diff options
Diffstat (limited to '1019/CH7')
27 files changed, 519 insertions, 0 deletions
diff --git a/1019/CH7/EX7.1/Example_7_1.sce b/1019/CH7/EX7.1/Example_7_1.sce new file mode 100644 index 000000000..c4a82673e --- /dev/null +++ b/1019/CH7/EX7.1/Example_7_1.sce @@ -0,0 +1,27 @@ +//Example 7.1 +clear; +clc; + +//Given +w2=4.450;//weight of solute in g +m2=98;//molecular mass of solute in g mol^-1 +W1=0.0822;//weight of solvent in kg +w1=82.2;//weight of solvent in g +m1=18;//molecular mass of solvent in g mol^-1 +p=1.029;//density of solution in g cm^-3 + +//To calculate mass percent,mole fraction,mole percent,molarity,molality,normality +P2=(w2/(w1+w2))*100;//Mass percent +mprintf('(a) Mass percent = %f',P2); +x2=(w2/m2)/((w1/m1)+(w2/m2));//Mole fraction +mprintf('\n (b) Mole fraction = %f',x2); +M=x2*100;//Mole percent +mprintf('\n (c) Mole percent = %f',M); +V=(w1+w2)/p;//volume in cm^3 +c2=(w2/m2)*(1000/V);//Molarity in mol dm^-3 +mprintf('\n (d) Molarity = %f mol dm^-3',c2); +M2=w2/(m2*W1);//Molality in mol kg^-1 +mprintf('\n (e) Molality = %f mol kg^-1',M2); +N=(w2/(m2/2))*((1000/V));//normality +mprintf('\n (f) normality = %f',N); +//end
\ No newline at end of file diff --git a/1019/CH7/EX7.10/Example_7_10.sce b/1019/CH7/EX7.10/Example_7_10.sce new file mode 100644 index 000000000..359cd58f0 --- /dev/null +++ b/1019/CH7/EX7.10/Example_7_10.sce @@ -0,0 +1,15 @@ +//Example 7.10
+clear;
+clc;
+
+//Given
+R=8.314;//gas constant in J K^-1 mol^-1
+T=298;//temperature in K
+To=353;//Equillibrium temperature in K
+delHfus=19290;//Latent heat of fusion in J mol^-1
+
+//To determine the ideal solubility of napthlene at 298 K
+X=(delHfus/R)*((1/To)-(1/T));//X=log(x)
+x=exp(X);//x is the solubility
+mprintf('The ideal solubility of napthlene at 298 K = %f',x);
+//end
\ No newline at end of file diff --git a/1019/CH7/EX7.11/Example_7_11.sce b/1019/CH7/EX7.11/Example_7_11.sce new file mode 100644 index 000000000..68f1bac5f --- /dev/null +++ b/1019/CH7/EX7.11/Example_7_11.sce @@ -0,0 +1,17 @@ +//Example 7.11
+clear;
+clc;
+
+//Given
+R=8.314;//gas constant in J K^-1 mol^-1
+T=293;//temperature in K
+w2=2;//weight of the solute in g
+w1=100;//weight of solvent(benzene) in g
+M1=78;//molecular mass of solvent
+p1=74.66;//vapour pressure of pure benzene in mm Hg
+P1=74.01;//vapour pressure of benzene in the mixture in mm Hg
+
+//To determine the molecular weight of the hydrocarbon
+M2=(w2*M1*p1)/(w1*(p1-P1));//molecular weight of the hydrocarbon in g mol^-1
+mprintf('The molecular weight of the hydrocarbon is = %f g mol^-1',M2);
+//end
\ No newline at end of file diff --git a/1019/CH7/EX7.12/Example_7_12.sce b/1019/CH7/EX7.12/Example_7_12.sce new file mode 100644 index 000000000..d6270351e --- /dev/null +++ b/1019/CH7/EX7.12/Example_7_12.sce @@ -0,0 +1,14 @@ +//Example 7.12
+clear;
+clc;
+
+//Given
+R=8.314;//gas constant in J K^-1 mol^-1
+Tb=353.1;//Boiling temperature in K
