --git a/1757/CH6/EX6.37/EX6_37.sce b/1757/CH6/EX6.37/EX6_37.sce
new file mode 100755
index 000000000..0d1ac5722
--- /dev/null
+++ b/1757/CH6/EX6.37/EX6_37.sce
@@ -0,0 +1,14 @@
+//Example6_37 // Design current to voltage converter
+clc;
+clear;
+close;
+Vo =-10 ;
+is = 100*10^-6 ;
+
+// the output voltage of current to voltage converter is defined as
+//Vo =-1s*R2
+R2 = -Vo/is ;
+disp(' The feedback resistance is = '+string(R2)+ ' ohm');
+
+R1 = R2 ;
+disp(' The value of resistance R1 is = '+string(R1)+ ' ohm');
diff --git a/1757/CH6/EX6.38/EX6_38.sce b/1757/CH6/EX6.38/EX6_38.sce
new file mode 100755
index 000000000..205a58f02
--- /dev/null
+++ b/1757/CH6/EX6.38/EX6_38.sce
@@ -0,0 +1,18 @@
+//Example6_38 // Design high sensitivity current to voltage converter
+clc;
+clear;
+close;
+R1 = 5*10^3 ;
+is = 1 ;
+KR = 0.01/10^9 ; // V / nA
+
+// the output voltage of high sensitivity current to voltage converter
+Vo =-KR*is ;
+KR = 10*10^6 ;
+R = 1*10^6 ; //we assume then
+K = 10 ;
+//1 + (R2/R1)+(R2/R) = 10 ;
+// solving above equation we get
+
+R2 = 9*((5*10^6)/(10^3+5)) ;
+disp ('The value of resistance R2 is = '+string(R2)+ ' ohm');
diff --git a/1757/CH6/EX6.39/EX6_39.sce b/1757/CH6/EX6.39/EX6_39.sce
new file mode 100755
index 000000000..3e96a788e
--- /dev/null
+++ b/1757/CH6/EX6.39/EX6_39.sce
@@ -0,0 +1,34 @@
+//Example6_39 // Determine a load current in a V to I converter
+clc;
+clear;
+close;
+R1 = 10*10^3 ;
+R2 = 10*10^3 ;
+R3 = 1*10^3 ;
+R4 = 1*10^3 ;
+VI = -5 ;
+
+// The Load Current
+iL = -VI/R3 ;
+disp('The load current iL is = '+string(iL)+ ' A');
+
+VL = 0.5 ;
+// The Current i3 and iA
+i3 = VL/R3 ;
+disp('The current i3 is = '+string(i3)+ ' A');
+
+iA = i3+iL ;
+disp('The current iA is = '+string(iA)+ ' A');
+
+// the output voltage
+Vo = (iA*R3)+VL ;
+disp('The output voltage is = '+string(Vo)+ ' V');
+
+ZL =100 ;
+// The current i1 and i2
+//i1 = (VI-iL*ZL)/R1 ;
+i1 = (iL*ZL-Vo)/R2 ;
+disp('The current i1 is = '+string(i1)+ ' A');
+
+i2 = i1 ;
+disp('The current i2 is = '+string(i2)+ ' A');
diff --git a/1757/CH6/EX6.4/EX6_4.sce b/1757/CH6/EX6.4/EX6_4.sce
new file mode 100755
index 000000000..d11c7c821
--- /dev/null
+++ b/1757/CH6/EX6.4/EX6_4.sce
@@ -0,0 +1,24 @@
+// Example6.4 // Design a op-amp circuit to provide the output voltage Vo = -2(3 V1 +4 V2 +2 V3)
+clc;
+clear;
+close;
+// Vo = -2(3 V1 + 4 V2+ 2 V3); equation 1
+// the output of the summer circuit is given as
+// Vo = -R2((Via/Ria)+(Vib/Rib)+(Vic/Ric)) equation 2
+
+// compare equation 1 and 2 of Vo we get
+
+// (R2/Ria)= 6 ;
+// (R2/Rbi=8 ;
+// (R2/Ric)=4 ;
+
+R2 = 120*10^3 ; // we choose then
+
+Ria = R2/6 ;
+disp('the value of resistance Ria is = '+string(Ria)+' ohm');
+
+Rib = R2/8 ;
+disp('the value of resistance Rib is = '+string(Rib)+' ohm');
+
+Ric = R2/4 ;
+disp('the value of resistance Ric is = '+string(Ric)+' ohm');
