diff options
Diffstat (limited to '1328/CH12')
-rw-r--r-- | 1328/CH12/EX12.1/12_1.sce | 113 | ||||
-rw-r--r-- | 1328/CH12/EX12.2/12_2.sce | 112 | ||||
-rw-r--r-- | 1328/CH12/EX12.3/12_3.sce | 163 | ||||
-rw-r--r-- | 1328/CH12/EX12.4/12_4.sce | 158 | ||||
-rw-r--r-- | 1328/CH12/EX12.5/12_5.sce | 132 | ||||
-rw-r--r-- | 1328/CH12/EX12.6/12_6.sce | 107 | ||||
-rw-r--r-- | 1328/CH12/EX12.7/12_7.sce | 24 |
7 files changed, 809 insertions, 0 deletions
diff --git a/1328/CH12/EX12.1/12_1.sce b/1328/CH12/EX12.1/12_1.sce new file mode 100644 index 000000000..6a52aecc6 --- /dev/null +++ b/1328/CH12/EX12.1/12_1.sce @@ -0,0 +1,113 @@ +printf("\t example 12.1 \n");
+printf("\t approximate values are mentioned in the book \n");
+T1=244; // inlet hot fluid,F
+T2=244; // outlet hot fluid,F
+t1=85; // inlet cold fluid,F
+t2=120; // outlet cold fluid,F
+W=60000; // lb/hr
+w=488000; // lb/hr
+printf("\t 1.for heat balance \n");
+printf("\t for propanol \n");
+l=285; // Btu/(lb)
+Q=((W)*(l)); // Btu/hr
+printf("\t total heat required for propanol is : %.2e Btu/hr \n",Q);
+printf("\t for water \n");
+c=1; // Btu/(lb)*(F)
+Q=((w)*(c)*(t2-t1)); // Btu/hr
+printf("\t total heat required for water is : %.2e Btu/hr \n",Q);
+delt1=T2-t1; //F
+delt2=T1-t2; // F
+printf("\t delt1 is : %.0f F \n",delt1);
+printf("\t delt2 is : %.0f F \n",delt2);
+LMTD=((delt2-delt1)/((2.3)*(log10(delt2/delt1))));
+printf("\t LMTD is :%.0f F \n",LMTD);
+Tc=((T2)+(T1))/(2); // caloric temperature of hot fluid,F
+printf("\t caloric temperature of hot fluid is : %.0f F \n",Tc);
+tc=((t1)+(t2))/(2); // caloric temperature of cold fluid,F
+printf("\t caloric temperature of cold fluid is : %.1f F \n",tc);
+UD1=100; // assume, from table 8
+A1=((Q)/((UD1)*(LMTD)));
+printf("\t A1 is : %.0f ft^2 \n",A1);
+a1=0.1963; // ft^2/lin ft
+N1=(A1/(8*a1));
+printf("\t number of tubes are : %.0f \n",N1);
+N2=766; // assuming 4 tube passes, from table 9
+A2=(N2*8*a1); // ft^2
+printf("\t total surface area is : %.0f ft^2 \n",A2);
+UD=((Q)/((A2)*(LMTD)));
+printf("\t correct design overall coefficient is : %.0f Btu/(hr)*(ft^2)*(F) \n",UD);
+printf("\t hot fluid:shell side,propanol \n");
+ID=31; // in
+C=0.1875; // clearance
+B=31; // baffle spacing,in
+PT=0.937;
+L=8; // ft
+as=((ID*C*B)/(144*PT)); // flow area,from eq 7.1,ft^2
+printf("\t flow area is : %.2f ft^2 \n",as);
+Gs=(W/as); // mass velocity,from eq 7.2,lb/(hr)*(ft^2)
+printf("\t mass velocity is : %.2e lb/(hr)*(ft^2) \n",Gs);
+G1=(W/(L*N2^(2/3))); // from eq.12.43
+printf("\t G1 is : %.1f lb/(hr)*(lin ft) \n",G1);
+printf("\t cold fluid:inner tube side,water \n");
+Nt=766;
+n=4; // number of passes
+L=8; //ft
+at1=0.302; // flow area, in^2
+at=((Nt*at1)/(144*n)); // total area,ft^2,from eq.7.48
+printf("\t flow area is : %.3f ft^2 \n",at);
+Gt=(w/(at)); // mass velocity,lb/(hr)*(ft^2)
+printf("\t mass velocity is : %.2e lb/(hr)*(ft^2) \n",Gt);
+V=(Gt/(3600*62.5));
+printf("\t V is : %.2f fps \n",V);
+mu2=1.74; // at 102.5F,lb/(ft)*(hr)
+D=0.0517; // ft
+Ret=((D)*(Gt)/mu2); // reynolds number
+printf("\t reynolds number is : %.2e \n",Ret);
+hi=1300; //Btu/(hr)*(ft^2)*(F)
+printf("\t hi is : %.0f Btu/(hr)*(ft^2)*(F) \n",hi);
+ID=0.62; // ft
+OD=0.75; //ft
+hio=((hi)*(ID/OD)); // using eq.6.5
+printf("\t Correct hi0 to the surface at the OD is : %.0f Btu/(hr)*(ft^2)*(F) \n",hio); // calculation mistake
+ho=200; // assumption
+tw=(tc)+(((ho)/(hio+ho))*(Tc-tc)); // from eq.5.31
+printf("\t tw is : %.0f F \n",tw);
+tf=(Tc+tw)/(2); // from eq 12.19
+printf("\t tf is : %.1f F \n",tf);
+kf=0.094; // Btu/(hr)*(ft^2)*(F/ft), from table 4
+sf=0.8; // from table 6
+muf=0.62; // cp, from fig 14
+ho=172; // Btu/(hr)*(ft^2)*(F), from fig 12.9
+printf("\t Correct ho to the surface at the OD is : %.0f Btu/(hr)*(ft^2)*(F) \n",ho);
+printf("\t Based on h=172 instead of the assumed 200 a new value of tw,and tf could be obtained to give a more exact value of h based on fluid properties at a value of tf more nearly correct \n");
+printf("\t pressure drop for annulus \n");
+mu1=0.0242; // lb/(ft)*(hr), fir 15
+De=0.0458; // fig 28
+Res=((De)*(Gs)/mu1); // reynolds number
+printf("\t reynolds number is : %.2e \n",Res);
+f=0.00141; // friction factor for reynolds number 84600, using fig.29
+s=0.00381; // for reynolds number 84600,using fig.6
+Ds=31/12; // ft
+phys=1;
+N=(3); // number of crosses,using eq.7.43
