summaryrefslogtreecommitdiff
path: root/1094
diff options
context:
space:
mode:
Diffstat (limited to '1094')
-rw-r--r--1094/CH2/EX2.2.1/EX2_2_1.sce18
-rw-r--r--1094/CH2/EX2.2.2/EX2_2_2.sce15
-rw-r--r--1094/CH2/EX2.2.3/EX2_2_3.sce16
-rw-r--r--1094/CH2/EX2.3.1/EX2_3_1.sce17
-rw-r--r--1094/CH2/EX2.3.2/EX2_3_2.sce13
-rw-r--r--1094/CH2/EX2.3.3/EX2_3_3.sce12
-rw-r--r--1094/CH3/EX3.2.1/EX3_2_1.sce11
-rw-r--r--1094/CH3/EX3.2.2/EX3_2_2.sce15
-rw-r--r--1094/CH3/EX3.3.1/EX3_3_1.sce9
-rw-r--r--1094/CH3/EX3.4.1/EX3_4_1.sce16
-rw-r--r--1094/CH3/EX3.5.1/EX3_5_1.sce19
-rw-r--r--1094/CH3/EX3.7.1/EX3_7_1.sce17
-rw-r--r--1094/CH3/EX3.8.1/EX3_8_1.sce15
13 files changed, 193 insertions, 0 deletions
diff --git a/1094/CH2/EX2.2.1/EX2_2_1.sce b/1094/CH2/EX2.2.1/EX2_2_1.sce
new file mode 100644
index 000000000..c61a9990d
--- /dev/null
+++ b/1094/CH2/EX2.2.1/EX2_2_1.sce
@@ -0,0 +1,18 @@
+//Exa:2.2.1
+clc;
+clear;
+close;
+I_L=10//line current (in amp)
+V_s=20*10^3//supply voltage(in volts)
+pf=0.8//lagging
+theta=acosd(pf)
+V_LN=V_s/sqrt(3)
+disp(V_LN*10^-3,'(a)line to neutral voltage(in kv)=')
+V_L=V_LN
+disp(V_L*10^-3,'(b)output line to line voltage(in kv)=')
+kVA=sqrt(3)*V_s*10^-3*I_L
+disp(kVA,'(c)kVA=')
+kW=kVA*pf
+disp(kW,'kW=')
+kVAR=kVA*sind(theta)
+disp(kVAR,'kVAR=')
diff --git a/1094/CH2/EX2.2.2/EX2_2_2.sce b/1094/CH2/EX2.2.2/EX2_2_2.sce
new file mode 100644
index 000000000..09ca5c3ec
--- /dev/null
+++ b/1094/CH2/EX2.2.2/EX2_2_2.sce
@@ -0,0 +1,15 @@
+//Exa:2.2.2
+clc;
+clear;
+close;
+Z_ph=8+%i*6//impedance per phase (in ohms)
+V_AN=400//in volts
+I_ph=V_AN/Z_ph
+disp(abs(I_ph),'Phase current (in A)=')
+disp(atand(imag(I_ph)/real(I_ph)),'phase=')
+I_L=sqrt(3)*abs(I_ph)
+disp(I_L,'Line current (in A)=')
+pf=cosd(atand(imag(I_ph)/real(I_ph)))
+disp(pf,'power factor=')
+P=sqrt(3)*V_AN*I_L*pf*10^-3
+disp(P,'Power absorbed (in KW)=') \ No newline at end of file
diff --git a/1094/CH2/EX2.2.3/EX2_2_3.sce b/1094/CH2/EX2.2.3/EX2_2_3.sce
new file mode 100644
index 000000000..2b67dcd36
--- /dev/null
+++ b/1094/CH2/EX2.2.3/EX2_2_3.sce
@@ -0,0 +1,16 @@
+//Exa:2.2.3
+clc;
+clear;
+close;
+V_s=400 //3 phase supply voltage (in volts)
+Z_ph=8+%i*6 //impedance per phase(in ohms)
+V_AN=V_s/sqrt(3)
+I_ph=V_AN/Z_ph
+disp(abs(I_ph),'phase current(in A)=')
+disp(atand(imag(I_ph)/real(I_ph)),'phase=')
+I_L=abs(I_ph)
+disp(I_L,'line current(in A)=')
+pf=cosd(atand(imag(I_ph)/real(I_ph)))
+disp(pf,'power factor=')
+kW=sqrt(3)*V_s*I_L*pf*10^-3
+disp(kW,'power(in kW)=') \ No newline at end of file
diff --git a/1094/CH2/EX2.3.1/EX2_3_1.sce b/1094/CH2/EX2.3.1/EX2_3_1.sce
new file mode 100644
index 000000000..0c95af852
--- /dev/null
+++ b/1094/CH2/EX2.3.1/EX2_3_1.sce
