From 80e2d559fc7185e63fb24f9ca58fa09782478f37 Mon Sep 17 00:00:00 2001 From: prashantsinalkar Date: Fri, 12 Apr 2019 14:34:04 +0530 Subject: initial commit / add all books --- 3918/CH10/EX10.2/Ex10_2.sce | 12 ++++++++++ 3918/CH10/EX10.3/Ex10_3.sce | 39 +++++++++++++++++++++++++++++++ 3918/CH10/EX10.4/Ex10_4.sce | 36 +++++++++++++++++++++++++++++ 3918/CH10/EX10.5/Ex10_5.sce | 16 +++++++++++++ 3918/CH12/EX12.1/Ex12_1.sce | 13 +++++++++++ 3918/CH12/EX12.2/Ex12_2.sce | 15 ++++++++++++ 3918/CH12/EX12.3/Ex12_3.sce | 17 ++++++++++++++ 3918/CH17/EX17.1/Ex17_1.sce | 32 ++++++++++++++++++++++++++ 3918/CH18/EX18.1/Ex18_1.sce | 13 +++++++++++ 3918/CH18/EX18.2/Ex18_2.sce | 31 +++++++++++++++++++++++++ 3918/CH18/EX18.4/Ex18_4.sce | 18 +++++++++++++++ 3918/CH18/EX18.5/Ex18_5.sce | 17 ++++++++++++++ 3918/CH18/EX18.6/Ex18_6.sce | 21 +++++++++++++++++ 3918/CH18/EX18.7/Ex18_7.sce | 20 ++++++++++++++++ 3918/CH19/EX19.3/Ex19_3.sce | 18 +++++++++++++++ 3918/CH19/EX19.4/Ex19_4.sce | 23 +++++++++++++++++++ 3918/CH19/EX19.5/Ex19_5.sce | 27 ++++++++++++++++++++++ 3918/CH19/EX19.6/Ex19_6.sce | 13 +++++++++++ 3918/CH19/EX19.7/Ex19_7.sce | 29 +++++++++++++++++++++++ 3918/CH2/EX2.1/Ex2_1.sce | 21 +++++++++++++++++ 3918/CH2/EX2.2/Ex2_2.sce | 13 +++++++++++ 3918/CH2/EX2.3/Ex2_3.sce | 14 ++++++++++++ 3918/CH20/EX20.1/Ex20_1.sce | 56 +++++++++++++++++++++++++++++++++++++++++++++ 3918/CH20/EX20.3/Ex20_3.sce | 16 +++++++++++++ 3918/CH20/EX20.4/Ex20_4.sce | 14 ++++++++++++ 3918/CH20/EX20.5/Ex20_5.sce | 52 +++++++++++++++++++++++++++++++++++++++++ 3918/CH20/EX20.7/Ex20_7.sce | 29 +++++++++++++++++++++++ 3918/CH21/EX21.1/Ex21_1.sce | 28 +++++++++++++++++++++++ 3918/CH21/EX21.2/Ex21_2.sce | 12 ++++++++++ 3918/CH21/EX21.3/Ex21_3.sce | 17 ++++++++++++++ 3918/CH21/EX21.4/Ex21_4.sce | 27 ++++++++++++++++++++++ 3918/CH22/EX22.1/Ex22_1.sce | 38 ++++++++++++++++++++++++++++++ 3918/CH22/EX22.2/Ex22_2.sce | 42 ++++++++++++++++++++++++++++++++++ 3918/CH22/EX22.3/Ex22_3.sce | 27 ++++++++++++++++++++++ 3918/CH22/EX22.4/Ex22_4.sce | 32 ++++++++++++++++++++++++++ 3918/CH22/EX22.5/Ex22_5.sce | 34 +++++++++++++++++++++++++++ 3918/CH22/EX22.6/Ex22_6.sce | 22 ++++++++++++++++++ 3918/CH22/EX22.7/Ex22_7.sce | 44 +++++++++++++++++++++++++++++++++++ 3918/CH23/EX23.1/Ex23_1.sce | 29 +++++++++++++++++++++++ 3918/CH23/EX23.2/Ex23_2.sce | 37 ++++++++++++++++++++++++++++++ 3918/CH23/EX23.5/Ex23_5.sce | 22 ++++++++++++++++++ 3918/CH24/EX24.2/Ex24_2.sce | 32 ++++++++++++++++++++++++++ 3918/CH24/EX24.3/Ex24_3.sce | 16 +++++++++++++ 3918/CH25/EX25.3/Ex25_3.sce | 40 ++++++++++++++++++++++++++++++++ 3918/CH25/EX25.4/Ex25_4.sce | 27 ++++++++++++++++++++++ 3918/CH26/EX26.1/Ex26_1.sce | 21 +++++++++++++++++ 