+printf("\t number of crosses are : %.0f \n",N);
+delPs=((f*(Gs^2)*(Ds)*(N))/(5.22*(10^10)*(De)*(s)*(phys)))/(2); // using eq.12.47,psi
+printf("\t delPs is : %.1f psi \n",delPs);
+printf("\t allowable delPa is 2 psi \n");
+printf("\t pressure drop for inner pipe \n");
+f=0.00019; // friction factor for reynolds number 36200, using fig.26
+s=1;
+phyt=1;
+delPt=((f*(Gt^2)*(L)*(n))/(5.22*(10^10)*(D)*(s)*(phyt))); // using eq.7.45,psi
+printf("\t delPt is : %.1f psi \n",delPt);
+X1=0.2; // X1=((V^2)/(2*g)),using fig.27
+delPr=((4*n*X1)/(s)); // using eq.7.46,psi
+printf("\t delPr is : %.1f psi \n",delPr);
+delPT=delPt+delPr; // using eq.7.47,psi
+printf("\t delPT is : %.1f psi \n",delPT);
+printf("\t allowable delPT is 10 psi \n");
+Uc=((hio)*(ho)/(hio+ho)); // clean overall coefficient,Btu/(hr)*(ft^2)*(F)
+printf("\t clean overall coefficient is : %.1f Btu/(hr)*(ft^2)*(F) \n",Uc);
+Rd=((Uc-UD)/((UD)*(Uc))); // (hr)*(ft^2)*(F)/Btu
+printf("\t actual Rd is : %.4f (hr)*(ft^2)*(F)/Btu \n",Rd);
+// end
diff --git a/1328/CH12/EX12.2/12_2.sce b/1328/CH12/EX12.2/12_2.sce new file mode 100644 index 000000000..5a5f9b178 --- /dev/null +++ b/1328/CH12/EX12.2/12_2.sce @@ -0,0 +1,112 @@ +printf("\t example 12.2 \n");
+printf("\t approximate values are mentioned in the book \n");
+T1=244; // inlet hot fluid,F
+T2=244; // outlet hot fluid,F
+t1=85; // inlet cold fluid,F
+t2=120; // outlet cold fluid,F
+W=60000; // lb/hr
+w=488000; // lb/hr
+printf("\t 1.for heat balance \n");
+printf("\t for propanol \n");
+l=285; // Btu/(lb)
+Q=((W)*(l)); // Btu/hr
+printf("\t total heat required for propanol is : %.2e Btu/hr \n",Q);
+printf("\t for water \n");
+c=1; // Btu/(lb)*(F)
+Q=((w)*(c)*(t2-t1)); // Btu/hr
+printf("\t total heat required for water is : %.2e Btu/hr \n",Q);
+delt1=T2-t1; //F
+delt2=T1-t2; // F
+printf("\t delt1 is : %.0f F \n",delt1);
+printf("\t delt2 is : %.0f F \n",delt2);
+LMTD=((delt2-delt1)/((2.3)*(log10(delt2/delt1))));
+printf("\t LMTD is :%.0f F \n",LMTD);
+Tc=((T2)+(T1))/(2); // caloric temperature of hot fluid,F
+printf("\t caloric temperature of hot fluid is : %.0f F \n",Tc);
+tc=((t1)+(t2))/(2); // caloric temperature of cold fluid,F
+printf("\t caloric temperature of cold fluid is : %.1f F \n",tc);
+UD1=70; // assume, from table 8
+A1=((Q)/((UD1)*(LMTD)));
+printf("\t A1 is : %.2e ft^2 \n",A1);
+N2=766; // assuming 4 tube passes, from table 9
+a1=0.1963; // ft^2/lin ft
+L=(A1/(N2*a1));
+printf("\t L is : %.1f ft \n",L);
+A2=(N2*12*a1); // ft^2
+printf("\t total surface area is : %.0f ft^2 \n",A2);
+UD=((Q)/((A2)*(LMTD)));
+printf("\t correct design overall coefficient is : %.1f Btu/(hr)*(ft^2)*(F) \n",UD);
+printf("\t hot fluid:shell side,propanol \n");
+Do=0.0625; // ft
+G1=(W/(3.14*N2*Do)); // from eq.12.36
+printf("\t G1 is : %.0f lb/(hr)*(lin ft) \n",G1);
+printf("\t cold fluid:inner tube side,water \n");
+Nt=766;
+n=4; // number of passes
+L=12; //ft
+at1=0.302; // flow area, in^2
+at=((Nt*at1)/(144*n)); // total area,ft^2,from eq.7.48
+printf("\t flow area is : %.3f ft^2 \n",at);
+Gt=(w/(at)); // mass velocity,lb/(hr)*(ft^2)
+printf("\t mass velocity is : %.2e lb/(hr)*(ft^2) \n",Gt);
+V=(Gt/(3600*62.5));
+printf("\t V is : %.2f fps \n",V);
+mu2=1.74; // at 102.5F,lb/(ft)*(hr)
+D=0.0517; // ft
+Ret=((D)*(Gt)/mu2); // reynolds number
+printf("\t reynolds number is : %.2e \n",Ret);
+hi=1300; //Btu/(hr)*(ft^2)*(F)
+printf("\t hi is : %.0f Btu/(hr)*(ft^2)*(F) \n",hi);
+ID=0.62; // ft
+OD=0.75; //ft
+hio=((hi)*(ID/OD)); // using eq.6.5
+printf("\t Correct hi0 to the surface at the OD is : %.0f Btu/(hr)*(ft^2)*(F) \n",hio);
+ho=100; // assumption
+tw=(tc)+(((ho)/(hio+ho))*(Tc-tc)); // from eq.5.31
+printf("\t tw is : %.1f F \n",tw);
+tf=(Tc+tw)/(2); // from eq 12.19
+printf("\t tf is : %.0f F \n",tf);
+kf=0.0945; // Btu/(hr)*(ft^2)*(F/ft), from table 4
+sf=0.76; // from table 6
+muf=0.65; // cp, from fig 14
+ho=102; // Btu/(hr)*(ft^2)*(F), from fig 12.9
+printf("\t Correct ho to the surface at the OD is : %.0f Btu/(hr)*(ft^2)*(F) \n",ho);
+printf("\t pressure drop for annulus \n");
+ID=31; // in
+C=0.1875; // clearance
+B=29; // baffle spacing,in
+PT=0.937;
+as=((ID*C*B)/(144*PT)); // flow area,from eq 7.1,ft^2
+printf("\t flow area is : %.2f ft^2 \n",as);
+Gs=(W/as); // mass velocity,from eq 7.2,lb/(hr)*(ft^2)
+printf("\t mass velocity is : %.2e lb/(hr)*(ft^2) \n",Gs);
