summaryrefslogtreecommitdiff
path: root/1319/CH12
diff options
context:
space:
mode:
Diffstat (limited to '1319/CH12')
-rw-r--r--1319/CH12/EX12.1/i_1.sce12
-rw-r--r--1319/CH12/EX12.10/i_10.sce34
-rw-r--r--1319/CH12/EX12.11/i_11.sce46
-rw-r--r--1319/CH12/EX12.12/i_12.sce19
-rw-r--r--1319/CH12/EX12.13/i_13.sce31
-rw-r--r--1319/CH12/EX12.14/i_14.sce22
-rw-r--r--1319/CH12/EX12.15/i_15.sce18
-rw-r--r--1319/CH12/EX12.16/i_16.sce28
-rw-r--r--1319/CH12/EX12.17/i_17.sce42
-rw-r--r--1319/CH12/EX12.18/i_18.sce36
-rw-r--r--1319/CH12/EX12.19/i_19.sce53
-rw-r--r--1319/CH12/EX12.2/i_2.sce12
-rw-r--r--1319/CH12/EX12.20/i_20.sce66
-rw-r--r--1319/CH12/EX12.21/i_21.sce40
-rw-r--r--1319/CH12/EX12.22/i_22.sce25
-rw-r--r--1319/CH12/EX12.23/i_23.sce35
-rw-r--r--1319/CH12/EX12.24/i_24.sce38
-rw-r--r--1319/CH12/EX12.3/i_3.sce11
-rw-r--r--1319/CH12/EX12.4/i_4.sce15
-rw-r--r--1319/CH12/EX12.5/i_5.sce12
-rw-r--r--1319/CH12/EX12.6/i_6.sce11
-rw-r--r--1319/CH12/EX12.7/i_7.sce13
-rw-r--r--1319/CH12/EX12.8/i_8.sce17
-rw-r--r--1319/CH12/EX12.9/i_9.sce17
24 files changed, 653 insertions, 0 deletions
diff --git a/1319/CH12/EX12.1/i_1.sce b/1319/CH12/EX12.1/i_1.sce
new file mode 100644
index 000000000..a20cc6220
--- /dev/null
+++ b/1319/CH12/EX12.1/i_1.sce
@@ -0,0 +1,12 @@
+// To Compute the number of electrons.
+
+clc;
+clear;
+
+I=(25)*(10^-3);
+t=(30)*(10^-3);
+C=I*t;
+// 1C = 6.242*(10^18)
+n= 6.242*(10^18);
+e_s=C*n;
+disp(e_s,'The Number Of Electrons passing through the person is' )
diff --git a/1319/CH12/EX12.10/i_10.sce b/1319/CH12/EX12.10/i_10.sce
new file mode 100644
index 000000000..61ece873e
--- /dev/null
+++ b/1319/CH12/EX12.10/i_10.sce
@@ -0,0 +1,34 @@
+//Calculation of Current and power dissipated in resistors connected in series.
+
+clc;
+clear;
+
+R1=100;
+R2=200;
+R3=300;
+
+Rt=R1+R2+R3;
+
+V=250;
+
+//Ohm's Law V=I*R
+
+I=V/Rt;
+
+// Power Loss Equation P=(I^2)*R
+
+P1=(I^2)*R1;
+P2=(I^2)*R2;
+P3=(I^2)*R3;
+
+Pt=P1+P2+P3;
+
+P=V*I;
+
+disp('ohms',Rt,'The total resistance in the circuit =')
+disp('amperes',I,'The Current in the circuit =')
+disp('watts',P1,'The power loss in the 100 ohms resistor =')
+disp('watts',P2,'The power loss in the 200 ohms resistor =')
+disp('watts',P3,'The power loss in the 300 ohms resistor =')
+disp('watts',Pt,'The total power loss in the circuit =')
+disp('watts',P,'The power loss in the circuit (using P=V*I ) =')
diff --git a/1319/CH12/EX12.11/i_11.sce b/1319/CH12/EX12.11/i_11.sce
new file mode 100644
index 000000000..0fd86f5b4
--- /dev/null
+++ b/1319/CH12/EX12.11/i_11.sce
@@ -0,0 +1,46 @@
+// To find the value of the unknown resitance in the series of resistances in a circuit.