3918/CH26/EX26.2/Ex26_2.sce | 18 +++++++++++++++ 3918/CH26/EX26.3/Ex26_3.sce | 29 +++++++++++++++++++++++ 3918/CH29/EX29.1/Ex29_1.sce | 21 +++++++++++++++++ 3918/CH29/EX29.2/Ex29_2.sce | 19 +++++++++++++++ 3918/CH30/EX30.2/Ex30_2.sce | 39 +++++++++++++++++++++++++++++++ 3918/CH30/EX30.3/Ex30_3.sce | 30 ++++++++++++++++++++++++ 3918/CH33/EX33.2/Ex33_2.sce | 32 ++++++++++++++++++++++++++ 3918/CH33/EX33.3/Ex33_3.sce | 37 ++++++++++++++++++++++++++++++ 3918/CH33/EX33.4/Ex33_4.sce | 18 +++++++++++++++ 3918/CH35/EX35.1/Ex35_1.sce | 14 ++++++++++++ 3918/CH35/EX35.2/Ex35_2.sce | 17 ++++++++++++++ 3918/CH36/EX36.1/Ex36_1.sce | 32 ++++++++++++++++++++++++++ 3918/CH36/EX36.3/Ex36_3.sce | 31 +++++++++++++++++++++++++ 3918/CH36/EX36.4/Ex36_4.sce | 23 +++++++++++++++++++ 3918/CH37/EX37.2/Ex37_2.sce | 23 +++++++++++++++++++ 3918/CH38/EX38.1/Ex38_1.sce | 39 +++++++++++++++++++++++++++++++ 3918/CH4/EX4.1/Ex4_1.sce | 27 ++++++++++++++++++++++ 3918/CH4/EX4.2/Ex4_2.sce | 27 ++++++++++++++++++++++ 3918/CH4/EX4.3/Ex4_3.sce | 38 ++++++++++++++++++++++++++++++ 3918/CH4/EX4.4/Ex4_4.sce | 37 ++++++++++++++++++++++++++++++ 3918/CH40/EX40.2/Ex40_2.sce | 12 ++++++++++ 3918/CH40/EX40.3/Ex40_3.sce | 14 ++++++++++++ 3918/CH41/EX41.1/Ex41_1.sce | 13 +++++++++++ 3918/CH41/EX41.2/Ex41_2.sce | 16 +++++++++++++ 3918/CH41/EX41.3/Ex41_3.sce | 32 ++++++++++++++++++++++++++ 3918/CH41/EX41.4/Ex41_4.sce | 26 +++++++++++++++++++++ 3918/CH41/EX41.5/Ex41_5.sce | 24 +++++++++++++++++++ 3918/CH42/EX42.6/Ex42_6.sce | 26 +++++++++++++++++++++ 3918/CH42/EX42.7/Ex42_7.sce | 29 +++++++++++++++++++++++ 3918/CH42/EX42.8/Ex42_8.sce | 27 ++++++++++++++++++++++ 3918/CH6/EX6.1/Ex6_1.sce | 16 +++++++++++++ 3918/CH6/EX6.2/Ex6_2.sce | 18 +++++++++++++++ 3918/CH7/EX7.1/Ex7_1.sce | 28 +++++++++++++++++++++++ 3918/CH7/EX7.2/Ex7_2.sce | 44 +++++++++++++++++++++++++++++++++++ 80 files changed, 2048 insertions(+) create mode 100644 3918/CH10/EX10.2/Ex10_2.sce create mode 100644 3918/CH10/EX10.3/Ex10_3.sce create mode 100644 3918/CH10/EX10.4/Ex10_4.sce create mode 100644 3918/CH10/EX10.5/Ex10_5.sce create mode 100644 3918/CH12/EX12.1/Ex12_1.sce create mode 100644 3918/CH12/EX12.2/Ex12_2.sce create mode 100644 3918/CH12/EX12.3/Ex12_3.sce create mode 100644 3918/CH17/EX17.1/Ex17_1.sce create mode 100644 3918/CH18/EX18.1/Ex18_1.sce create mode 100644 3918/CH18/EX18.2/Ex18_2.sce create mode 100644 3918/CH18/EX18.4/Ex18_4.sce create mode 100644 3918/CH18/EX18.5/Ex18_5.sce create mode 100644 3918/CH18/EX18.6/Ex18_6.sce create mode 100644 3918/CH18/EX18.7/Ex18_7.sce create mode 100644 3918/CH19/EX19.3/Ex19_3.sce create mode 100644 3918/CH19/EX19.4/Ex19_4.sce create mode 100644 3918/CH19/EX19.5/Ex19_5.sce