+mu1=0.0242; // lb/(ft)*(hr), fig 15
+De=0.0458; // fig 28
+Res=((De)*(Gs)/mu1); // reynolds number
+printf("\t reynolds number is : %.1e \n",Res);
+f=0.0014; // friction factor for reynolds number 91000, using fig.29
+s=0.00381; // for reynolds number 91000,using fig.6
+Ds=31/12; // ft
+phys=1;
+N=(5); // number of crosses,using eq.7.43
+printf("\t number of crosses are : %.0f \n",N);
+delPs=((f*(Gs^2)*(Ds)*(N))/(5.22*(10^10)*(De)*(s)*(phys)))/(2); // using eq.12.47,psi
+printf("\t delPs is : %.1f psi \n",delPs);
+printf("\t allowable delPa is 2 psi \n");
+printf("\t pressure drop for inner pipe \n");
+f=0.00019; // friction factor for reynolds number 36200, using fig.26
+s=1;
+phyt=1;
+delPt=((f*(Gt^2)*(L)*(n))/(5.22*(10^10)*(D)*(s)*(phyt))); // using eq.7.45,psi
+printf("\t delPt is : %.1f psi \n",delPt);
+X1=0.2; // X1=((V^2)/(2*g)),using fig.27
+delPr=((4*n*X1)/(s)); // using eq.7.46,psi
+printf("\t delPr is : %.1f psi \n",delPr);
+delPT=delPt+delPr; // using eq.7.47,psi
+printf("\t delPT is : %.1f psi \n",delPT);
+printf("\t allowable delPT is 10 psi \n");
+Uc=((hio)*(ho)/(hio+ho)); // clean overall coefficient,eq 6.38,Btu/(hr)*(ft^2)*(F)
+printf("\t clean overall coefficient is : %.1f Btu/(hr)*(ft^2)*(F) \n",Uc);
+Rd=((Uc-UD)/((UD)*(Uc))); // eq 6.13,(hr)*(ft^2)*(F)/Btu
+printf("\t actual Rd is : %.5f (hr)*(ft^2)*(F)/Btu \n",Rd);
+// end
diff --git a/1328/CH12/EX12.3/12_3.sce b/1328/CH12/EX12.3/12_3.sce new file mode 100644 index 000000000..3d013e3f2 --- /dev/null +++ b/1328/CH12/EX12.3/12_3.sce @@ -0,0 +1,163 @@ +printf("\t example 12.3 \n");
+printf("\t approximate values are mentioned in the book \n");
+T1=200; // inlet hot fluid,F
+T2=130; // outlet hot fluid,F
+T3=125; // after condensation
+t1=65; // inlet cold fluid,F
+t3=100; // outlet cold fluid,F
+W=27958; // lb/hr
+w=135500; // lb/hr
+printf("\t 1.for heat balance \n");
+printf("\t for butane \n");
+c=0.44; // Btu/(lb)(F)
+qd=((W)*(c)*(T1-T2)); // Btu/hr
+printf("\t total heat required for desuperheating of butane is : %.1e Btu/hr \n",qd);
+HT2=309; // enthalpy at T2, Btu/lb
+HT3=170; // enthalpy at T3, Btu/lb
+qc=(W*(HT2-HT3)); // for condensation
+printf("\t total heat required for condensing of butane is : %.2e Btu/hr \n",qc);
+Q=qd+qc;
+printf("\t total heat required for butane is : %.2e Btu/hr \n",Q);
+printf("\t for water \n");
+c=1; // Btu/(lb)*(F)
+Q=((w)*(c)*(t3-t1)); // Btu/hr
+printf("\t total heat required for water is : %.2e Btu/hr \n",Q);
+deltw=(qc/w);
+printf("\t deltw is : %.1f F \n",deltw);
+t2=t1+deltw;
+printf("\t t2 is : %.1f F \n",t2)
+printf("\t for desuperheating \n");
+delt1=T2-t2; //F
+delt2=T1-t3; // F
+printf("\t delt1 is : %.0f F \n",delt1);
+printf("\t delt2 is : %.0f F \n",delt2);
+LMTDd=((delt2-delt1)/((2.3)*(log10(delt2/delt1))));
+printf("\t LMTD is :%.0f F \n",LMTDd);
+w1=(qd/LMTDd);
+printf("\t w1 is : %.3e lb/hr \n",w1);
+printf("\t for condensing \n");
+delt3=T3-t1; //F
+delt4=T2-t2; // F
+printf("\t delt1 is : %.0f F \n",delt3);
+printf("\t delt2 is : %.0f F \n",delt4);
+LMTDc=((delt4-delt3)/((2.3)*(log10(delt4/delt3))));
+printf("\t LMTD is :%.0f F \n",LMTDc);
+w2=(qc/LMTDc);
+printf("\t w1 is : %.2e lb/hr \n",w2);
+delt=(Q/(w1+w2));
+printf("\t delt is : % .1f F \n",delt);
+Tc=((T3)+(T2))/(2); // caloric temperature of hot fluid,F
+printf("\t caloric temperature of hot fluid is : %.1f F \n",Tc);
+tc=((t1)+(t3))/(2); // caloric temperature of cold fluid,F
+printf("\t caloric temperature of cold fluid is : %.1f F \n",tc);
+printf("\t hot fluid:shell side,butane \n");
+ID=23.25; // in
+C=0.25; // clearance
+B=12; // baffle spacing,in
+PT=1;
+as=((ID*C*B)/(144*PT)); // flow area,ft^2
+printf("\t flow area is : %.3f ft^2 \n",as);
+printf("\t desuperheating \n");
+Gs=(W/as); // mass velocity,lb/(hr)*(ft^2)
+printf("\t mass velocity is : %.2e lb/(hr)*(ft^2) \n",Gs);
+mu1=0.0242; // at 165F,lb/(ft)*(hr), from fig.15
+De=0.73/12; // from fig.28,ft
+Res=((De)*(Gs)/mu1); // reynolds number
+printf("\t reynolds number is : %.2e \n",Res);
+jH=239; // from fig.28
+k=0.012; // Btu/(hr)*(ft^2)*(F/ft), from table 5
+Z=0.96; // Z=((c)*(mu1)/k)^(1/3)
+ho=((jH)*(k/De)*(Z)); // H0=(h0/phya),using eq.6.15b,Btu/(hr)*(ft^2)*(F)
+printf("\t individual heat transfer coefficient is : %.1f Btu/(hr)*(ft^2)*(F) \n",ho);
+printf("\t cold fluid:inner tube side,water \n");