+
+clc;
+clear;
+
+R1=20;
+
+V=220;
+
+P=50;
+
+R=poly([0 1],'R','c');
+Rt=R1+R;
+
+I=V/Rt;
+
+A=(I^2)*R;// To get the characteristic eqaution to find R.
+B=A-50;
+C=B(2);
+
+rts=roots(C);// To find the two resistances
+
+R=round(10000.*rts)./10000;// Rounding off to four decimal points.
+
+Rt=R1+R;// Total resistance
+
+I=V./Rt;// Currents
+
+pow=(I.^2)*(R)';
+
+power=diag(pow);
+
+disp(B(2),'The Characteristic polynomial to find resistance R equated to zero is')
+
+disp('ohms',R,'The solution of the above equation yields two resistances')
+
+disp('Now to check which resistance is suitable by finding out the power dissipated by each of them')
+
+disp('watts',power,'The Power dissipated by both the resistors are')
+
+disp('ohms',R(1),'From comparison with the given value (50 watts), We find that the suitable resistance is')
+
+// The higher resistance is preferred because it limits the amount of current, ( Please see the current ratings of the resistors (Heating effect))
+
+
+
diff --git a/1319/CH12/EX12.12/i_12.sce b/1319/CH12/EX12.12/i_12.sce
new file mode 100644
index 000000000..db2b5b2fb
--- /dev/null
+++ b/1319/CH12/EX12.12/i_12.sce
@@ -0,0 +1,19 @@
+// To Compute the resistor, when operating voltage is altered.
+
+clc;
+clear;
+
+V=120;
+P=100;
+
+Rd=(V^2)/P;
+
+Vr=80; // Reduced voltage
+
+Ir= Vr/Rd;// Reduced current
+
+Rt=V/Ir; // The Total Resistance required to circulate the reduced current.
+
+Re= Rt-Rd; // External resistance required.
+
+disp('ohms',Re,'The external resistance required to be connected in series to operate at 80V')
diff --git a/1319/CH12/EX12.13/i_13.sce b/1319/CH12/EX12.13/i_13.sce
new file mode 100644
index 000000000..b02629f1b
--- /dev/null
+++ b/1319/CH12/EX12.13/i_13.sce
@@ -0,0 +1,31 @@
+// To Determine the voltage and branch currents in a cicuit with resistors connected in parallel
+
+clc;
+clear;
+
+R1=750;
+R2=600;
+R3=200;
+
+C1=1/R1;
+C2=1/R2;
+C3=1/R3;
+
+C= C1+C2+C3;// Total Conductance
+
+I=1;
+
+// 1/C is total resistance R, We use Ohm's Law to find the voltage applied.
+
+V=I/C;// V=I*R
+
+// Branch Currents
+I1=V/R1;
+I2=V/R2;
+I3=V/R3;
+
+disp('volts',V,'The applied voltage = ')
+disp('amperes',I1,'The Current through 750 ohm Resistor =')
+disp('amperes',I1,'The Current through 600 ohm Resistor =')
+disp('amperes',I1,'The Current through 200 ohm Resistor =')
+disp('amperes, Hence Verified.',(I1+I2+I3),'The Total Current through the circuit =')
diff --git a/1319/CH12/EX12.14/i_14.sce b/1319/CH12/EX12.14/i_14.sce
new file mode 100644
index 000000000..5ab7f01be
--- /dev/null
+++ b/1319/CH12/EX12.14/i_14.sce
@@ -0,0 +1,22 @@
+// To determine resistances in parallel.
+
+clc;
+clear;
+
+I=25;
+V=200;
+P1=1500;
+
+// Voltage remains the same in both the coils.