create mode 100644 3918/CH19/EX19.6/Ex19_6.sce create mode 100644 3918/CH19/EX19.7/Ex19_7.sce create mode 100644 3918/CH2/EX2.1/Ex2_1.sce create mode 100644 3918/CH2/EX2.2/Ex2_2.sce create mode 100644 3918/CH2/EX2.3/Ex2_3.sce create mode 100644 3918/CH20/EX20.1/Ex20_1.sce create mode 100644 3918/CH20/EX20.3/Ex20_3.sce create mode 100644 3918/CH20/EX20.4/Ex20_4.sce create mode 100644 3918/CH20/EX20.5/Ex20_5.sce create mode 100644 3918/CH20/EX20.7/Ex20_7.sce create mode 100644 3918/CH21/EX21.1/Ex21_1.sce create mode 100644 3918/CH21/EX21.2/Ex21_2.sce create mode 100644 3918/CH21/EX21.3/Ex21_3.sce create mode 100644 3918/CH21/EX21.4/Ex21_4.sce create mode 100644 3918/CH22/EX22.1/Ex22_1.sce create mode 100644 3918/CH22/EX22.2/Ex22_2.sce create mode 100644 3918/CH22/EX22.3/Ex22_3.sce create mode 100644 3918/CH22/EX22.4/Ex22_4.sce create mode 100644 3918/CH22/EX22.5/Ex22_5.sce create mode 100644 3918/CH22/EX22.6/Ex22_6.sce create mode 100644 3918/CH22/EX22.7/Ex22_7.sce create mode 100644 3918/CH23/EX23.1/Ex23_1.sce create mode 100644 3918/CH23/EX23.2/Ex23_2.sce create mode 100644 3918/CH23/EX23.5/Ex23_5.sce create mode 100644 3918/CH24/EX24.2/Ex24_2.sce create mode 100644 3918/CH24/EX24.3/Ex24_3.sce create mode 100644 3918/CH25/EX25.3/Ex25_3.sce create mode 100644 3918/CH25/EX25.4/Ex25_4.sce create mode 100644 3918/CH26/EX26.1/Ex26_1.sce create mode 100644 3918/CH26/EX26.2/Ex26_2.sce create mode 100644 3918/CH26/EX26.3/Ex26_3.sce create mode 100644 3918/CH29/EX29.1/Ex29_1.sce create mode 100644 3918/CH29/EX29.2/Ex29_2.sce create mode 100644 3918/CH30/EX30.2/Ex30_2.sce create mode 100644 3918/CH30/EX30.3/Ex30_3.sce create mode 100644 3918/CH33/EX33.2/Ex33_2.sce create mode 100644 3918/CH33/EX33.3/Ex33_3.sce create mode 100644 3918/CH33/EX33.4/Ex33_4.sce create mode 100644 3918/CH35/EX35.1/Ex35_1.sce create mode 100644 3918/CH35/EX35.2/Ex35_2.sce create mode 100644 3918/CH36/EX36.1/Ex36_1.sce create mode 100644 3918/CH36/EX36.3/Ex36_3.sce create mode 100644 3918/CH36/EX36.4/Ex36_4.sce create mode 100644 3918/CH37/EX37.2/Ex37_2.sce create mode 100644 3918/CH38/EX38.1/Ex38_1.sce create mode 100644 3918/CH4/EX4.1/Ex4_1.sce create mode 100644 3918/CH4/EX4.2/Ex4_2.sce create mode 100644 3918/CH4/EX4.3/Ex4_3.sce create mode 100644 3918/CH4/EX4.4/Ex4_4.sce create mode 100644 3918/CH40/EX40.2/Ex40_2.sce create mode 100644 3918/CH40/EX40.3/Ex40_3.sce create mode 100644 3918/CH41/EX41.1/Ex41_1.sce create mode 100644 3918/CH41/EX41.2/Ex41_2.sce create mode 100644 3918/CH41/EX41.3/Ex41_3.sce create mode 100644 3918/CH41/EX41.4/Ex41_4.sce create mode 100644 3918/CH41/EX41.5/Ex41_5.sce create mode 100644 3918/CH42/EX42.6/Ex42_6.sce create mode 100644 