+Nt=352;
+n=4; // number of passes
+L=16; //ft
+at1=0.302; // flow area,table 10, in^2
+at=((Nt*at1)/(144*n)); // total area,ft^2,from eq.7.48
+printf("\t flow area is : %.3f ft^2 \n",at);
+Gt=(w/(at)); // mass velocity,lb/(hr)*(ft^2)
+printf("\t mass velocity is : %.2e lb/(hr)*(ft^2) \n",Gt);
+V=(Gt/(3600*62.5));
+printf("\t V is : %.2f fps \n",V);
+mu2=2.11; // at 82.5F, fig 14,lb/(ft)*(hr)
+D=0.0517; // ft
+Ret=((D)*(Gt)/mu2); // reynolds number
+printf("\t reynolds number is : %.2e \n",Ret);
+hi=800; // fig 25,Btu/(hr)*(ft^2)*(F)
+printf("\t hi is : %.0f Btu/(hr)*(ft^2)*(F) \n",hi);
+ID=0.62; // ft
+OD=0.75; //ft
+hio=((hi)*(ID/OD)); // using eq.6.5
+printf("\t Correct hio to the surface at the OD is : %.0f Btu/(hr)*(ft^2)*(F) \n",hio);
+Ud=((hio)*(ho)/(hio+ho)); // clean overall coefficient,eq 6.38,Btu/(hr)*(ft^2)*(F)
+printf("\t clean overall coefficient is : %.1f Btu/(hr)*(ft^2)*(F) \n",Ud);
+Ad=(qd/(Ud*LMTDd));
+printf("\t clean surface required for desuperheating : %.0f ft^2 \n",Ad);
+printf("\t for condensaton \n");
+Lc=16*0.6; // condensation occurs 60% of the tube length
+G1=(W/(Lc*Nt^(2/3))); // from eq.12.43
+printf("\t G1 is : %.1f lb/(hr)*(lin ft) \n",G1);
+ho=200; // assumption
+tw=(tc)+(((ho)/(hio+ho))*(Tc-tc)); // from eq.5.31
+printf("\t tw is : %.0f F \n",tw);
+tf=(Tc+tw)/(2); // from eq 12.19
+printf("\t tf is : %.0f F \n",tf);
+kf=0.075; // Btu/(hr)*(ft^2)*(F/ft)
+sf=0.55; // from table 6
+muf=0.14; // cp, from fig 14
+ho=207; // Btu/(hr)*(ft^2)*(F), from fig 12.9
+printf("\t Correct ho to the surface at the OD is : %.0f Btu/(hr)*(ft^2)*(F) \n",ho);
+Uc=((hio)*(ho)/(hio+ho)); // clean overall coefficient,Btu/(hr)*(ft^2)*(F)
+printf("\t clean overall coefficient is : %.0f Btu/(hr)*(ft^2)*(F) \n",Uc);
+Ac=(qc/(Uc*LMTDc));
+printf("\t clean surface required for desuperheating : %.0f ft^2 \n",Ac);
+AC=Ad+Ac;
+printf("\t total clean surface : %.0f ft^2 \n",AC);
+lc=(Ac/(Ac+Ad));
+printf("\t assumed condensing length percentage : %.2f \n",lc);
+UC=((Ud*Ad)+(Uc*Ac))/(AC);
+printf("\t weighted clean overall coefficient : %.0f Btu/(hr)*(ft^2)*(F) \n",UC);
+A2=0.1963; // actual surface supplied for each tube,ft^2,from table 10
+A=(Nt*L*A2); // ft^2
+printf("\t total surface area is : %.0f ft^2 \n",A);
+UD=((Q)/((A)*(delt)));
+printf("\t actual design overall coefficient is : %.0f Btu/(hr)*(ft^2)*(F) \n",UD);
+Rd=((UC-UD)/((UD)*(UC))); // (hr)*(ft^2)*(F)/Btu
+printf("\t actual Rd is : %.4f (hr)*(ft^2)*(F)/Btu \n",Rd);
+printf("\t pressure drop for annulus \n");
+printf("\t desuperheating \n");
+Ld=6.4; //ft
+De=0.0608; // fig 28
+f=0.0013; // friction factor for reynolds number 145000, using fig.29
+Ds=1.94; // ft
+phys=1;
+N=(12*Ld/B); // number of crosses,using eq.7.43
+printf("\t number of crosses are : %.0f \n",N);
+row=(58.1/((359)*(625/492)*(14.7/99.7)));
+printf("\t row is %.3f lb/ft^3 \n",row);
+s=(row/62.5);
+printf("\t s is %.4f \n",s);
+delPsd=((f*(Gs^2)*(Ds)*(N))/(5.22*(10^10)*(De)*(s)*(phys))); // using eq.7.44,psi
+printf("\t delPs is : %.1f psi \n",delPsd);
+printf("\t condensation \n");
+N=(12*Lc/B); // number of crosses,using eq.7.43
+printf("\t number of crosses are : %.0f \n",N);
+delPsc=((f*(Gs^2)*(Ds)*(N))/(5.22*(10^10)*(De)*(s)*(phys)))/(2); // using eq 12.47,psi
+printf("\t delPsc is : %.1f psi \n",delPsc);
+delPS=delPsd+delPsc;
+printf("\t delPS is : %.0f psi \n",delPS);
+printf("\t allowable delPa is 2 psi \n");
+printf("\t pressure drop for inner pipe \n");
+f=0.00023; // friction factor for reynolds number 17900, using fig.26
+s=1;
+phyt=1;
+delPt=((f*(Gt^2)*(L)*(n))/(5.22*(10^10)*(D)*(s)*(phyt))); // using eq.7.45,psi
+printf("\t delPt is : %.0f psi \n",delPt);
+X1=0.075; // X1=((V^2)/(2*g)),using fig.27
+delPr=((4*n*X1)/(s)); // using eq.7.46,psi
+printf("\t delPr is : %.1f psi \n",delPr);
+delPT=delPt+delPr; // using eq.7.47,psi
+printf("\t delPT is : %.1f psi \n",delPT);
+printf("\t allowable delPa is 10 psi \n");
+//end
diff --git a/1328/CH12/EX12.4/12_4.sce b/1328/CH12/EX12.4/12_4.sce new file mode 100644 index 000000000..5e787f4d7 --- /dev/null +++ b/1328/CH12/EX12.4/12_4.sce @@ -0,0 +1,158 @@ +printf("\t example 12.4 \n");
+printf("\t approximate values are mentioned in the book \n");
+T1=130; // inlet hot fluid,F
+T2=125; // outlet hot fluid,F
+T3=100; // after sucooling
+t1=80; // inlet cold fluid,F
+t3=100; // outlet cold fluid,F