+// Power Equation and Ohm's Law is being incorporated.
+
+I1=P1/V;
+
+R1=V/I1;
+
+I2=I-I1;
+
+R2= V/I2;
+
+disp('ohms',R1,'The resistance of coil 1 =')
+disp('ohms',R2,'The resistance of coil 2 =')
diff --git a/1319/CH12/EX12.15/i_15.sce b/1319/CH12/EX12.15/i_15.sce
new file mode 100644
index 000000000..7a29f4e0f
--- /dev/null
+++ b/1319/CH12/EX12.15/i_15.sce
@@ -0,0 +1,18 @@
+// To determine the currents in parallel branches of a network.
+
+clc;
+clear;
+
+I=40;
+
+R1=20;
+R2=60;
+
+//Current Divider equation I1= I*(R2/(R1+R2))
+
+I1=I*(R2/(R1+R2));
+I2=I*(R1/(R1+R2));
+
+disp('A',I1,'The Current in the 20 ohm branch =')
+disp('A',I2,'The Current in the 60 ohm branch =')
+
diff --git a/1319/CH12/EX12.16/i_16.sce b/1319/CH12/EX12.16/i_16.sce
new file mode 100644
index 000000000..8afc3ba3c
--- /dev/null
+++ b/1319/CH12/EX12.16/i_16.sce
@@ -0,0 +1,28 @@
+// To determine current through each resistor in series and parallel combinational circuit
+
+clc;
+clear;
+
+R=10;
+R1=20;
+R2=30;
+
+// R is the resistance in series with the parallel combination of R1 and R2.
+
+V=100;
+
+Reff=(R1*R2)/(R1+R2);
+
+Rt=R+Reff;
+
+I=V/Rt;
+
+V1=I*R; // Voltage drop across 10 ohm resistor.
+
+I1=I*(R2/(R1+R2));
+I2=I*(R1/(R1+R2));
+
+disp('ohms',Rt,'The total resistance of the network =')
+disp('A',I,'The current through 10 ohm resistor =')
+disp('A',I1,'The current through 20 ohm resistor =')
+disp('A',I2,'The current through 30 ohm resistor =')
diff --git a/1319/CH12/EX12.17/i_17.sce b/1319/CH12/EX12.17/i_17.sce
new file mode 100644
index 000000000..bf838785f
--- /dev/null
+++ b/1319/CH12/EX12.17/i_17.sce
@@ -0,0 +1,42 @@
+// To calculate current in each branch of the given network.
+
+clc;
+clear;
+
+
+// Refer diagram (a) in the book
+
+R1=6;// one of the resistance between a and b
+R2=3;// one of the resistance between a and b
+R3=8;// resistance between c and a
+R4=15;// resistance in the middle branch
+R5=4;// resistance between d and e
+
+V=40;
+
+Rab=(R1*R2)/(R1+R2);// Effective resistance between a and b
+
+Rcb= Rab+R3;// Effective resistance of the top branch between c and b
+
+Reff=(Rcb*R4)/(Rcb+R4);
+
+Rt=Reff+R5;
+
+I=V/Rt;
+
+I1=I*(Rcb/(Rcb+R4));
+
+I2=I*(R4/(Rcb+R4));
+
+I3=I2*(R2/(R1+R2));
+
+I4=I2*(R1/(R1+R2));
+
+disp('amperes',I,'The current through 4 ohm resistor =')
+disp('amperes',I1,'The current through 15 ohm resistor =')
+disp('amperes',I2,'The current through 8 ohm resistor =')
+disp('amperes',I4,'The current through 3 ohm resistor =')
+disp('amperes',I3,'The current through 6 ohm resistor =')
+
+
+
diff --git a/1319/CH12/EX12.18/i_18.sce b/1319/CH12/EX12.18/i_18.sce
new file mode 100644
index 000000000..fe0e5d0dd
--- /dev/null
+++ b/1319/CH12/EX12.18/i_18.sce
@@ -0,0 +1,36 @@
+// To determine the current using loop analysis
+
+clc;
+clear;
+
+// MESH Equations
+//6*i1-2*i2=30
+//-2*i1+6*i2=-40
+
+R=[6 -2;-2 6];
+E=[30;-40];
+
+//The Loop Currents
+
+I=inv(R)*E; // Matrix Method to solve for two unknowns in two eaquations.
