summaryrefslogtreecommitdiff
path: root/1445/CH10/EX10.14/ch10_ex_14.sce
diff options
context:
space:
mode:
Diffstat (limited to '1445/CH10/EX10.14/ch10_ex_14.sce')
-rw-r--r--1445/CH10/EX10.14/ch10_ex_14.sce52
1 files changed, 52 insertions, 0 deletions
diff --git a/1445/CH10/EX10.14/ch10_ex_14.sce b/1445/CH10/EX10.14/ch10_ex_14.sce
new file mode 100644
index 000000000..c9dddcdad
--- /dev/null
+++ b/1445/CH10/EX10.14/ch10_ex_14.sce
@@ -0,0 +1,52 @@
+//CHAPTER 10- THREE-PHASE INDUCTION MACHINES
+//Example 14
+
+disp("CHAPTER 10");
+disp("EXAMPLE 14");
+
+//VARIABLE INITIALIZATION
+p=10*1000; //in Watts
+I_nl=8; //no load line current in Amperes
+p_ni=660; //input power at no load in Watts
+I_fl=18; //full load current in Amperes
+p_fi=11.20*1000; //input power at full load in Watts
+r=1.2; //stator resistance per phase in Ohms
+loss=420; //friction and winding loss in Watts
+
+//SOLUTION
+
+//solution (a)
+I1=I_nl/sqrt(3);
+i_sq_r1=(I1^2)*r*3; //stator (I^2*R) loss at no load
+s_loss=p_ni-loss-i_sq_r1;
+disp(sprintf("(a) The stator core loss is %f W",s_loss));
+
+//solution (b)
+I2=I_fl/sqrt(3);
+i_sq_r2=(I2^2)*r*3;
+p_g=p_fi-s_loss-i_sq_r2;
+r_loss=p_g-p;
+disp(sprintf("(b) The total rotor loss at full load is %f W",r_loss));
+
+//solution (c)
+o_loss=r_loss-loss;
+disp(sprintf("(c) The total rotor ohmic loss at full load is %f W",o_loss));
+
+//solution (d)
+s_fl=o_loss/p_g; //full load slip
+N_s=1500;
+N_r=N_s*(1-s_fl);
+disp(sprintf("(d) The full load speed is %f rpm",N_r));
+
+//solution (e)
+w=(2*%pi*N_s)/60;
+T_e=p_g/w;
+disp(sprintf("(e) The internal torque is %f N-m",T_e));
+T_sh=p/(w*(1-s_fl));
+disp(sprintf(" The shaft torque is %f N-m",T_sh));
+eff=p/p_fi;
+disp(sprintf(" The motor efficiency is %f %%",eff*100));
+
+//The answers may be slightly different due to precision of floating point numbers
+
+//END