3918/CH42/EX42.7/Ex42_7.sce create mode 100644 3918/CH42/EX42.8/Ex42_8.sce create mode 100644 3918/CH6/EX6.1/Ex6_1.sce create mode 100644 3918/CH6/EX6.2/Ex6_2.sce create mode 100644 3918/CH7/EX7.1/Ex7_1.sce create mode 100644 3918/CH7/EX7.2/Ex7_2.sce diff --git a/3918/CH10/EX10.2/Ex10_2.sce b/3918/CH10/EX10.2/Ex10_2.sce new file mode 100644 index 000000000..7d684490b --- /dev/null +++ b/3918/CH10/EX10.2/Ex10_2.sce @@ -0,0 +1,12 @@ +//Example 10_2 +clc; +clear; +close; + +//Given data : +T90=0.848;// Time Factor Corresponding to 90% consolidation +t90=16;// Time in years +T=24/1000;// Sample thickness in m +H=T/2;// Drainage path in m +cv=T90*H*H/t90;// Coefficient of Consolidation of the soil in m^2/min +disp(cv,"Coefficient of Consolidation of the soil in m^2/min"); diff --git a/3918/CH10/EX10.3/Ex10_3.sce b/3918/CH10/EX10.3/Ex10_3.sce new file mode 100644 index 000000000..e1232c21c --- /dev/null +++ b/3918/CH10/EX10.3/Ex10_3.sce @@ -0,0 +1,39 @@ +//Example 10_3 +clc; +clear; +close; + +//Given data : +tc=12;// Thickness of clay layer in m +ts=5;// Thickness of dense sand layer in m +tf=5;// Height of fill in m +gc=16;// Unit weight of clay layer in kN/m^3 +gs=20;// Unit weight of dense sand layer in kN/m^3 +gf=18;// Unit weight of fill in kN/m^3 +D=6;// Thickness in m + +// Sub-layer 1 +D1=3;// Depth to middle of sub-layer 1 in m +Is1=(gs*ts)+(D*D1);// Inital sigma-dash at middle of sub-layer 1 in kN/m^2 +e01=1.74;// e0 at middle of sub-layer 1 (From Fig. 10.8) +Ds1=gf*tf;// Difference between final sigma-dash and initial sigma-dash in kN/m^2 +Fs1=Is1+Ds1;// Final sigma-dash at middle of sub-layer 1 in kN/m^2 +av1=9/10000;// in m^/kN +mv1=av1/(1+e01);// Coefficient of volume compressibility of sub-layer 1 +S1=mv1*D*Ds1;// Settlement of sub-layer 1 in m +disp(S1,"Settlement of sub-layer 1 in m"); + +// Sub-layer 2 +D2=9;// Depth to middle of sub-layer 2 in m +Is2=(gs*ts)+(D*D2);// Inital sigma-dash at middle of sub-layer 2 in kN/m^2 +e02=1.70;// e0 at middle of sub-layer 2 (From Fig. 10.8) +Ds2=gf*tf;// Difference between final sigma-dash and initial sigma-dash in kN/m^2 +Fs2=Is2+Ds2;// Final sigma-dash at middle of sub-layer 2 in kN/m^2 +av2=8/10000;// in m^/kN +mv2=av2/(1+e02);// Coefficient of volume compressibility of sub-layer 2 +S2=mv2*D*Ds2;// Settlement of sub-layer 2 in m +disp(S2,"Settlement of sub-layer 2 in m"); + +TS=S1+S2;// Total settlement of sub-layers in m +disp(TS,"Total settlement of sub-layers in m"); +// The answers vary due to round off error diff --git a/3918/CH10/EX10.4/Ex10_4.sce b/3918/CH10/EX10.4/Ex10_4.sce new file mode 100644 index 000000000..58771e7d4 --- /dev/null +++ b/3918/CH10/EX10.4/Ex10_4.sce @@ -0,0 +1,36 @@ +//Example 10_4 +clc; +clear; +close; + +//Given data : +tc=12;// Thickness of clay layer in m +ts=5;// Thickness of dense sand layer in m +tf=5;// Height of fill in m +gc=16;// Unit weight of clay layer in kN/m^3 +gs=20;// Unit weight of dense sand layer in kN/m^3 +gf=18;// Unit weight of fill in kN/m^3 +D=6;// Thickness in m +Cc=0.3;// Compression Index + +// Sub-layer 1 +D1=3;// Depth to middle of sub-layer 1 in m +Is1=(gs*ts)+(D*D1);// Inital sigma-dash at middle of sub-layer 1 in kN/m^2 +e01=1.74;// e0 at middle of sub-layer 1 (From Fig. 10.8) +Ds1=gf*tf;// Difference between final sigma-dash and initial sigma-dash in kN/m^2 +Fs1=Is1+Ds1;// Final sigma-dash at middle of sub-layer 1 in kN/m^2 +S1=(Cc*log10(Fs1/Is1)*D)/(1+e01);// // Settlement of sub-layer 1 in m +disp(S1,"Settlement of sub-layer 1 in m"); + +// Sub-layer 2 +D2=9;// Depth to middle of sub-layer 2 in m +Is2=(gs*ts)+(D*D2);// Inital sigma-dash at middle of sub-layer 2 in kN/m^2 +e02=1.70;// e0 at middle of sub-layer 2 (From Fig. 10.8) +Ds2=gf*tf;// Difference between final sigma-dash and initial sigma-dash in kN/m^2 +Fs2=Is2+Ds2;// Final sigma-dash at middle of sub-layer 2 in kN/m^2 +S2=(Cc*log10(Fs2/Is2)*D)/(1+e02);// // Settlement of sub-layer 2 in m +disp(S2,"Settlement of sub-layer 2 in m"); + +TS=S1+S2;// Total settlement of sub-layers in m +disp(TS,"Total settlement of sub-layers in m"); +// The answers vary due to round off error diff --git a/3918/CH10/EX10.5/Ex10_5.sce b/3918/CH10/EX10.5/Ex10_5.sce new file mode 100644 index 000000000..6d495993d --- /dev/null +++ b/3918/CH10/EX10.5/Ex10_5.sce @@ -0,0 +1,16 @@ +//Example 10_5 +clc; +clear; +close; + +//Given data : +C=2/1000000;// Coefficient of Consolidation in m^2/min +ts=1;// Thickness of sand layer in m +H=6;// Thicknes of clay layer in m +T50=0.197;// Time Factor Corresponding to 50% consolidation +T90=0.848;// Time Factor Corresponding to 90% consolidation +t50=T50*H*H/(C*60*24*30*12);// Time taken for 50% consolidation to take place in years +t90=T90*H*H/(C*60*24*30*12);// Time taken for 90% consolidation to take place in years +disp(t50,"Time taken for 50% consolidation to take place in years"); +disp(t90,"Time taken for 90% consolidation to take place in years"); +// The answers vary due to round off error diff --git a/3918/CH12/EX12.1/Ex12_1.sce b/3918/CH12/EX12.1/Ex12_1.sce new file mode 100644 index 000000000..628671eb2 --- /dev/null +++ b/3918/CH12/EX12.1/Ex12_1.sce @@ -0,0 +1,13 @@ +//Example 12_1 +clc; +clear; +close; + +//Given data : +// With reference to Fig 12.14 +a=100;// (pi1 - pi3)f/2 in kN/m^2 +angle=30;// angle in degree +towff=150*tand(angle);// towff in kN/m^2 +err=(a-towff)/towff*100;// Error in percentage +disp(err,"Error in percentage"); +// The answers vary due to round off error diff --git a/3918/CH12/EX12.2/Ex12_2.sce b/3918/CH12/EX12.2/Ex12_2.sce new file mode 100644 index 000000000..74cf1792f --- /dev/null +++ b/3918/CH12/EX12.2/Ex12_2.sce @@ -0,0 +1,15 @@ +//Example 12_2 +clc; +clear; +close; + +//Given data : +// With reference to Fig 12.15 +ecs=100;// Effective Confining Stress in kN/m^2 +Af=1;// Assumption +angle=30;// Angle in degree +Sd=ecs*(sind(angle)/(1-sind(angle)));// Shear strength under drained condition in kN/m^2 +Su=ecs*(sind(angle)/(1-(1-(2*Af))*sind(angle)));// Shear strength under undrained condition in kN/m^2 +disp(Sd,"Shear strength under drained condition in kN/m^2"); +disp(Su,"Shear strength under undrained condition in kN/m^2"); +// The answers vary due to round off error diff --git a/3918/CH12/EX12.3/Ex12_3.sce b/3918/CH12/EX12.3/Ex12_3.sce new file mode 100644 index 000000000..552fff685 --- /dev/null +++ b/3918/CH12/EX12.3/Ex12_3.sce @@ -0,0 +1,17 @@ +//Example 12_3 +clc; +clear; +close; + +//Given data : +// With reference to Fig 12.16 +ecs=100;// Effective Confining Stress in kN/m^2 +Af=-0.5;// Assumption +cdash=50;// cdash in kN/m^2 +angle=25;// Angle in degree +Sd=(ecs+(cdash*cotd(angle)))*(sind(angle)/(1-sind(angle)));// Shear strength under drained condition in kN/m^2 +Su=(ecs+(cdash*cotd(angle)))*(sind(angle)/(1-(1-(2*Af))*sind(angle)));// Shear strength under undrained condition in kN/m^2 +disp(Sd,"Shear strength under drained condition in kN/m^2"); +disp(Su,"Shear strength under undrained condition in kN/m^2"); +// The answers vary due to round off error +// The answer provided in the textbook is wrong diff --git a/3918/CH17/EX17.1/Ex17_1.sce b/3918/CH17/EX17.1/Ex17_1.sce new file mode 100644 index 000000000..b7f5f6a14 --- /dev/null +++ b/3918/CH17/EX17.1/Ex17_1.sce @@ -0,0 +1,32 @@ +//Example 17_1 +clc; +clear; +close; + +//Given data : +disp("a)"); +uw=20;// Unit weight of sand in kN/m^3 +d=2;// Depth in m +pi=uw*d;// Magnitude of pi at 2 m depth in kN/m^2 +u=10*(d-1);// Magnitude of u at 2 m depth in kN/m^2 +pidash=pi-u;// magnitude of pidash at 2 m depth in kN/m2 +CN=1.4;// Value of CN from Fig 17.14 +N=5;// Observed value of N +Ndash=CN*N;// value of Ndash +// 7<15 therefore no dilatency correction needs to be applied +Ndashdash=Ndash;// Correct value of N +disp(Ndashdash,"Correct value of N is"); + +disp("b)"); +uw=20;// Unit weight of sand in kN/m^3 +d=15;// Depth in m +pi=uw*d;// Magnitude of pi at 15 m depth in kN/m^2 +u=10*(d-1);// Magnitude of u at 15 m depth in kN/m^2 +pidash=pi-u;// magnitude of pidash at 15 m depth in kN/m2 +CN=0.82;// Value