+
+i1=I(1);
+i2=I(2);
+i3=i1-i2;
+
+disp('A',i2,'i2 =','A',i1,'i1 =','The Calculated Loop Currents are')
+
+disp('The Negative sign indicates that the assumed direction of flow of current should be reveresed.')
+
+if(i1<0);
+ i1=abs(i1);
+end
+
+if(i2<0);
+ i2=abs(i2);
+end
+
+disp('A',i1,'The Current through 4 ohm resistor on the 30V side =')
+disp('A',i2,'The Current through 4 ohm resistor on the 40V side =')
+disp('A',i3,'The Current through 2 ohm resistor =')
+
diff --git a/1319/CH12/EX12.19/i_19.sce b/1319/CH12/EX12.19/i_19.sce
new file mode 100644
index 000000000..b113ae9f9
--- /dev/null
+++ b/1319/CH12/EX12.19/i_19.sce
@@ -0,0 +1,53 @@
+// To calculate current in each branch using loop analysis.
+
+clc;
+clear;
+
+// MESH Equations for the given network.
+//3*i1-i2+0*i3=11
+//-i1+10*i2-2*i3=0
+//0*i1+-2*i2+5*i3=13
+
+//Voltage supplies are 11V and 13V
+
+R=[3 -1 0;-1 10 -2; 0 -2 5];
+E=[11;0;13];
+
+// Loop Currents
+
+I=inv(R)*E;
+
+i1=I(1);
+i2=I(2);
+i3=I(3);
+
+ia=i1-i2; // Assumed direction from Mesh 1
+ib=i2-i3; // Assumed direction from Mesh 2
+
+disp('A',ib,'ib (through 2 resistor between 7 ohm and 3 ohm resistor) =','A',ia,'ia(through 1 ohm resistor) =','A',i3,'i3 =','A',i2,'i2 =','A',i1,'i1 =','The Calculated Loop Currents are')
+
+disp('The Negative sign indicates that the assumed direction of flow of current should be reveresed')
+
+// To obtain the magnitude of direction.
+
+if(i1<0)
+ i1=abs(i1);
+end
+if(i2<0)
+ i2=abs(i2);
+end
+if(i3<0)
+ i3=abs(i3);
+end
+if(ia<0)
+ ia=abs(ia);
+end
+if(ib<0)
+ ib=abs(ib);
+end
+
+disp('A',i1,'The Current through 2 ohm resistor on the 11V side =')
+disp('A',i2,'The Current through 7 ohm resistor =')
+disp('A',i3,'The Current through 3 ohm resistor on the 13V side =')
+disp('A',ia,'The Current through 1 ohm resistor =')
+disp('A',ib,'The Current through 2 ohm resistor between the 7 and 3 ohm resistors =')
diff --git a/1319/CH12/EX12.2/i_2.sce b/1319/CH12/EX12.2/i_2.sce
new file mode 100644
index 000000000..244083f54
--- /dev/null
+++ b/1319/CH12/EX12.2/i_2.sce
@@ -0,0 +1,12 @@
+// Compute Average lighting current
+clc;
+clear;
+
+q=20;
+t=(10)*(10^-3);
+
+// Coulomb's Law
+
+I=q/t;
+
+disp('amperes',I,'The Average Lightning current =')
diff --git a/1319/CH12/EX12.20/i_20.sce b/1319/CH12/EX12.20/i_20.sce
new file mode 100644
index 000000000..d2e6cfa8e
--- /dev/null
+++ b/1319/CH12/EX12.20/i_20.sce
@@ -0,0 +1,66 @@
+// To calculate current in each branch using loop analysis and point voltages in a given network.