diff --git a/1757/CH6/EX6.40/EX6_40.sce b/1757/CH6/EX6.40/EX6_40.sce
new file mode 100755
index 000000000..f1f09c707
--- /dev/null
+++ b/1757/CH6/EX6.40/EX6_40.sce
@@ -0,0 +1,22 @@
+//Example6_40 // Design an instrumentation amplifier
+clc;
+clear;
+close;
+//A = 5 to 500 ; adjustable gain
+VR = 100*10^3 ;
+
+// the maximum differential gain of instrumentation amplifier is 500
+//Amax = (R4/R3)*(1+(2R2/R1));
+//by solving above equation we get following equation
+// 2R2 -249R1f = 0 equation 1
+
+// the minimum differential gain of instrumentation amplifier is 5
+// Amin = (R4/R3)*(1+(2R2/R1)) ;
+//by solving above equation we get following equation
+// 2R2 -1.5R1f = 150*10^3 equation 2
+
+//by solving equation 1 and 2 we get
+disp('The value of resistance R1f is = 0.0606 K ohm ');
+
+disp('The value of resistance R2 is = 75.5 K ohm ');
+
diff --git a/1757/CH6/EX6.41/EX6_41.sce b/1757/CH6/EX6.41/EX6_41.sce
new file mode 100755
index 000000000..081e41a48
--- /dev/null
+++ b/1757/CH6/EX6.41/EX6_41.sce
@@ -0,0 +1,15 @@
+//Example6_41 // To find the value of resistance R1 for instrumentation amplifier
+clc;
+clear;
+close;
+A =100 ;
+R2 = 450*10^3 ;
+R3 = 1*10^3 ;
+R4 = 1*10^3 ;
+
+// The gain of differential amplifier
+// A = (R4/R3)*(1+(2R2/R1)) ;
+//but R3 = R4 then
+// A = 1+(2R2/R1) ;
+R1 = 2*R2/(A-1);
+disp('The value of resistane R1 is = '+string(R1)+ ' ohm');
diff --git a/1757/CH6/EX6.42/EX6_42.sce b/1757/CH6/EX6.42/EX6_42.sce
new file mode 100755
index 000000000..071876e13
--- /dev/null
+++ b/1757/CH6/EX6.42/EX6_42.sce
@@ -0,0 +1,15 @@
+//Example6_42 // determine the time constant of an integrator
+clc;
+clear;
+close;
+Vo = 10 ; // at t= 1 m sec
+t = 1 ; // m sec
+
+// the output of integrator
+//Vo = t/RC ; when t is from 0 to 1
+RC = t/Vo ;
+disp(' At t = 1 msec the time constant RC is = '+string(RC)+ ' m sec');
+
+disp (' if C = 0.01 uF then R of RC time constant is = 10 K ohm ');
+
+disp (' if C = 0.001 uF then R of RC time constant is = 100 K ohm ');
diff --git a/1757/CH6/EX6.43/EX6_43.sce b/1757/CH6/EX6.43/EX6_43.sce
new file mode 100755
index 000000000..2c2c2c95b
--- /dev/null
+++ b/1757/CH6/EX6.43/EX6_43.sce
@@ -0,0 +1,20 @@
+//Example6_43 // Design an integrator circuit
+clc;
+clear;
+close;
+A = 10 ;
+f =20*10^3 ;
+R = 10*10^3 ; // we assume
+Rf =10*R ;
+
+disp(' THe feedback resistance Rf is = '+string(Rf)+ ' ohm');
+
+// for proper integration f>= 10fa
+fa = f/10 ;
+disp('The frequency fa is = '+string(fa)+ ' Hz');
+
+// in practical integrator
+//fa = 1/(2*%pi*Rf*C);
+
+C = 1/(2*%pi*Rf*fa);
+disp(' The value of capacitor C is = '+string(C)+ ' F ');
diff --git a/1757/CH6/EX6.5/EX6_5.sce b/1757/CH6/EX6.5/EX6_5.sce
new file mode 100755
index 000000000..71241b7dc
--- /dev/null
+++ b/1757/CH6/EX6.5/EX6_5.sce
@@ -0,0 +1,27 @@
+// Example6.5 // Design a summing amplifier circuit to provide the output voltage Vo = -(7 V11 + 15 V12 + 10 V13 + 3 V14)