+W=21000; // lb/hr
+w=167000; // lb/hr
+printf("\t 1.for heat balance \n");
+printf("\t for pentane \n");
+HT1=315; // enthalpy at T1, Btu/lb
+HT2=170; // enthalpy at T2, Btu/lb
+qc=(W*(HT1-HT2)); // for condensation
+printf("\t total heat required for condensing of pentane is : %.2e Btu/hr \n",qc);
+c=0.57; // Btu/(lb)(F)
+qs=((W)*(c)*(T2-T3)); // Btu/hr
+printf("\t total heat required for subcooling of pentane is : %.0e Btu/hr \n",qs);
+Q=qs+qc;
+printf("\t total heat required for pentane is : %.2e Btu/hr \n",Q);
+printf("\t for water \n");
+c=1; // Btu/(lb)*(F)
+Q=((w)*(c)*(t3-t1)); // Btu/hr
+printf("\t total heat required for water is : %.2e Btu/hr \n",Q);
+deltw=(qc/w);
+printf("\t deltw is : %.1f F \n",deltw);
+t2=t3-deltw;
+printf("\t t2 is : %.1f F \n",t2)
+printf("\t for condensing \n");
+delt1=T2-t2; //F
+delt2=T1-t3; // F
+printf("\t delt1 is : %.0f F \n",delt1);
+printf("\t delt2 is : %.0f F \n",delt2);
+LMTDc=((delt2-delt1)/((2.3)*(log10(delt2/delt1))));
+printf("\t LMTD is :%.1f F \n",LMTDc);
+w1=(qc/LMTDc);
+printf("\t w1 is : %.2e lb/hr \n",w1);
+printf("\t subcooling \n");
+delt3=T3-t1; //F
+delt4=T2-t2; // F
+printf("\t delt1 is : %.0f F \n",delt3);
+printf("\t delt2 is : %.0f F \n",delt4);
+LMTDs=((delt4-delt3)/((2.3)*(log10(delt4/delt3))));
+printf("\t LMTD is :%.1f F \n",LMTDs);
+w2=(qs/LMTDs);
+printf("\t w1 is : %.2e lb/hr \n",w2);
+delt=(Q/(w1+w2));
+printf("\t delt is : % .1f F \n",delt);
+Tc=((T1)+(T2))/(2); // caloric temperature of hot fluid,F
+printf("\t caloric temperature of hot fluid is : %.1f F \n",Tc);
+tc=((t1)+(t3))/(2); // caloric temperature of cold fluid,F
+printf("\t caloric temperature of cold fluid is : %.0f F \n",tc);
+printf("\t hot fluid:shell side,pentane \n");
+printf("\t for condensaton \n");
+Do=0.0625; // ft
+Nt=370; // number of tubes
+G1=(W/(3.14*Nt*Do)); // from eq.12.42
+printf("\t G1 is : %.1e lb/(hr)*(lin ft) \n",G1);
+printf("\t cold fluid:inner tube side,water \n");
+n=4; // number of passes
+L=16; //ft
+at1=0.302; // flow area, in^2
+at=((Nt*at1)/(144*n)); // total area,ft^2,from eq.7.48
+printf("\t flow area is : %.3f ft^2 \n",at);
+Gt=(w/(at)); // mass velocity,lb/(hr)*(ft^2)
+printf("\t mass velocity is : %.1e lb/(hr)*(ft^2) \n",Gt);
+V=(Gt/(3600*62.5));
+printf("\t V is : %.2f fps \n",V);
+mu2=1.98; // at 90F,lb/(ft)*(hr)
+D=0.0517; // ft
+Ret=((D)*(Gt)/mu2); // reynolds number
+printf("\t reynolds number is : %.2e \n",Ret);
+hi=940; //Btu/(hr)*(ft^2)*(F)
+printf("\t hi is : %.0f Btu/(hr)*(ft^2)*(F) \n",hi);
+ID=0.62; // ft
+OD=0.75; //ft
+hio=((hi)*(ID/OD)); // using eq.6.5
+printf("\t Correct hio to the surface at the OD is : %.0f Btu/(hr)*(ft^2)*(F) \n",hio);
+ho=125; // assumption
+tw=(tc)+(((ho)/(hio+ho))*(Tc-tc)); // from eq.5.31
+printf("\t tw is : %.0f F \n",tw);
+tf=(Tc+tw)/(2); // from eq 12.19
+printf("\t tf is : %.0f F \n",tf);
+kf=0.077; // Btu/(hr)*(ft^2)*(F/ft), table 4
+sf=0.6; // from table 6
+muf=0.19; // cp, from fig 14
+ho=120; // Btu/(hr)*(ft^2)*(F), from fig 12.9
+printf("\t Correct ho to the surface at the OD is : %.0f Btu/(hr)*(ft^2)*(F) \n",ho);
+Uc=((hio)*(ho)/(hio+ho)); // clean overall coefficient,Btu/(hr)*(ft^2)*(F)
+printf("\t clean overall coefficient is : %.0f Btu/(hr)*(ft^2)*(F) \n",Uc);
+Ac=(3040000/(104*36.4));
+printf("\t clean surface required for dcondensation : %.0f ft^2 \n",Ac);
+printf("\t subcooling \n");
+ID=25; // in
+C=0.25; // clearance
+B=12; // baffle spacing,in
+PT=1;
+as=((ID*C*B)/(144*PT)); // flow area,ft^2
+printf("\t flow area is : %.3f ft^2 \n",as);
+Gs=(W/as); // mass velocity,lb/(hr)*(ft^2)
+printf("\t mass velocity is : %.2e lb/(hr)*(ft^2) \n",Gs);
+mu1=0.46; // at 112.5F,lb/(ft)*(hr), from fig.14
+De=0.95/12; // from fig.28,ft
+Res=((De)*(Gs)/mu1); // reynolds number
+printf("\t reynolds number is : %.2e \n",Res);
+jH=46.5; // from fig.28
+k=0.077; // Btu/(hr)*(ft^2)*(F/ft), from table 4
+Z=1.51; // Z=((c)*(mu1)/k)^(1/3)
+ho=((jH)*(k/De)*(Z)); // using eq.6.15b,Btu/(hr)*(ft^2)*(F)
+printf("\t individual heat transfer coefficient is : %.0f Btu/(hr)*(ft^2)*(F) \n",ho);
+Us=((hio)*(ho)/(hio+ho)); // clean overall coefficient,Btu/(hr)*(ft^2)*(F)
+printf("\t clean overall coefficient is : %.1f Btu/(hr)*(ft^2)*(F) \n",Us);
+As=(qs/(Us*LMTDs));
+printf("\t clean surface required for desuperheating : %.1f ft^2 \n",As);
+AC=As+Ac;