+
+clc;
+clear;
+
+// MESH Equations for the given network.
+//3.95*i1-3.75*i2+0*i3=120
+//-3.75*i1+9.5*i2-5.45*i3=0
+//0*i1-5.45*i2+5.55*i3=-110
+
+// Positive of 120V DC supply connected to 0.2 ohm resistor
+// Positive of 110 DC supply connected to 0.1 ohm resistor
+
+//Voltage supplies are 120V and 110V
+
+R=[3.95 -3.75 0;-3.75 9.5 -5.45; 0 -5.45 5.55];
+E=[120;0;-110];
+
+R1=abs(R(2)); // Resistor carrying ia
+R2=abs(R(8)); // Resistor carrying ib
+
+// Loop Currents
+
+I=inv(R)*E;
+
+i1=I(1);
+i2=I(2);
+i3=I(3);
+
+ia=i1-i2; // Assumed direction from Mesh 1
+ib=i2-i3; // Assumed direction from Mesh 2
+
+// Using Nodal Analysis to find V1 and V2.
+V1=R1*ia;
+V2=R2*ib;
+
+disp('A',ib,'ib (through 2 resistor between 7 ohm and 3 ohm resistor) =','A',ia,'ia(through 1 ohm resistor) =','A',i3,'i3 =','A',i2,'i2 =','A',i1,'i1 =','The Calculated Loop Currents are')
+
+disp('The Negative sign indicates that the assumed direction of flow of current should be reveresed')
+
+// To obtain the magnitude of direction.
+
+if(i1<0)
+ i1=abs(i1);
+end
+if(i2<0)
+ i2=abs(i2);
+end
+if(i3<0)
+ i3=abs(i3);
+end
+if(ia<0)
+ ia=abs(ia);
+end
+if(ib<0)
+ ib=abs(ib);
+end
+
+disp('A',i1,'The Current through 0.2 ohm resistor on the 120V side =')
+disp('A',i2,'The Current through 0.3 ohm resistor =')
+disp('A',i3,'The Current through 0.1 ohm resistor on the 110V side =')
+disp('A',ia,'The Current through 3.75 ohm resistor =')
+disp('A',ib,'The Current through 5.45 ohm resistor =')
+
+disp('V',V1,'The voltage V1 =')
+disp('V',V2,'The voltage V2 =')
diff --git a/1319/CH12/EX12.21/i_21.sce b/1319/CH12/EX12.21/i_21.sce
new file mode 100644
index 000000000..eca2c552d
--- /dev/null
+++ b/1319/CH12/EX12.21/i_21.sce
@@ -0,0 +1,40 @@
+// To calculate current from a battery and pd across points A and B
+
+clc;
+clear;
+
+// Resistances in the given network
+R1=4;
+R2=2;
+R3=3;
+R4=6;
+R5=8;
+
+// MESH Equations
+//9*i1-5*i2=10
+//-5*i1+19*i2=0
+
+// Supply voltage 10V
+
+R=[(R1+R2+R3) -(R2+R3); -(R2+R3) (R2+R3+R4+R5)];
+V=[10;0];
+
+//Loop Currents
+I=inv(R)*V;
+
+i1=I(1);
+i2=I(2);
+
+i3=i1-i2; // From Mesh 1
+
+// Point Voltages
+Va=i3*R3;
+Vb=i2*R5;
+
+disp('amperes',abs(i1),'The current through 4 ohm resistor and the battery =')
+disp('amperes',abs(i2),'The current through 6 ohm and 8 ohm resistors =')
+disp('amperes',abs(i3),'The current through 2 ohm and 3 ohm resistors =')
+
+disp('volts',abs(Va),'The voltage at point A =')
+disp('volts',abs(Vb),'The voltage at point B =')
+disp('volts',(Va-Vb),'The voltage across Points A and B =')
diff --git a/1319/CH12/EX12.22/i_22.sce b/1319/CH12/EX12.22/i_22.sce
new file mode 100644
index 000000000..134830d87