@@ -0,0 +1,17 @@
+//Exa:2.3.1
+clc;
+clear;
+close;
+V_AB=100*sqrt(3) //phase voltage of AB(in volts)
+V_AN=100*(cosd(-30)+%i*sind(-30)) //line voltage of A(in volts)
+V_BC=100*sqrt(3)*(cosd(-120)+%i*sind(-120)) //phase voltage of BC(in volts)
+V_CN=100*(cosd(90)+%i*sind(90)) //line voltage of C(in volts)
+Z_ph=10+%i*10 //impedence per phase(in ohms)
+I_A=V_AN/Z_ph
+I_C=V_CN/Z_ph
+W_A=V_AB*abs(I_A)*cosd(atand(imag(I_A)/real(I_A)))
+disp(W_A,'W_A(in W)=')
+W_C=abs(V_BC)*abs(I_C)*cosd((atand(imag(I_C)/real(I_C)))-atand(imag(V_BC)/real(V_BC)))
+disp(W_C,'W_B(in W)=')
+P=W_A+W_C
+disp(P,'total power(in W)=') \ No newline at end of file
diff --git a/1094/CH2/EX2.3.2/EX2_3_2.sce b/1094/CH2/EX2.3.2/EX2_3_2.sce
new file mode 100644
index 000000000..3c59ebb74
--- /dev/null
+++ b/1094/CH2/EX2.3.2/EX2_3_2.sce
@@ -0,0 +1,13 @@
+//Exa:2.3.2
+clc;
+clear;
+close;
+V_L=400 //supply voltage(in volts)
+W_1=750 //power (in W)
+W_2=250 //power (in W)
+P_i=W_1+W_2
+disp(P_i,'input power (in W)=')
+pf=cosd(atand(sqrt(3)*(W_1-W_2)/(W_1+W_2)))
+disp(pf,'power factor=')
+I_L=P_i/(sqrt(3)*V_L*pf)
+disp(I_L,'line current(in A)=') \ No newline at end of file
diff --git a/1094/CH2/EX2.3.3/EX2_3_3.sce b/1094/CH2/EX2.3.3/EX2_3_3.sce
new file mode 100644
index 000000000..acf4c03a1
--- /dev/null
+++ b/1094/CH2/EX2.3.3/EX2_3_3.sce
@@ -0,0 +1,12 @@
+//Exa:2.3.3
+clc;
+clear;
+close;
+P=10000;//in watts
+I=60;//in amperes
+V=400;//in volts
+//When the coil is connected between phase A and Neutral;
+theta=acosd(P/(V*I/sqrt(3)));//in degrees
+alpha=90-theta;//in degrees
+W=V*I*cosd(alpha)/1000;
+disp(W,'Wattmeter Reading (in watts)=') \ No newline at end of file
diff --git a/1094/CH3/EX3.2.1/EX3_2_1.sce b/1094/CH3/EX3.2.1/EX3_2_1.sce
new file mode 100644
index 000000000..7c7c6780e
--- /dev/null
+++ b/1094/CH3/EX3.2.1/EX3_2_1.sce
@@ -0,0 +1,11 @@
+//EXA.3.2.1
+clc;
+clear;
+close;
+//refer to figure3.2.2
+theta=30 //angle of inclination
+B=.8 //magnetic field (in T)
+I=10 //current (in A)
+L=2 //length of conductor(in m)
+F=B*I*L*sind(theta)
+disp(F, 'force on conductor (in N)=') \ No newline at end of file
diff --git a/1094/CH3/EX3.2.2/EX3_2_2.sce b/1094/CH3/EX3.2.2/EX3_2_2.sce
new file mode 100644
index 000000000..bb1fef3bc
--- /dev/null
+++ b/1094/CH3/EX3.2.2/EX3_2_2.sce
@@ -0,0 +1,15 @@
+//EXA:3.2.2
+clc;
+clear;
+close;
+B=0.5 //magnetic field (in wb/m^2)
+S=.04 // area of square loop(in m^2)
+theta_1=0 //inclination
+flux_1=B*S*cosd(theta_1)
+disp(flux_1,'flux_1 (in wb)=')
+theta_2=60
+flux_2=B*S*cosd(theta_2)
+disp(flux_2,'flux_2 (in wb)=')
+theta_3=90
+flux_3=B*S*cosd(theta_3)
+disp(flux_3,'flux_3 (in wb)=') \ No newline at end of file