+printf("\t total clean surface : %.0f ft^2 \n",AC);
+UC=((Us*As)+(Uc*Ac))/(AC);
+printf("\t weighted clean overall coefficient : %.1f Btu/(hr)*(ft^2)*(F) \n",UC);
+A2=0.1963; // actual surface supplied for each tube,ft^2,from table 10
+A=(Nt*L*A2); // ft^2
+printf("\t total surface area is : %.0f ft^2 \n",A);
+UD=((Q)/((A)*(delt)));
+printf("\t actual design overall coefficient is : %.1f Btu/(hr)*(ft^2)*(F) \n",UD);
+Rd=((UC-UD)/((UD)*(UC))); // (hr)*(ft^2)*(F)/Btu
+printf("\t actual Rd is : %.4f (hr)*(ft^2)*(F)/Btu \n",Rd);
+printf("\t pressure drop for annulus \n");
+printf("\t condensation \n");
+Lc=13.4; //ft
+De=0.0792; // fig 28
+f=0.0012; // friction factor for reynolds number 193000, using fig.29
+mu3=0.0165; // at 127.5F
+Ds=2.08; // ft
+phys=1;
+Res1=(De*Gs/mu3);
+printf("\t reynolds number is %.2e \n",Res1);
+rowvap=(72.2/((359)*(590/492)*(14.7/25)));
+printf("\t rowvapour is %.3f ld/ft^3 \n",rowvap);
+s=(rowvap/62.5);
+printf("\t s is %.5f \n",s);
+N=(12*Lc/B)+(1); // number of crosses,using eq.7.43
+printf("\t number of crosses are : %.0f \n",N);
+delPsc=((f*(Gs^2)*(Ds)*(N))/(5.22*(10^10)*(De)*(s)*(phys)))/(2); // using eq.12.47,psi
+printf("\t delPsc is : %.1f psi \n",delPsc);
+printf("\t delPss is negligible \n");
+printf("\t allowable delPa is 2 psi \n");
+printf("\t pressure drop for inner pipe \n");
+f=0.00022; // friction factor for reynolds number 22500, using fig.26
+s=1;
+phyt=1;
+delPt=((f*(Gt^2)*(L)*(n))/(5.22*(10^10)*(D)*(s)*(phyt))); // using eq.7.45,psi
+printf("\t delPt is : %.1f psi \n",delPt);
+X1=0.1; // X1=((V^2)/(2*g)),using fig.27
+delPr=((4*n*X1)/(s)); // using eq.7.46,psi
+printf("\t delPr is : %.1f psi \n",delPr);
+delPT=delPt+delPr; // using eq.7.47,psi
+printf("\t delPT is : %.1f psi \n",delPT);
+printf("\t allowable delPT is 10 psi \n");
+//end
diff --git a/1328/CH12/EX12.5/12_5.sce b/1328/CH12/EX12.5/12_5.sce new file mode 100644 index 000000000..bc92d09fd --- /dev/null +++ b/1328/CH12/EX12.5/12_5.sce @@ -0,0 +1,132 @@ +printf("\t example 12.5 \n");
+printf("\t approximate values are mentioned in the book \n");
+T1=130; // inlet hot fluid,F
+T2=125; // outlet hot fluid,F
+T3=100; // after subcooling
+t1=80; // inlet cold fluid,F
+t3=100; // outlet cold fluid,F
+W=21000; // lb/hr
+w=167000; // lb/hr
+printf("\t 1.for heat balance \n");
+printf("\t for pentane \n");
+c=0.57; // Btu/(lb)(F)
+qs=((W)*(c)*(T2-T3)); // Btu/hr
+printf("\t total heat required for subcooling of pentane is : %.0e Btu/hr \n",qs);
+HT1=315; // enthalpy at T1, Btu/lb
+HT2=170; // enthalpy at T2, Btu/lb
+qc=(W*(HT1-HT2)); // for condensation
+printf("\t total heat required for condensing of pentane is : %.2e Btu/hr \n",qc);
+Q=qs+qc;
+printf("\t total heat required for pentane is : %.2e Btu/hr \n",Q);
+printf("\t for water \n");
+c=1; // Btu/(lb)*(F)
+Q=((w)*(c)*(t3-t1)); // Btu/hr
+printf("\t total heat required for water is : %.2e Btu/hr \n",Q);
+deltw=18.2;
+printf("\t deltw is : %.1f F \n",deltw);
+t2=t3-deltw;
+printf("\t t2 is : %.1f F \n",t2)
+printf("\t for condensing \n");
+delt1=T2-t2; //F
+delt2=T1-t3; // F
+printf("\t delt1 is : %.0f F \n",delt1);
+printf("\t delt2 is : %.0f F \n",delt2);
+LMTDc=((delt2-delt1)/((2.3)*(log10(delt2/delt1))));
+printf("\t LMTD is :%.1f F \n",LMTDc);
+w1=(qc/LMTDc);
+printf("\t w1 is : %.2e lb/hr \n",w1);
+printf("\t subcooling \n");
+delt3=T3-t1; //F
+delt4=T2-t2; // F
+printf("\t delt1 is : %.0f F \n",delt3);
+printf("\t delt2 is : %.0f F \n",delt4);
+LMTDs=((delt4-delt3)/((2.3)*(log10(delt4/delt3))));
+printf("\t LMTD is :%.1f F \n",LMTDs);
+w2=(qs/LMTDs);
+printf("\t w1 is : %.2e lb/hr \n",w2);
+delt=(Q/(w1+w2));
+printf("\t delt is : % .1f F \n",delt);
+Tc=((T1)+(T2))/(2); // caloric temperature of hot fluid,F
+printf("\t caloric temperature of hot fluid is : %.1f F \n",Tc);
+tc=((t1)+(t3))/(2); // caloric temperature of cold fluid,F
+printf("\t caloric temperature of cold fluid is : %.0f F \n",tc);
+printf("\t hot fluid:shell side,pentane \n");
+C1=0.198; // for 0.3Ds
+Ds=25; // in
+L=16; // ft
+N=370
+a=(C1*Ds^2);
+printf("\t a is : %.0f in^2 \n",a);
+N1=((N*a*4)/(3.14*Ds^2));
+printf("\t number of submerged tubes are : %.0f \n",N1);
+Nt=N-N1;
+printf("\t number of tubes for condensation are : %.0f \n",Nt);
+Af=(N1/N);
+printf("\t flooded surface : %.2f \n",Af);
+printf("\t for condensaton \n");
+G1=(W/(L*Nt^(2/3))); // from eq.12.43