--- /dev/null
+++ b/1319/CH12/EX12.22/i_22.sce
@@ -0,0 +1,25 @@
+// Determine Current through branch AB of the given network
+
+clc;
+clear;
+
+// MESH Equations
+// 4*i1-2*i2+0*i3=10
+// -2*i1+6*i2-2*i3=0
+//0*i1-2*i2+6*i3=0
+
+//Supply Voltage is 10V (Note printing mistake)
+
+R=[4 -2 0;-2 6 -2; 0 -2 6];
+V=[10;0;0];
+
+// Loop Currents
+
+I=inv(R)*V;
+
+i1=I(1);
+i2=I(2);
+i3=I(3);
+
+disp('amperes',abs(i2),'The current through branch AB of the network =')
+
diff --git a/1319/CH12/EX12.23/i_23.sce b/1319/CH12/EX12.23/i_23.sce
new file mode 100644
index 000000000..c4c99e838
--- /dev/null
+++ b/1319/CH12/EX12.23/i_23.sce
@@ -0,0 +1,35 @@
+// Determine the current in the branches of the network using nodal analysis
+
+clc;
+clear;
+
+// Supply voltages
+V1=30;
+V2=40;
+
+// Resistances in the network
+R1=4;
+R2=2;
+R3=4;
+
+Vb=poly([0 1],'Vb','c');
+
+AD=(V1-Vb)/R1;
+BD=(V2-Vb)/R3;
+CD=Vb/R2;
+
+X=AD+BD-CD;
+
+disp('The Characterictic Equation to find Vb is')
+
+disp(CD,'=',AD,' +',BD)
+
+Vb=roots(X);// Stores the numerical value of Vb
+
+i1=(V1-Vb)/R1;
+i2=(V2-Vb)/R3;
+i3=Vb/R2;
+
+disp('amperes',i1,'Current through 4 ohm resistor on the 30V supply side =')
+disp('amperes',i2,'Current through 4 ohm resistor on the 40V supply side =')
+disp('amperes',i3,'Current through 2 ohm resistor =')
diff --git a/1319/CH12/EX12.24/i_24.sce b/1319/CH12/EX12.24/i_24.sce
new file mode 100644
index 000000000..c24465273
--- /dev/null
+++ b/1319/CH12/EX12.24/i_24.sce
@@ -0,0 +1,38 @@
+// To Calculate current in all branches of the network shown using nodal analysis
+
+clc;
+clear;
+
+// Nodal Equations
+//13*Va-4*Vb=300
+//-Va+4*Vb=120
+
+X=[13 -4;-1 4];
+V=[300;120];
+
+E=inv(X)*V;
+
+Va=E(1);
+Vb=E(2);
+
+i1=(100-Va)/20;
+i2=(Va-Vb)/15;
+i3=(Va/10);
+i4=(Vb/10);
+i5=(80-Vb)/10;
+
+disp('V',Vb,'Voltage Vb =','V',Va,'Voltage Va =')
+
+disp('The Branch Currents as calculated are')
+disp(i5,'i5',i4,'i4',i3,'i3',i2,'i2',i1,'i1')
+disp('amperes respectively')
+
+disp('The Negative sign indicates that the assumed direction of flow of current must be reveresed')
+
+disp('amperes',abs(i1),'The Current through 20 ohm resistor on the 100V side =')
+disp('amperes',abs(i2),'The Current through 15 ohm resistor =')
+disp('amperes',abs(i3),'The Current through 10 ohm resistor (AE) =')
+disp('amperes',abs(i4),'The Current through 10 ohm resistor (BE) =')
+disp('amperes',abs(i5),'The Current through 10 ohm resistor on the 80V side =')
+
+
diff --git a/1319/CH12/EX12.3/i_3.sce b/1319/CH12/EX12.3/i_3.sce
new file mode 100644
index 000000000..3b37ff918
--- /dev/null
+++ b/1319/CH12/EX12.3/i_3.sce
@@ -0,0 +1,11 @@
+// To Calculate the average voltage.
