summaryrefslogtreecommitdiff
path: root/1445/CH8/EX8.6/Ex8_6.sce
diff options
context:
space:
mode:
Diffstat (limited to '1445/CH8/EX8.6/Ex8_6.sce')
-rw-r--r--1445/CH8/EX8.6/Ex8_6.sce21
1 files changed, 11 insertions, 10 deletions
diff --git a/1445/CH8/EX8.6/Ex8_6.sce b/1445/CH8/EX8.6/Ex8_6.sce
index 67e4601b2..fc89b9145 100644
--- a/1445/CH8/EX8.6/Ex8_6.sce
+++ b/1445/CH8/EX8.6/Ex8_6.sce
@@ -1,6 +1,7 @@
//CHAPTER 8- DIRECT CURRENT MACHINES
//Example 6
+clc;
disp("CHAPTER 8");
disp("EXAMPLE 6");
@@ -17,33 +18,33 @@ I_f=1.6; //field current in Amperes
//SOLUTION
//solution (i)
-E_b=v_t-(I_a*r_a); //Back emf
+E_b=v_t-(I_a*r_a);
w=(2*%pi*N)/60; //in radian/sec
-T_e=(E_b*I_a)/w; //electromagnetic torque
-disp(sprintf("(i) The electromagnetic torque is %.0f N-m",T_e));
+T_e=(E_b*I_a)/w;
+disp(sprintf("(i) The electromagnetic torque is %f N-m",T_e));
//solution (ii)
A=P; //since it is lap winding, so A=P and A=number of parallel paths
phi=(E_b*60*A)/(P*N*Z);
-disp(sprintf("(ii) The flux per pole is %.3f Wb",phi));
+disp(sprintf("(ii) The flux per pole is %f Wb",phi));
//solution (iii)
-//Rotational power= Power developed on rotor - Pshaft.(=Pout)
p_rotor=E_b*I_a; //power developed on rotor
p_rot=p_rotor-p_o; //p_shaft=p_out
-disp(sprintf("(iii) The rotational power is %.4f W",p_rot)); //text book answer is 870 W
+disp(sprintf("(iii) The rotational power is %f W",p_rot));
//solution (iv)
tot_loss=p_rot+((I_a^2)*r_a)+(v_t*I_f);
-p_i=p_o+tot_loss; //input power
+p_i=p_o+tot_loss;
eff=(p_o/p_i)*100;
-disp(sprintf("(iv) The efficiency is %.2f %%",eff));
+disp(sprintf("(iv) The efficiency is %f %%",eff));
//solution (v)
-T=p_o/w; //shaft torque
-disp(sprintf("(v) The shaft torque is %.0f N-m",T));
+T=p_o/w;
+disp(sprintf("(v) The shaft torque is %f N-m",T));
//The answers are slightly different due to the precision of floating point numbers
+
//END