+clc;
+clear;
+close;
+R2 = 630*10^3 ; // Assume feedback resistance
+// Vo = -(7 V11 + 15 V12 + 10 V13 + 3 V14); equation 1
+// the output of the summer circuit is given as
+// Vo = -R2((Via/Ria)+(Vib/Rib)+(Vic/Ric)+(Vid/Rid)) equation 2
+
+// compare equation 1 and 2 of Vo we get
+
+// (R2/Ria)= 7 ;
+// (R2/Rbi= 15 ;
+// (R2/Ric)= 10 ;
+// (R2/Rid)= 3 ;
+
+Ria = R2/7 ;
+disp('the value of resistance Ria is = '+string(Ria)+' ohm');
+
+Rib = R2/15 ;
+disp('the value of resistance Rib is = '+string(Rib)+' ohm');
+
+Ric = R2/10 ;
+disp('the value of resistance Ric is = '+string(Ric)+' ohm');
+
+Rid = R2/3 ;
+disp('the value of resistance Rid is = '+string(Rid)+' ohm');
diff --git a/1757/CH6/EX6.6/EX6_6.sce b/1757/CH6/EX6.6/EX6_6.sce
new file mode 100755
index 000000000..9b54afac1
--- /dev/null
+++ b/1757/CH6/EX6.6/EX6_6.sce
@@ -0,0 +1,29 @@
+// Example6.6 // Design a op-amp circuit to provide the output voltage Vo = V2 - 3 V1 with Ri1 =Ri2 = 100*10^3
+clc;
+clear;
+close;
+Ri1 = 100*10^3 ; // ohm
+Ri2 = 100*10^3 ; // ohm
+// the i/p resistance
+R1 = Ri1 ;
+R3 = Ri2 ;
+
+// Vo = V2 - 3 V1; equation 1
+// the output of the summer circuit is given as
+// Vo = [(R4/(R3+R4)*(1+(R2/R1))*Vi2-(R2/R1)*Vi1] equation 2
+
+// compare equation 1 and 2 of Vo we get
+// (R4/(R3+R4)*(1+(R2/R1)) = 1 ; equation 3
+// R2/R1 = 3 ; equation 4
+
+// by subsituting the value of R1 and R3 in equation 3 and 4
+
+// from equation 4
+R2 = 3*R1 ;
+disp('the value of resistance R2 is = '+string(R2)+' ohm');
+
+// from equation 3
+R4 = (100*10^3)/3 ;
+disp('the value of resistance R4 is = '+string(R4)+' ohm');
+
+
diff --git a/1757/CH6/EX6.7/EX6_7.sce b/1757/CH6/EX6.7/EX6_7.sce
new file mode 100755
index 000000000..bef784384
--- /dev/null
+++ b/1757/CH6/EX6.7/EX6_7.sce
@@ -0,0 +1,29 @@
+//Example6.7 // determine the load current and output voltage
+clc;
+clear;
+close;
+Vin = -5 ; // V
+ZL = 200 ; // ohm
+R1 = 10*10^3 ; // ohm
+R2 = 10*10^3 ; // ohm
+R3 = 1*10^3 ; // ohm
+R4 = 1*10^3 ; // ohm
+
+// the load c/n of the given voltage to c/n converter circuit is given by
+iL =-Vin/(R1*R4)*R2 ;
+disp('The load current iL is = '+string(iL)+' A');
+
+// the voltage across the load
+VL = iL*ZL;
+disp('The voltage across load VL is = '+string(VL)+' V');
+
+// the non-inverting current across i3 and i4 are
+i3 = VL/R3 ;
+disp('The non-inverting current across i3 is = '+string(i3)+' A');
+
+i4 = iL+i3 ;
+disp('The non-inverting current across i4 is = '+string(i4)+' A');
+
+// the output voltage of given voltage to current converter is given by
+Vo = (iL*R3)+VL ;
+disp('The output voltage of given voltage to current converter is = '+string(Vo)+' V');
diff --git a/1757/CH6/EX6.8/EX6_8.sce b/1757/CH6/EX6.8/EX6_8.sce
new file mode 100755
index 000000000..1026ad6d5
--- /dev/null