+delHvap=30.67;//heat of vapourization of benzene in kJ mol^-1
+M1=78;//molecular mass of benzene in gm
+
+//To determine the molal boiling point elevation constant of benzene
+Kb=(R*(Tb^2)*M1)/(10^6*delHvap);//molal boiling point elevation constant of benzene in K kg mol^-1
+mprintf('The molal boiling point elevation constant of benzene is = %f K kg mol^-1',Kb);
+//end
\ No newline at end of file diff --git a/1019/CH7/EX7.13/Example_7_13.sce b/1019/CH7/EX7.13/Example_7_13.sce new file mode 100644 index 000000000..95ccd468c --- /dev/null +++ b/1019/CH7/EX7.13/Example_7_13.sce @@ -0,0 +1,20 @@ +//Example 7.13
+clear;
+clc;
+
+//Given
+R=8.314;//gas constant in J K^-1 mol^-1
+Tb=353.1;//temperature in K
+w2=13.86;//weight of the solute in g
+w1=100;//weight of solvent in g
+M1=78;//molecular mass of solvent in g
+M2=154;//molecular mass of solute in g
+delTb=2.3;//elevation in boiling point in K
+
+//To determine the Kb and delHvap
+m=(w2/M2)*(1000/w1);//molality in mol kg^-1
+Kb=delTb/m;//boiling point elevation constant in K mol^-1 kg
+delHvap=(R*(Tb^2)*M1)/(1000*Kb);//heat of vapourization in J mol^-1
+mprintf('The heat of vapourization, delHvap = %f J mol^-1',delHvap);
+mprintf('\n The molal boiling point elevation constant of benzene is = %f K kg mol^-1',Kb);
+//end
\ No newline at end of file diff --git a/1019/CH7/EX7.14/Example_7_14.sce b/1019/CH7/EX7.14/Example_7_14.sce new file mode 100644 index 000000000..b71b955b5 --- /dev/null +++ b/1019/CH7/EX7.14/Example_7_14.sce @@ -0,0 +1,18 @@ +//Example 7.14
+clear;
+clc;
+
+//Given
+R=8.314;//gas constant in J K^-1 mol^-1
+Tb=353.1;//temperature in K
+w2x=0.5;//weight of the solute x in g
+w2y=0.6;//weight of the solute y in g
+Mx=128;//molecular mass of solute x in g
+w1=50;//weight of solvent in g
+delTx=0.4;//elevation in boiling point due to x in K
+delTy=0.6;//elevation in boiling point due to y in K
+
+//To determine My
+My=w2y*Mx*delTx/(delTy*w2x);//molecular mass of y in g mol^-1
+mprintf('The molecular mass of y is %f g mol^-1',My);
+//end
\ No newline at end of file diff --git a/1019/CH7/EX7.15/Example_7_15.sce b/1019/CH7/EX7.15/Example_7_15.sce new file mode 100644 index 000000000..8d88989cb --- /dev/null +++ b/1019/CH7/EX7.15/Example_7_15.sce @@ -0,0 +1,14 @@ +//Example 7.15
+clear;
+clc;
+
+//Given
+R=8.314;//gas constant in J K^-1 mol^-1
+To=278.15;//Freezing temperature in K
+delHfus=9830;//heat of fusion of benzene in J mol^-1
+M1=78;//molecular mass of benzene in g
+
+//To determine the molal freezing point depression constant of benzene
+Kf=(R*(To^2)*M1)/(1000*delHfus);//molal freezing point depression constant of benzene in K kg mol^-1
+mprintf('The molal freezing point depression constant of benzene = %f K kg mol^-1',Kf);
+//end
\ No newline at end of file diff --git a/1019/CH7/EX7.16/Example_7_16.sce b/1019/CH7/EX7.16/Example_7_16.sce new file mode 100644 index 000000000..907cdd227 --- /dev/null +++ b/1019/CH7/EX7.16/Example_7_16.sce @@ -0,0 +1,15 @@ +//Example 7.16