diff --git a/1094/CH3/EX3.3.1/EX3_3_1.sce b/1094/CH3/EX3.3.1/EX3_3_1.sce
new file mode 100644
index 000000000..c2fd558a2
--- /dev/null
+++ b/1094/CH3/EX3.3.1/EX3_3_1.sce
@@ -0,0 +1,9 @@
+//EXA.3.3.1
+clc;
+clear;
+close;
+H=2000 //magnetic field intensity(in A/m)
+N=500 //no. of turns
+l=.08*%pi //length of ring (in m)
+I=H*l/N
+disp(I,'required current(in A)=') \ No newline at end of file
diff --git a/1094/CH3/EX3.4.1/EX3_4_1.sce b/1094/CH3/EX3.4.1/EX3_4_1.sce
new file mode 100644
index 000000000..91db6cce2
--- /dev/null
+++ b/1094/CH3/EX3.4.1/EX3_4_1.sce
@@ -0,0 +1,16 @@
+//Exa:3.4.1
+clc;
+clear;
+close;
+B=1;//in tesla
+B1=1.1;//in Tesla
+B2=1.45;//in Tesla
+H1=1000;//in Ampere/meter
+H2=2500;//in Ampere/meter
+b=((H1*B2)-(H2*B2))/((H1*H2*B1)-(H1*H2*B2));
+disp(b,'b=');
+a=(B1/H1)+(b*B1);
+disp(a,'a=');
+H=B/(a-(b*B));
+u_r=B/(4*%pi*H*10^-7);
+disp(u_r,'Relative Permeablity=') \ No newline at end of file
diff --git a/1094/CH3/EX3.5.1/EX3_5_1.sce b/1094/CH3/EX3.5.1/EX3_5_1.sce
new file mode 100644
index 000000000..447c6d828
--- /dev/null
+++ b/1094/CH3/EX3.5.1/EX3_5_1.sce
@@ -0,0 +1,19 @@
+//EXA:3.5.1
+clc;
+clear;
+close;
+I=1.2 //current (in A)
+N=300 //no. of turns
+l=20*10^(-2) //circumference of ring(in m)
+A=10*10^(-4) //cross-sectional area (in m^2)
+u_0=4*%pi*10^(-7)
+u_r=500 //permiability
+R=l/(u_r*u_0*A) //reluctance(in H^(-1))
+disp(R,'reluctance(in H^(-1))=')
+P=1/R //permeance
+disp(P,'permeance(in H)=')
+mmf=I*N //mmf (in A-t)
+phy=mmf/R
+disp(phy,'flux(in wb)=')
+B=phy/A
+disp(B,'flux density(in T)=') \ No newline at end of file
diff --git a/1094/CH3/EX3.7.1/EX3_7_1.sce b/1094/CH3/EX3.7.1/EX3_7_1.sce
new file mode 100644
index 000000000..0c0fffe03
--- /dev/null
+++ b/1094/CH3/EX3.7.1/EX3_7_1.sce
@@ -0,0 +1,17 @@
+//EXA:3.7.1
+clc;
+clear;
+close;
+l=10*10^(-2) //circumference of ring(in m)
+A=20*10^(-4) //cross-sectional area(in m^2)
+u_r=500 //permeability of iron
+u_0=4*%pi*10^(-7)
+B=0.8 //flux density(in T)
+N=100 //no. of turns
+R=l/(u_0*u_r*A)
+phy=B*A
+mmf=phy*R
+I_e=mmf/N //exciting current
+disp(I_e,'Exciting current (in A)=')
+E=mmf*phy/2
+disp(E,'Energy stored(in J)=') \ No newline at end of file
diff --git a/1094/CH3/EX3.8.1/EX3_8_1.sce b/1094/CH3/EX3.8.1/EX3_8_1.sce
new file mode 100644
index 000000000..686f8b4cb
--- /dev/null
+++ b/1094/CH3/EX3.8.1/EX3_8_1.sce
@@ -0,0 +1,15 @@
+//EXA:3.8.1
+clc;
+clear;
+close;
+//Refers to figure 3.8.8
+l_g=1*10^(-3) //length (in m)
+phy_g=1.1*5*10^(-4) //(in mWb)
+phy_l=0.1 //(in mWb)
+phy=(phy_g)+(phy_l)
+B_g=1.1 //flux density (in T)
+
+H_g=(B_g)/u_0
+F_g=(H_g)*l_g
+//from B-H curve of figure 3.4.2
+F_12=H_1* \ No newline at end of file