diff options
Diffstat (limited to '1430/CH9/EX9.4')
-rw-r--r-- | 1430/CH9/EX9.4/exa9_4.jpg | bin | 0 -> 79326 bytes | |||
-rw-r--r-- | 1430/CH9/EX9.4/exa9_4.sce | 43 |
2 files changed, 43 insertions, 0 deletions
diff --git a/1430/CH9/EX9.4/exa9_4.jpg b/1430/CH9/EX9.4/exa9_4.jpg Binary files differnew file mode 100644 index 000000000..f725e52f8 --- /dev/null +++ b/1430/CH9/EX9.4/exa9_4.jpg diff --git a/1430/CH9/EX9.4/exa9_4.sce b/1430/CH9/EX9.4/exa9_4.sce new file mode 100644 index 000000000..812fd98b3 --- /dev/null +++ b/1430/CH9/EX9.4/exa9_4.sce @@ -0,0 +1,43 @@ +//Example 9.4
+// Sequential switched transients
+// form figure 9.14(a)
+// using symbols y(0^-)=y_bef and y(0^+)=y_aft
+v_bef=0;
+i_bef=0;
+C=100*10^-6; // Farad
+V_0=0; // voltage continuity of capacitor
+I_0= (-16-V_0)/(8000); // using KVL in figure 9.14(b)
+// By DC steady-state analysis,v(t) and i(t) head for the values,
+V_ss=(24*(-16))/(8+24);
+I_ss=-(16*10^-3)/(8+24);
+// supressing the 16V source
+R_eq=(8000*24000)/(8000+24000);
+tau=R_eq*C // Time constant
+t=0:0.0001:1
+v=V_ss+(V_0-V_ss)*exp(-t/tau); // 0<t<=1s
+i=I_ss+(I_0-I_ss)*exp(-t/tau); // 0<t<=1s
+t1=1; // for t= 1
+v_1=V_ss+(V_0-V_ss)*exp(-t1/tau);
+i_1=I_ss+(I_0-I_ss)*exp(-t1/tau);
+// Now the circuit is driven by two dc sources
+// Equivalent circuit is shown in figure 9.14(c)
+V_0_n=v_1; // Voltage continuity of capacitor
+I_0_n=(14.4 -V_0_n)/(4.8*10^3);
+V_ss_n=(24*14.4)/(4.8+24);
+I_ss_n=14.4/((4.8+24)*10^3);
+R_eq_n=((4.8*24)*10^3)/(4.8+24);
+tau_n=R_eq_n*C; // New time constant
+t2=1:0.0001:3
+v_n=V_ss_n+(V_0_n-V_ss_n)*exp(-(t2-1)/0.4);
+i_n=I_ss_n+(I_0_n-I_ss_n)*exp(-(t2-1)/0.4);
+subplot(2,1,1)
+plot(t,v,'-g',t2,v_n,'-g')
+xlabel('t')
+ylabel('v(t)')
+title('Voltage Waveform')
+subplot(2,1,2)
+plot(t,i,'-r',t2,i_n,'-r')
+xlabel('t')
+ylabel('i(t)')
+title('Current Waveform')
+
|