+++ b/1757/CH6/EX6.8/EX6_8.sce
@@ -0,0 +1,44 @@
+// Example6.8 // determine the common mode rejection ratio CMRR
+clc;
+clear;
+close;
+// R2/R1 = 10 ;
+// R4/R3 = 11 ;
+
+// the output of the difference amplifier is given by
+// Vo = (((R4)/(R3+R4))*(((1+(R2/R1))*VI2))-((R2/R1)*VI1));
+
+// putting R1 R2 R3 R4 value in above equation we get Vo as
+
+// Vo =(121/12)*VI2-10VI1 ; equation 1
+
+// the differential mode input of difference amplifier is given by
+// Vd = VI2-VI1 ; eqution 2
+
+// the common mode input of difference amplifier is given by
+// VCM = (VI2+VI1)/2 ; equation 3
+
+// from equation 2 and 3
+
+// VI1 = VCM-Vd/2 ; equation 4
+
+// VI2 = VCM+Vd/2 ; equation 5
+
+// substitute equation 4 and 5 in 1 we get
+// Vo = (VCM/12)+(241Vd/24); equation6
+
+// Vd = Ad*Vd+ACM*VCM ; equation 7
+
+//equation from equation 6 and 7 we get
+
+Ad = 241/24 ;
+ACM = 1/12 ;
+
+// the common mode rejection ratio CMRR is
+CMRR = abs(Ad/ACM);
+disp('The common mode rejection ratio CMRR is = '+string(CMRR)+' ');
+
+// in decibal it can be expressed as
+
+CMRR = 20*log10(CMRR);
+disp('The common mode rejection ratio CMRR in decibel is = '+string(CMRR)+' dB ');
diff --git a/1757/CH6/EX6.9/EX6_9.sce b/1757/CH6/EX6.9/EX6_9.sce
new file mode 100755
index 000000000..2ec833c25
--- /dev/null
+++ b/1757/CH6/EX6.9/EX6_9.sce
@@ -0,0 +1,48 @@
+// Example6.9 // determine Vo when 1) VI1 = 2 V VI2 = -2 V and 2) VI1 = 2 V VI2 = 2 V
+// and common mode rejection ratio CMRR
+clc;
+clear;
+close;
+R1 = 10*10^3 ; // ohm
+R2 = 20*10^3 ; // ohm
+R3 = 10*10^3 ; // ohm
+R4 = 22*10^3 ; // ohm
+
+
+// the output of the difference amplifier is given by
+// Vo = (((R4)/(R3+R4))*(((1+(R2/R1))*VI2))-((R2/R1)*VI1));
+
+// Case 1 when VI1 = 2 V VI2 = -2 V
+VI1 = 2 ;
+VI2 = -2 ;
+
+Vo = (((R4)/(R3+R4))*(((1+(R2/R1))*VI2))-((R2/R1)*VI1));
+disp('The output of the difference amplifier is = '+string(Vo)+' V ');
+
+// case 2 when VI1 = 2 V VI2 = 2 V
+VI1 = 2 ;
+VI2 = 2 ;
+
+Vo = (((R4)/(R3+R4))*(((1+(R2/R1))*VI2))-((R2/R1)*VI1));
+disp('The output of the difference amplifier is = '+string(Vo)+' V ');
+
+// the common mode input of difference amplifier is given by
+VCM = (VI2+VI1)/2 ;
+disp('the common mode input of difference amplifier is = '+string(VCM)+' ');
+
+// the common mode gain ACM of difference amplifier is given by
+ACM = Vo/VCM
+disp('the common mode gain ACM of difference amplifier is = '+string(ACM)+' ');
+
+// the differential gain of the difference amplifier is given
+Ad = R2/R1 ;
+disp('the differential gain of the difference amplifier is = '+string(Ad)+' ');
+
+// the common mode rejection ratio CMRR is
+CMRR = abs(Ad/ACM);
+disp('The common mode rejection ratio CMRR is = '+string(CMRR)+' ');
+
+// in decibal it can be expressed as
+CMRR = 20*log10(CMRR);
+disp('The common mode rejection ratio CMRR in decibel is = '+string(CMRR)+' dB ');
+