of CN from Fig 17.14 +N=21;// Observed value of N +Ndash=CN*N;// value of Ndash +// 17>15 therefore dilatency correction needs to be applied +Ndashdash=15+((Ndash-15)/2);// Correct value of N +disp(Ndashdash,"Correct value of N is"); +// The answers vary due to round off error diff --git a/3918/CH18/EX18.1/Ex18_1.sce b/3918/CH18/EX18.1/Ex18_1.sce new file mode 100644 index 000000000..63505a637 --- /dev/null +++ b/3918/CH18/EX18.1/Ex18_1.sce @@ -0,0 +1,13 @@ +//Example 18_1 +clc; +clear; +close; + +//Given data : +k=1/100000000;// Permeability in m/sec +L=10;// Thickness of clay layer in m +A=1;// Lake bed area in m^2 +DH=10;// Difference in height in m +Q=k*(DH/L)*A*60*60;// Discharge in m^3/hr +disp(Q,"Discharge in m^3/hr"); +// The answers vary due to round off error diff --git a/3918/CH18/EX18.2/Ex18_2.sce b/3918/CH18/EX18.2/Ex18_2.sce new file mode 100644 index 000000000..f6db2b7e2 --- /dev/null +++ b/3918/CH18/EX18.2/Ex18_2.sce @@ -0,0 +1,31 @@ +//Example 18_2 +clc; +clear; +close; + +//Given data : +// Clay +k=1/1000000000;// Permeability in m/sec +L=0.5;// Thickness of clay layer in m +A=100;// Lake bed area in mm^2 +DH=1;// Difference in height in m +Q1=k*(DH/L)*A*1000*60*60;// Discharge in clay in mm^3 +disp(Q1,"Discharge in clay in mm^3"); + +// Silt +k=1/1000000;// Permeability in m/sec +L=0.5;// Thickness of clay layer in m +A=100;// Lake bed area in mm^2 +DH=1;// Difference in height in m +Q2=k*(DH/L)*A*1000*60*60;// Discharge in silt in mm^3 +disp(Q2,"Discharge in silt in mm^3"); + +// Sand +k=1/10000;// Permeability in m/sec +L=0.5;// Thickness of clay layer in m +A=100;// Lake bed area in mm^2 +DH=1;// Difference in height in m +Q3=k*(DH/L)*A*1000*60*60;// Discharge in sand in mm^3 +disp(Q3,"Discharge in sand in mm^3"); +TF=Q1+Q2+Q3;// Total flow in mm^3 +disp(TF,"Total flow in mm^3"); diff --git a/3918/CH18/EX18.4/Ex18_4.sce b/3918/CH18/EX18.4/Ex18_4.sce new file mode 100644 index 000000000..37ef711ad --- /dev/null +++ b/3918/CH18/EX18.4/Ex18_4.sce @@ -0,0 +1,18 @@ +//Example 18_4 +clc; +clear; +close; + +//Given data : +k=1/100000;// Permeability in m/sec +nf=3;// +nd=10.5;// +H1=5.5;// Height 1 in m +H2=0.25;// Height 2 in m +DH=H1-H2;// Difference in height in m +Q=k*DH*(nf/nd);// Discharge in mm^3/sec +disp(Q,"Discharge in mm^3/sec"); +Lgh=0.55;// Length in m +EG=(DH/(nd*Lgh));// Exit gradient along GH +disp(EG,"Exit gradient along GH is"); +// The answers vary due to round off error diff --git a/3918/CH18/EX18.5/Ex18_5.sce b/3918/CH18/EX18.5/Ex18_5.sce new file mode 100644 index 000000000..307082c99 --- /dev/null +++ b/3918/CH18/EX18.5/Ex18_5.sce @@ -0,0 +1,17 @@ +//Example 18_5 +clc; +clear; +close; + +//Given