+clear;
+clc;
+
+//Given
+R=8.314;//gas constant in J K^-1 mol^-1
+delTf=10;//Freezing temperature depression in K
+Kf=1.86;//molal freezing point depression constant of water K mol^-1 kg
+M2=32;//molecular mass of methyl alcohol in g
+w1=100;//mass of water in g
+
+//To determine the mass of methyl alcohol required
+w2=(delTf*M2*w1)/(Kf*1000);//mass of methyl alcohol required in g
+mprintf('The mass of methyl alcohol required = %f g',w2);
+//end
\ No newline at end of file diff --git a/1019/CH7/EX7.17/Example_7_17.sce b/1019/CH7/EX7.17/Example_7_17.sce new file mode 100644 index 000000000..883722a4f --- /dev/null +++ b/1019/CH7/EX7.17/Example_7_17.sce @@ -0,0 +1,18 @@ +//Example 7.17
+clear;
+clc;
+
+//Given
+R=8.314;//gas constant in J K^-1 mol^-1
+delTf=0.52;//Freezing temperature depression in K
+Kf=12;//molal freezing point depression constant of the solvent K mol^-1 kg
+w2=0.9;//mass of solute in g
+w1=180;//mass of solvent in g
+To=282;//freezing point of the solvent in K
+
+//To determine the molecular formula of solute,H2(CH2)n
+M2=(Kf*1000*w2)/(w1*delTf);//molecular mass of solute in g
+n=(M2-2)/14;
+mprintf('The molecular mass of the hydrocarbon = %f',M2);
+mprintf('\n The molecular formula of solute is H2(CH2)%i',n);
+//end
\ No newline at end of file diff --git a/1019/CH7/EX7.19/Example_7_19.sce b/1019/CH7/EX7.19/Example_7_19.sce new file mode 100644 index 000000000..e9610fc02 --- /dev/null +++ b/1019/CH7/EX7.19/Example_7_19.sce @@ -0,0 +1,18 @@ +//Example 7.19
+clear;
+clc;
+
+//Given
+R=82;//gas constant in atm ml K^-1 mol^-1
+w2=2;//mass of solute in g
+M2=69000;//molecular mass of solvent in g mol^-1
+T=300.15;//temperature in K
+V=100;//volume of solution in ml
+
+//To determine the osmotic pressure in cms of (i)water (ii)mercury
+pi=(T*R*w2)/(M2*V);//the osmotic pressure in atm
+h1=(pi*1013250)/(980.67);//the osmotic pressure in cms of (i)water
+h2=pi*76;//the osmotic pressure in cms of (ii)mercury
+mprintf('the osmotic pressure in cms of (i)water = %f cm',h1);
+mprintf('\n the osmotic pressure in cms of (ii)mercury = %f cm',h2);
+//end
\ No newline at end of file diff --git a/1019/CH7/EX7.2/Example_7_2.sce b/1019/CH7/EX7.2/Example_7_2.sce new file mode 100644 index 000000000..911610274 --- /dev/null +++ b/1019/CH7/EX7.2/Example_7_2.sce @@ -0,0 +1,15 @@ +//Example 7.2
+clear;
+clc;
+
+//Given
+R=0.08205;//gas constant in dm^3 atm K^-1 mol^-1
+b=0.0391;//Van der Waals constant in dm^3 mol^-1
+T=1273;//Temperature in K
+P=1000;//pressure in atm
+
+//To calculate the fugacity coefficient
+k=(b*P)/(R*T);//k=log(f/P)
+f=P*exp(k);//fugacity coefficient in atm
+mprintf('Fugacity coefficient = %f atm',f);
+//end
\ No newline at end of file diff --git a/1019/CH7/EX7.20/Example_7_20.sce b/1019/CH7/EX7.20/Example_7_20.sce new file mode 100644 index 000000000..95e12c607 --- /dev/null +++ b/1019/CH7/EX7.20/Example_7_20.sce @@ -0,0 +1,16 @@ +//Example 7.20
+clear;
+clc;
+