+printf("\t G1 is : %.1f lb/(hr)*(lin ft) \n",G1);
+printf("\t cold fluid:inner tube side,water \n");
+n=4; // number of passes
+L=16; //ft
+at1=0.302; // flow area, in^2
+at=((Nt*at1)/(144*n)); // total area,ft^2,from eq.7.48
+printf("\t flow area is : %.3f ft^2 \n",at);
+Gt=(w/(at)); // mass velocity,lb/(hr)*(ft^2)
+printf("\t mass velocity is : %.1e lb/(hr)*(ft^2) \n",Gt);
+V=(Gt/(3600*62.5));
+printf("\t V is : %.2f fps \n",V);
+mu2=1.98; // lb/(ft)*(hr)
+D=0.0517; // ft
+Ret=((D)*(Gt)/mu2); // reynolds number
+printf("\t reynolds number is : %.2e \n",Ret);
+hi=940; //Btu/(hr)*(ft^2)*(F)
+printf("\t hi is : %.0f Btu/(hr)*(ft^2)*(F) \n",hi);
+ID=0.62; // ft
+OD=0.75; //ft
+hio=((hi)*(ID/OD)); // using eq.6.5
+printf("\t Correct hio to the surface at the OD is : %.0f Btu/(hr)*(ft^2)*(F) \n",hio);
+ho=251; // Btu/(hr)*(ft^2)*(F), from fig 12.9
+printf("\t Correct ho to the surface at the OD is : %.0f Btu/(hr)*(ft^2)*(F) \n",ho);
+Uc=((hio)*(ho)/(hio+ho)); // clean overall coefficient,Btu/(hr)*(ft^2)*(F)
+printf("\t clean overall coefficient is : %.0f Btu/(hr)*(ft^2)*(F) \n",Uc);
+Ac=(qc/(Uc*LMTDc));
+printf("\t clean surface required for dcondensation : %.0f ft^2 \n",Ac);
+printf("\t subcooling \n");
+ho=50; // Btu/(hr)*(ft^2)*(F)
+printf("\t individual heat transfer coefficient is : %.0f Btu/(hr)*(ft^2)*(F) \n",ho);
+Us=((hio)*(ho)/(hio+ho)); // clean overall coefficient,Btu/(hr)*(ft^2)*(F)
+printf("\t clean overall coefficient is : %.0f Btu/(hr)*(ft^2)*(F) \n",Us);
+As=(qs/(Us*LMTDs));
+printf("\t clean surface required for desuperheating : %.0f ft^2 \n",As);
+AC=As+Ac;
+printf("\t total clean surface : %.0f ft^2 \n",AC);
+UC=((Us*As)+(Uc*Ac))/(AC);
+printf("\t weighted clean overall coefficient : %.0f Btu/(hr)*(ft^2)*(F) \n",UC);
+A=1160; // ft^2
+printf("\t total surface area is : %.0f ft^2 \n",A);
+UD=((Q)/((A)*(delt)));
+printf("\t actual design overall coefficient is : %.1f Btu/(hr)*(ft^2)*(F) \n",UD);
+Rd=((UC-UD)/((UD)*(UC))); // (hr)*(ft^2)*(F)/Btu
+printf("\t actual Rd is : %.4f (hr)*(ft^2)*(F)/Btu \n",Rd);
+printf("\t pressure drop for annulus \n");
+printf("\t condensation \n");
+printf("\t It will be necessary to spread the batHes to a spacing of 18in.to compensate for the reduction in crossfiow area due to the flooded subcooling zone. The tube-side pressure drop will be the same as before. Assume bundle flooded to 0.3Ds.\n");
+As=0.547; // ft^2
+Gs=(W/(As)); // mass velocity,lb/(hr)*(ft^2)
+printf("\t mass velocity is : %.1e lb/(hr)*(ft^2) \n",Gs);
+De=0.0792; // fig 28
+Res=((De)*(Gs)/0.0165); // reynolds number
+printf("\t reynolds number is : %.2e \n",Res);
+f=0.00121; // friction factor for reynolds number 193000, using fig.29
+s=0.00454; // for reynolds number 193000,using fig.6
+Ds=2.08; // ft
+B=18
+phys=1;
+N=(12*L/B); // number of crosses,using eq.7.43
+printf("\t number of crosses are : %.0f \n",N);
+delPsc=((f*(Gs^2)*(Ds)*(N))/(5.22*(10^10)*(De)*(s)*(phys)))/(2); // using eq.12.47,psi
+printf("\t delPsc is : %.1f psi \n",delPsc);
+printf("\t delPss is negligible \n");
+printf("\t allowable delPa is 2 psi \n");
+//end
diff --git a/1328/CH12/EX12.6/12_6.sce b/1328/CH12/EX12.6/12_6.sce new file mode 100644 index 000000000..cc414e96b --- /dev/null +++ b/1328/CH12/EX12.6/12_6.sce @@ -0,0 +1,107 @@ +printf("\t example 12.6 \n");
+printf("\t approximate values are mentioned in the book \n");
+T1=176; // inlet hot fluid,F
+T2=176; // outlet hot fluid,F
+t1=85; // inlet cold fluid,F
+t2=120; // outlet cold fluid,F
+W=30000; // lb/hr
+w=120000; // lb/hr
+printf("\t 1.for heat balance \n");
+printf("\t for carbon disulfide \n");
+l=140; // Btu/(lb)
+Q=((W)*l); // Btu/hr
+printf("\t total heat required for carbon disulfide is : %.1e Btu/hr \n",Q);
+printf("\t for water \n");
+c=1; // Btu/(lb)*(F)
+Q=((w)*(c)*(t2-t1)); // Btu/hr
+printf("\t total heat required for water is : %.0f Btu/hr \n",Q);
+delt1=T2-t1; //F
+delt2=T1-t2; // F
+printf("\t delt1 is : %.0f F \n",delt1);
+printf("\t delt2 is : %.0f F \n",delt2);
+LMTD=((delt2-delt1)/((2.3)*(log10(delt2/delt1))));
+printf("\t LMTD is :%.1f F \n",LMTD);
+Tc=((T2)+T1)/2; // caloric temperature of hot fluid,F
+printf("\t caloric temperature of hot fluid is : %.0f F \n",Tc);
+tc=((t1)+(t2))/2; // caloric temperature of cold fluid,F
+printf("\t caloric temperature of cold fluid is : %.1f F \n",tc);