+clc;
+clear;
+
+W=500;
+I=40;
+t=15*(10^-3);
+
+V=W/(I*t);
+
+disp('volts',V,'The Average volatage across the terminals of the device =')
diff --git a/1319/CH12/EX12.4/i_4.sce b/1319/CH12/EX12.4/i_4.sce
new file mode 100644
index 000000000..912beb4f5
--- /dev/null
+++ b/1319/CH12/EX12.4/i_4.sce
@@ -0,0 +1,15 @@
+// Calculating resistance.
+clc;
+clear;
+
+L=2.5*(10^-2); // Length of rectangular cross-section.
+B=0.05*(10^-2);// Breadth of rectangular cross-section.
+A=L*B;
+
+l=1*(10^3);
+
+p=1.724*(10^-8);
+
+R=p*l/A;
+
+disp('ohms',R,'The Resistance of the copper strip =')
diff --git a/1319/CH12/EX12.5/i_5.sce b/1319/CH12/EX12.5/i_5.sce
new file mode 100644
index 000000000..0105e964a
--- /dev/null
+++ b/1319/CH12/EX12.5/i_5.sce
@@ -0,0 +1,12 @@
+//Current Calculation using ohm's law.
+clc;
+clear;
+
+V=220;
+R=80;
+
+// Using Ohm's Law V=I*R
+
+I=V/R;
+
+disp('amperes',I,'The Load Current =')
diff --git a/1319/CH12/EX12.6/i_6.sce b/1319/CH12/EX12.6/i_6.sce
new file mode 100644
index 000000000..dfa79aa00
--- /dev/null
+++ b/1319/CH12/EX12.6/i_6.sce
@@ -0,0 +1,11 @@
+// Determination of conductance of a short circuit
+
+clc;
+clear;
+
+V=120;
+I=500;
+
+G=I/V;
+
+disp('siemens',G,'The Conductance =')
diff --git a/1319/CH12/EX12.7/i_7.sce b/1319/CH12/EX12.7/i_7.sce
new file mode 100644
index 000000000..c2b9785e6
--- /dev/null
+++ b/1319/CH12/EX12.7/i_7.sce
@@ -0,0 +1,13 @@
+// Power Rating Calculation
+
+clc;
+clear;
+
+V=250;
+I=15;
+
+// Power Equation or Watt's Law P=V*I.
+
+P=V*I;
+
+disp('watts',P,'The power rating of the device =')
diff --git a/1319/CH12/EX12.8/i_8.sce b/1319/CH12/EX12.8/i_8.sce
new file mode 100644
index 000000000..13dc21584
--- /dev/null
+++ b/1319/CH12/EX12.8/i_8.sce
@@ -0,0 +1,17 @@
+//To calculate current ratings and maximum voltage of a rated resistor.
+
+clc;
+clear;
+
+P=1;
+R=10*(10^3);
+
+// Using Power Equation and Ohm's Law.
+
+V=sqrt(P*R);
+
+I=sqrt(P/R);
+
+disp('volts',V,'The Maximum voltage of the resistor =')
+
+disp('amperes',I,'The Current rating of the resistor =')
diff --git a/1319/CH12/EX12.9/i_9.sce b/1319/CH12/EX12.9/i_9.sce
new file mode 100644
index 000000000..749b5aabf
--- /dev/null
+++ b/1319/CH12/EX12.9/i_9.sce
@@ -0,0 +1,17 @@
+//Determine the output of the motor.
+
+clc;
+clear;
+
+eff=80/100;
+
+V=220;
+I=8;
+
+// Power Equation P=V*I
+
+P=V*I;// Input Power
+
+Pout=eff*P;// Output Power
+
+disp('watts',Pout,'The output power of the motor =')