+//Given
+R=82;//gas constant in atm cm^3 K^-1 mol^-1
+w2=1.35;//mass of solute in g
+h1=9.9;//the osmotic pressure in cm of water
+T=300;//temperature in K
+V=100;//volume of solution in ml
+
+//To determine the molecular mass of the polymer
+pi=(980.67*h1)/(1013250);//the osmotic pressure in atm
+M2=(w2*R*T)/(pi*V);//molecular mass of the polymer in g
+mprintf('The molecular mass of the polymer = %f g mol^-1',M2);
+//end
\ No newline at end of file diff --git a/1019/CH7/EX7.21/Example_7_21.sce b/1019/CH7/EX7.21/Example_7_21.sce new file mode 100644 index 000000000..a058425bf --- /dev/null +++ b/1019/CH7/EX7.21/Example_7_21.sce @@ -0,0 +1,16 @@ +//Example 7.21
+clear;
+clc;
+
+//Given
+R=82;//gas constant in atm cm^3 K^-1 mol^-1
+w2=0.45;//mass of solute in g
+M2=180;//molecular mass of the solute in g mol^-1
+T=300;//temperature in K
+
+//To determine the height attained by water inside the tube and the osmotic pressure
+h=sqrt((w2*R*T*1013250)/(M2*980.67));//height attained by water inside the tube
+pi=(980.67*h)/(1013250);//the osmotic pressure in atm
+mprintf('The height attained by water inside the tube = %f cm',h);
+mprintf('\n The osmotic pressure = %f atm',pi);
+//end
\ No newline at end of file diff --git a/1019/CH7/EX7.22/Example_7_22.sce b/1019/CH7/EX7.22/Example_7_22.sce new file mode 100644 index 000000000..9a26d352a --- /dev/null +++ b/1019/CH7/EX7.22/Example_7_22.sce @@ -0,0 +1,30 @@ +//Example 7.22
+clear;
+clc;
+
+//Given
+R=0.082;//gas constant in atm dm^3 K^-1 mol^-1
+w2=17.1;//mass of sucrose in g
+w3=9;//mass of urea in g
+w4=6;//mass of urea in g
+M2=342;//molecular mass of sucrose in g mol^-1
+M3=180;//molecular mass of glucose in g mol^-1
+M4=60;//molecular mass of urea in g mol^-1
+T=300;//temperature in K
+V=3;//volume in dm^3
+
+//To determine the osmotic pressure and the weight average and number average molar mass
+n2=w2/M2;//moles of sucrose
+n3=w3/M3;//moles of glucose
+n4=w4/M4;//moles of urea
+x2=n2/(n2+n3+n4);//mole fraction of sucrose
+x2=n3/(n2+n3+n4);//mole fraction of glucose
+x2=n4/(n2+n3+n4);//mole fraction of urea
+Mw=((w2*M2)+(w3*M3)+(w4*M4))/(w2+w3+w4);//mass average molar mass in g mol^-1
+n1=n2+n3+n4;//moles of all solutes
+pi=(n1*R*T)/V;//the osmotic pressure in atm
+Mn=((w2+w3+w4)*R*T)/(pi*V);//number average molar mass in g mol^-1
+mprintf('The mass average molar mass = %f gm mol^-1',Mw);
+mprintf('\n The osmotic pressure = %f atm',pi);
+mprintf('\n The number average molar mass = %f gm mol^-1',Mn);
+//end
\ No newline at end of file diff --git a/1019/CH7/EX7.23/Example_7_23.sce b/1019/CH7/EX7.23/Example_7_23.sce new file mode 100644 index 000000000..ada5640a0 --- /dev/null +++ b/1019/CH7/EX7.23/Example_7_23.sce @@ -0,0 +1,26 @@ +//Example 7.23
+clear;
+clc;
+
+//Given
+R=0.082;//gas constant in atm dm^3 K^-1 mol^-1
+w2=2;//mass of solute in g
+M2=12400;//molecular mass of the solute in g mol^-1
+T=298;//temperature in K
+Kf=1.86;//freezing point depression constant for water