+printf("\t hot fluid:inner tube side,carbon disulfide \n");
+hio=300; // Btu/(hr)*(ft^2)*(F)
+printf("\t cold fluid:shell side,water \n");
+ID=17.25; // in
+C=0.25; // clearance
+B=6; // baffle spacing,in
+PT=1;
+as=((ID*C*B)/(144*PT)); // flow area,ft^2
+printf("\t flow area is : %.2f ft^2 \n",as);
+Gs=(w/as); // mass velocity,lb/(hr)*(ft^2)
+printf("\t mass velocity is : %.2e lb/(hr)*(ft^2) \n",Gs);
+mu1=1.7; // at 280F,lb/(ft)*(hr), from fig.14
+De=0.0792; // from fig.28,ft
+Res=((De)*(Gs)/mu1); // reynolds number
+printf("\t reynolds number is : %.1e \n",Res);
+jH=103; // from fig.28
+k=0.36; // Btu/(hr)*(ft^2)*(F/ft), from fig.1
+Z=1.68; // Z=((c)*(mu1)/k)^(1/3); // prandelt number
+ho=((jH)*(k/De)*(Z)); // using eq.6.15,Btu/(hr)*(ft^2)*(F)
+printf("\t individual heat transfer coefficient is : %.0f Btu/(hr)*(ft^2)*(F) \n",ho);
+tw=(tc)+(((hio)/(hio+ho))*(Tc-tc)); // from eq.5.31
+printf("\t tw is : %.1f F \n",tw);
+tf=(Tc+tw)/(2); // from eq 12.19
+printf("\t tf is : %.1f F \n",tf);
+printf("\t hot fluid:inner tube side,carbon disulfide \n");
+kf=0.09; // Btu/(hr)*(ft^2)*(F/ft), from fig 14
+sf=1.26; // from table 6
+rowf=78.8; // lb/ft^3
+muf=0.68; // cp, from fig 24
+Nt=177;
+D=0.0517; // ft
+G1=(W/(3.14*Nt*D));
+printf("\t G1 is : %.f lb/(hr)*(lin ft) \n",G1);
+Ret=((4)*(G1)/muf); // reynolds number
+printf("\t reynolds number is : %.0f \n",Ret);
+hi=(0.251*(((kf^3)*(rowf^2)*(4.17*10^8))/(muf^2))^(1/3)); // hi*(((kf^3)*(rowf^2)*(4.17*10^8))/(muf^2))^(-1)=0.251, from fig 12.12
+printf("\t hi is : %.0e Btu/(hr)*(ft^2)*(F) \n",hi);
+ID=0.62; // ft
+OD=.75; //ft
+hio1=((hi)*(ID/OD)); //Hio=(hio/phyp), using eq.6.5
+printf("\t Correct hio1 to the surface at the OD is : %.0f Btu/(hr)*(ft^2)*(F) \n",hio1);
+Uc=((hio1)*(ho)/(hio1+ho)); // clean overall coefficient,Btu/(hr)*(ft^2)*(F)
+printf("\t clean overall coefficient is : %.0f Btu/(hr)*(ft^2)*(F) \n",Uc);
+A2=0.1963; // actual surface supplied for each tube,ft^2,from table 10
+L=16;
+A=(Nt*L*A2); // ft^2
+printf("\t total surface area is : %.0f ft^2 \n",A);
+UD=((Q)/((A)*(LMTD)));
+printf("\t actual design overall coefficient is : %.0f Btu/(hr)*(ft^2)*(F) \n",UD);
+Rd=((Uc-UD)/((UD)*(Uc))); // (hr)*(ft^2)*(F)/Btu
+printf("\t actual Rd is : %.5f (hr)*(ft^2)*(F)/Btu \n",Rd);
+printf("\t pressure drop for inner pipe \n");
+n=1; // number of passes
+at1=0.302; // flow area, in^2
+at=((Nt*at1)/(144*n)); // total area,ft^2,from eq.7.48
+printf("\t flow area is : %.3f ft^2 \n",at);
+Gt=(30000/(0.372)); // mass velocity,lb/(hr)*(ft^2)
+printf("\t mass velocity is : %.2e lb/(hr)*(ft^2) \n",Gt);
+mu2=0.029; // at inlet,lb/(ft)*(hr)
+Ret=((D)*(Gt)/mu2); // reynolds number
+printf("\t reynolds number is : %.2e \n",Ret);
+row=(76.1/((359)*(636/492)*(14.7/39.7)));
+printf("\t row is %.3f ld/ft^3 \n",row);
+s=(row/62.5);
+printf("\t s is %.4f \n",s);
+f=0.000138; // friction factor for reynolds number 143000, using fig.26
+delPt=((f*(Gt^2)*(16)*(1))/(5.22*(10^10)*(0.0517)*(s)))/(2); // using eq.7.45,psi
+printf("\t delPt is : %.1f psi \n",delPt);
+printf("\t allowable delPa is negligible psi \n");
+printf("\t pressure drop for annulus \n");
+f=0.0017; // friction factor for reynolds number 31000, using fig.29
+s=1; // for reynolds number 31000,using fig.6
+Ds=17.25/12; // ft
+B=6;
+N=(12*L/B); // number of crosses,using eq.7.43
+printf("\t number of crosses are : %.0f \n",N);
+delPs=((f*(Gs^2)*(Ds)*(N))/(5.22*(10^10)*(De)*(s))); // using eq.7.44,psi
+printf("\t delPs is : %.1f psi \n",delPs);
+printf("\t allowable delPT is 10 psi \n");
+//end
diff --git a/1328/CH12/EX12.7/12_7.sce b/1328/CH12/EX12.7/12_7.sce new file mode 100644 index 000000000..01eca0da0 --- /dev/null +++ b/1328/CH12/EX12.7/12_7.sce @@ -0,0 +1,24 @@ +printf("\t example 12.7 \n");
+printf("\t approximate values are mentioned in the book \n");
+V=7.5; // fps
+W=250000;
+CCl=0.85;
+CT=1;
+CL=1;
+Ct=263;
+UD=(CCl*CT*CL*Ct*(V^(1/2)));
+printf("\t design overall coefficient is : %.0f Btu/(hr)*(ft^2)*(F) \n",UD);
+A=(W/8);
+printf("\t area is : %.0f ft^2 \n",A);
+a1=0.229; // ft^2/ft, table 10
+at=0.475; // in^2, table 10
+t1=70;
+Ts=91.72; //F
+n=2;
+L=26;
+t2=(Ts)-((Ts-t1)/((10)^(0.000279*UD*L*n*a1/(V*at))));
+printf("\t t2 is : %.1f F \n",t2); // calculation mistake in book
+Go=(W*950)/((t2-t1)*500);
+printf("\t circulation rate is : %.0f gpm \n",Go);
+// end
+
|