+w1=100;//weight of solvent in g
+Kb=0.52;//boiling point elevation constant for water
+p=24;//vapour pressure of water in mm Hg
+
+//To determine the height attained by water inside the tube and the osmotic pressure
+m=(w2/M2)*(1000/w1);//molality in mol kg^-1
+delTf=Kf*m;//depression in freezing point in oC
+delTb=Kb*m;//elevation in boiling point in oC
+pi=m*R*T*760;//osmotic pressure in mm Hg
+delp=(0.0016*18*p)/1000;//lowering of vapour pressure in mm Hg
+mprintf('The depression in freezing point = %f oC',delTf);
+mprintf('\n The elevation in boiling point = %f oC',delTb);
+mprintf('\n The osmotic pressure = %f mm Hg',pi);
+mprintf('\n The lowering of vapour pressure = %f mm Hg',delp);
+
+//end
\ No newline at end of file diff --git a/1019/CH7/EX7.24/Example_7_24.sce b/1019/CH7/EX7.24/Example_7_24.sce new file mode 100644 index 000000000..4ad348270 --- /dev/null +++ b/1019/CH7/EX7.24/Example_7_24.sce @@ -0,0 +1,14 @@ +//Example 7.24
+clear;
+clc;
+
+//Given
+R=0.082;//gas constant in atm dm^3 K^-1 mol^-1
+T=310;//temperature in K
+delTf=0.402;//freezing temperature depression in K
+Kf=1.86;//freezing point depression constant of waater
+
+//To determine the osmotic pressure
+pi=(R*T*delTf)/(Kf);//the osmotic pressure in atm
+mprintf('The osmotic pressure = %f atm',pi);
+//end
\ No newline at end of file diff --git a/1019/CH7/EX7.25/Example_7_25.sce b/1019/CH7/EX7.25/Example_7_25.sce new file mode 100644 index 000000000..fa9da87f8 --- /dev/null +++ b/1019/CH7/EX7.25/Example_7_25.sce @@ -0,0 +1,14 @@ +//Example 7.25
+clear;
+clc;
+
+//Given
+R=0.082;//gas constant in atm dm^3 K^-1 mol^-1
+delTf=0.3;//freezing temperature depression in K
+Kf=1.86;//freezing point depression constant of waater
+m=0.1;//molality of acid solution in mol kg^-1
+
+//To determine the degree of dissociation
+a=(delTf/(Kf*m))-1;//degree of dissociation
+mprintf('The degree of dissociation = %f',a);
+//end
\ No newline at end of file diff --git a/1019/CH7/EX7.26/Example_7_26.sce b/1019/CH7/EX7.26/Example_7_26.sce new file mode 100644 index 000000000..6a9cc7f29 --- /dev/null +++ b/1019/CH7/EX7.26/Example_7_26.sce @@ -0,0 +1,18 @@ +//Example 7.26
+clear;
+clc;
+
+//Given
+R=0.082;//gas constant in atm dm^3 K^-1 mol^-1
+delTf=5.50-0.38;//freezing temperature depression for napthalene in K
+delTfo=5.50-1.66;//freezing temperature depression for benzoic acid in K
+m=1;//molality of acid solution in mol kg^-1
+
+//To determine the degree of dimerization ad the equillibrium constant
+Kf=delTf/m;//freezing point depression constant of benzene
+delTfc=Kf*m;//freezing temperature depression for benzoic acid (ideal) in K
+a=(1-(delTfo/delTfc))*2;//degree of dimerization
+K=((1-a)/(1-(a/2)))/((a/2)/(1-(a/2)))^2;//equillibrium constant
+mprintf('The degree of dimerization = %f',a);
+mprintf('\n The equillibrium constant = %i',K);
+//end
\ No newline at end of file diff --git a/1019/CH7/EX7.27/Example_7_27.sce b/1019/CH7/EX7.27/Example_7_27.sce new file mode 100644 index 000000000..bd6eac733 --- /dev/null +++ b/1019/CH7/EX7.27/Example_7_27.sce @@ -0,0 +1,19 @@ +//Example 7.27
+clear;
+clc;
+
+//Given
+R=0.082;//gas constant in atm dm^3 K^-1 mol^-1
+m=0.1;//molality of acid solution in mol kg^-1
+T=298;//temperature in K
+w1=1000;//mass of water in g
+
+//To determine the partial molar volume and the density
+V2=16.62+(1.5*1.77*sqrt(m))+(2*0.12*m);//partial molar volume in cm^3 mol^-1
+V=1003+(16.62*m)+(1.77*m^(3/2))+(0.12*m^2);//total volume in cm^3
+V1=(V-(m*V2))/55.55;//partial molar volume of water in cm^3 mol^-1
+p1=(w1+5.85)/V;//density of te solution in g cm^-3
+mprintf('The partial molar volume of water = %f cm^3 mol^-1',V1);
+mprintf('\n The partial molar volume of sodium chloride = %f cm^3 mol^-1',V2);
+mprintf('\n The density = %f g cm^-3',p1);
+//end
\ No newline at end of file diff --git a/1019/CH7/EX7.28/Example_7_28.sce b/1019/CH7/EX7.28/Example_7_28.sce new file mode 100644 index 000000000..90e047d4e --- /dev/null +++ b/1019/CH7/EX7.28/Example_7_28.sce @@ -0,0 +1,20 @@ +//Example 7.28
+clear;
+clc;
+
+//Given
+R=0.082;//gas constant in atm dm^3 K^-1 mol^-1
+T=298;//temperature in K
+w=1;//mass of solution in kg
+x1=0.531;//mole fraction of acetone
+x2=0.469;//mole fraction of chloroform
+M1=58;//molar mass of acetone in g mol^-1
+M2=119.5;//molar mass of chloroform in g mol^-1
+V1=74.166;//partial molar volume of acetone in cm^3 mol^-1
+V2=80.235;//partial molar volume of chloroform in cm^3 mol^-1
+//To determine the volume of the solution
+V=((w*1000)*((x1*V1)+(x2*V2)))/((x1*M1)+(x2*M2));//the volume of the solution in cm^3
+n=(w*1000)/((x1*M1)+(x2*M2));//total number of moles
+Vm=V/n;//mean molar volume of the solution in cm^3 mol^-1
+mprintf('The mean molar volume of the solution = %f cm^3 mol^-1',Vm);
+//end
\ No newline at end of file diff --git a/1019/CH7/EX7.30/Example_7_30.sce b/1019/CH7/EX7.30/Example_7_30.sce new file mode 100644 index 000000000..32a747023 --- /dev/null +++ b/1019/CH7/EX7.30/Example_7_30.sce @@ -0,0 +1,18 @@ +//Example 7.30
+clear;
+clc;
+
+//Given
+R=0.082;//gas constant in atm dm^3 K^-1 mol^-1
+T=298;//temperature in K
+x1=0.5;//mole fraction of chloroform
+x2=0.5;//mole fraction of p-xylene
+
+//To determine the volume of the solution
+V=x1*x2*(0.585+(0.085*(x1-x2))-(0.165*((x1-x2)^2)));;//the volume of the solution in cm^3 mol^-1
+delV2=0.585+0.085-0.165;//in cm^3 mol^-1
+delV1=0.585-0.085-0.165;//in cm^3 mol^-1
+mprintf('The mean molar volume of the solution = %f cm^3 mol^-1',V);
+mprintf('\n delV1 = %f cm^3 mol^-1',delV1);
+mprintf('\n delV2 = %f cm^3 mol^-1',delV2);
+//end
\ No newline at end of file diff --git a/1019/CH7/EX7.32/Example_7_32.sce b/1019/CH7/EX7.32/Example_7_32.sce new file mode 100644 index 000000000..ffc8c2389 --- /dev/null +++ b/1019/CH7/EX7.32/Example_7_32.sce @@ -0,0 +1,17 @@ +//Example 7.30
+clear;
+clc;
+
+//Given
+R=0.082;//gas constant in atm dm^3 K^-1 mol^-1
+T=363;//temperature in K
+P=734;//pressure in mm Hg
+ww=27;//mass percent of water
+wA=73;//mass percent of A
+Pw=526;//vapour pressure of water in mm Hg
+
+//To determine the volume of the solution
+PA=P-Pw;//partial pressure of A in mm Hg
+MA=(Pw*18*wA)/(ww*PA);//molar mass of A in g mol^-1
+mprintf('The molar mass of A = %i g mol^-1',MA);
+//end
\ No newline at end of file diff --git a/1019/CH7/EX7.4/Example_7_4.sce b/1019/CH7/EX7.4/Example_7_4.sce new file mode 100644 index 000000000..e7bec8fad --- /dev/null +++ b/1019/CH7/EX7.4/Example_7_4.sce @@ -0,0 +1,33 @@ +//Example 7.1
+clear;
+clc;
+
+//Given
+R=8.314;//gas constant in J K^-1 mol^-1
+T=298;//temperature in K
+
+//To calculate delGmix,delHmix and delSmix
+//(i) 10 moles of H + 10 moles of Ne
+n1=10;//moles of H
+n2=10;//moles of Ne
+x1=n1/(n1+n2);//mole fraction of H
+x2=n2/(n1+n2);//mole fraction of Ne
+delGmix1=R*T*((n1*log(x1))+(n2*log(x2)));//free energy change in J
+delSmix1=-delGmix1/T;//entropy change in J K^-1
+delHmix1=0;//since all gases are ideal
+mprintf('(i) delGmix = %f J \n delHmix = %f J \n delSmix = %f J K^-1',delGmix1,delHmix1,delSmix1);
+//(ii) 10 moles of H + 20 moles of Ne
+n21=10;//moles of H
+n22=20;//moles of Ne
+x21=n21/(n21+n22);//mole fraction of H
+x22=n22/(n21+n22);//mole fraction of Ne
+delGmix2=R*T*((n21*log(x21))+(n22*log(x22)));//free energy change in J
+delSmix2=-delGmix2/T;//entropy change in J K^-1
+delHmix2=0;//since all gases are ideal
+mprintf('\n (ii) delGmix = %f J \n delHmix = %f J \n delSmix = %f J K^-1',delGmix2,delHmix2,delSmix2);
+//(iii) 10 moles of Ne + 20 moles of equimolar mixture of Ne and He
+delGmix3=delGmix2-delGmix1//free energy change in J
+delSmix3=-delGmix3/T;//entropy change in J K^-1
+delHmix3=0;//since all gases are ideal
+mprintf('\n (iii) delGmix = %f J \n delHmix = %f J \n delSmix = %f J K^-1',delGmix3,delHmix3,delSmix3);
+//end
\ No newline at end of file diff --git a/1019/CH7/EX7.6/Example_7_6.sce b/1019/CH7/EX7.6/Example_7_6.sce new file mode 100644 index 000000000..f95405386 --- /dev/null +++ b/1019/CH7/EX7.6/Example_7_6.sce @@ -0,0 +1,24 @@ +//Example 7.6
+clear;
+clc;
+
+//Given
+R=0.08205;//gas constant in atm dm^3 K^-1 mol^-1
+R1=8.314;//gas constant in J K^-1 mol^-1
+T=300;//temperature in K
+VCH4=4;//initial volume of methane in dm^3
+VAr=1;//initial volume of argon in dm^3
+Vf=3;//final volume
+P=1;//Initial Pressure in atm
+
+//To calculate delGmix,delHmix and delSmix
+nCH4=(P*VCH4)/(R*T);//moles of methane taken
+nAr=(P*VAr)/(R*T);//moles of Argon taken
+xCH4=nCH4/(nCH4+nAr);//mole fraction of methane in the mixture
+xAr=nAr/(nCH4+nAr);//mole fraction of Argon in the mixture
+pf=(R*T*(nCH4+nAr))/Vf;//final pressure in atm
+delGmix=R1*T*((nCH4*log(xCH4*pf))+(nAr*log(xAr*pf)));//free energy change in J
+delHmix=0;//since the gases are ideal
+delSmix=-delGmix/T;//entropy change in J K^-1
+mprintf('delGmix = %f J \n delHmix = %f J \n delSmix = %f J K^-1',delGmix,delHmix,delSmix);
+//end
\ No newline at end of file diff --git a/1019/CH7/EX7.7/Example_7_7.sce b/1019/CH7/EX7.7/Example_7_7.sce new file mode 100644 index 000000000..0e6bc6000 --- /dev/null +++ b/1019/CH7/EX7.7/Example_7_7.sce @@ -0,0 +1,26 @@ +//Example 7.7
+clear;
+clc;
+
+//Given
+R=0.08205;//gas constant in atm dm^3 K^-1 mol^-1
+R1=8.314;//gas constant in J K^-1 mol^-1
+T=293;//temperature in K
+w1=100;//weight of ethanol taken in g
+w2=100;//weight of methanol taken in g
+p1=44.5;//vapour preaaure of pure ethanol in mm Hg
+p2=88.7;//vapour preaaure of pure methanol in mm Hg
+
+//To determine the vapour pressure of solution,partial vapour pressures and vapour phase composition
+n1=100/46;//moles of ethanol
+n2=100/32;//moles of methanol
+x1=n1/(n1+n2);//mole fraction of ethanol
+x2=n2/(n1+n2);//mole fraction of methanol
+P1=p1*x1;//partial pressure of ethanol in mm Hg
+P2=p2*x2;//partial pressure of methanol in mm Hg
+P=P1+P2;//vapour pressure of the solution in mm Hg
+y1=P1/P;//mole fraction of ethanol in the vapour phase
+y2=1-y1;//mole fraction of methanol in the vapour phase
+mprintf('(i) Vapour pressure of the solution = %f',P);
+mprintf('\n (ii) Partial vapour pressure of ethanol is %f mm Hg and that of methanol is %f mm Hg',P1,P2);
+mprintf('\n (iii) mole fraction of ethanol in vapour phase is %f and that of methanol is %f',y1,y2);
diff --git a/1019/CH7/EX7.8/Example_7_8.sce b/1019/CH7/EX7.8/Example_7_8.sce new file mode 100644 index 000000000..4e6193622 --- /dev/null +++ b/1019/CH7/EX7.8/Example_7_8.sce @@ -0,0 +1,18 @@ +//Example 7.8
+clear;
+clc;
+
+//Given
+R=8.314;//gas constant in J K^-1 mol^-1
+T=298;//temperature in K
+n1=1;//moles of toluene
+n2=2;//moles of benzene
+
+//to determine the free energy of mixing
+x1=n1/(n1+n2);//mole fraction of toluene
+x2=n2/(n1+n2);//mole fraction of benzene
+delGmix=R*T*((n1*log(x1))+(n2*log(x2)));//free energy of mixing in J
+delSmix=-delGmix/T;//entropy change in J K^-1
+mprintf('The free energy of mixing = %f J',delGmix);
+mprintf('\n The entropy of mixing = %f J K^-1',delSmix);
+//end
\ No newline at end of file diff --git a/1019/CH7/EX7.9/Example_7_9.sce b/1019/CH7/EX7.9/Example_7_9.sce new file mode 100644 index 000000000..180e09f35 --- /dev/null +++ b/1019/CH7/EX7.9/Example_7_9.sce @@ -0,0 +1,19 @@ +//Example 7.9
+clear;
+clc;
+
+//Given
+R=8.314;//gas constant in J K^-1 mol^-1
+T=298;//temperature in K
+P=1;//pressure in atm
+kO2=4.34*(10^4);//Henrys constant for O2 in atm
+kN2=8.57*(10^4);//Henrys constant for N2 in atm
+
+//To determine the molality of O2 and N2 dissolved in water
+xO2=P/kO2;//mole fraction of O2
+xN2=P/kN2;//mole fraction of N2
+mO2=55.5*xO2;//molality of O2 in mol kg^-1
+mN2=55.5*xN2;//molality of N2 in mol kg^-1
+mprintf('Molality of O2 dissolved in water = %f mol kg^-1',mO2);
+mprintf('\n Molality of N2 dissolved in water = %f mol kg^-1',mN2);
+//end
\ No newline at end of file |