data : +k=1/10000000;// Permeability in m/sec +nf=3;// +nd=12;// +H1=26;// Height 1 in m +H2=2;// Height 2 in m +DH=H1-H2;// Difference in height in m +Q=k*DH*(nf/nd);// Discharge in mm^3/sec +disp(Q,"Discharge in mm^3/sec"); +EG=1.5;// Exit gradient at the filter drain +disp("The exit gradient is more than 1.0. But this is no cause for concern because the direction of flow is downward"); +// The answers vary due to round off error diff --git a/3918/CH18/EX18.6/Ex18_6.sce b/3918/CH18/EX18.6/Ex18_6.sce new file mode 100644 index 000000000..236d35a84 --- /dev/null +++ b/3918/CH18/EX18.6/Ex18_6.sce @@ -0,0 +1,21 @@ +//Example 18_6 +clc; +clear; +close; + +//Given data : +Ta=12;// Thickeness of aquifier in m +Tg=2;// Thickness of ground water table in m +H=Ta-Tg;// Height between aquifier and ground water table in m +R=200;// Radius of influence in m +hA=5;// Height at point A in m +k=2/100000;// Permeability of soil in m/sec +// 1 m below excavation level at 6 m below ground surface) +xL=8;// Distance from point A to each well in m +xM=8;// Distance from point A to each well in m +xN=8;// Distance from point A to each well in m +xO=8;// Distance from point A to each well in m +N=4;// Total number of wells +Q=(((H^2)-(hA^2))*3.14*k)/(4*log(R/xL));// Discharge of water from each well in m^3/s +disp(Q,"Discharge of water from each well in m^3/s"); +// The answers vary due to round off error diff --git a/3918/CH18/EX18.7/Ex18_7.sce b/3918/CH18/EX18.7/Ex18_7.sce new file mode 100644 index 000000000..28f4d9bbb --- /dev/null +++ b/3918/CH18/EX18.7/Ex18_7.sce @@ -0,0 +1,20 @@ +//Example 18_7 +clc; +clear; +close; + +//Given data : +Q=36.6/100000;// Discharge in m^3/sec +Ta=12;// Thickeness of aquifier in m +Tg=2;// Thickness of ground water table in m +H=Ta-Tg;// Height between aquifier and ground water table in m +R=200;// Radius of influence in m +rw=0.150/2;// Radius of each well in m +k=2/100000;// Permeability of soil in m/sec +// 1 m below excavation level at 6 m below ground surface) +xM=10;// Distance from well L to well M in m +xN=16;// Distance from well L to well N in m +xO=10;// Distance from well L to well O in m +hw=sqrt((H^2)-((Q/(3.14*k))*(log(R/rw)+log(R/xM)+log(R/xN)+log(R/xO))));// Water level in each well in m +disp(hw,"Water level in each well in m"); +// The answers vary due to round off error diff --git a/3918/CH19/EX19.3/Ex19_3.sce b/3918/CH19/EX19.3/Ex19_3.sce new file mode 100644 index 000000000..91a7b33c2 --- /dev/null +++ b/3918/CH19/EX19.3/Ex19_3.sce @@ -0,0 +1,18 @@ +//Example 19_3 +clc; +clear; +close; + +//Given data : +// The clay is overconsolidated +// Assume lambda from Table 19.3 + +// assumption 1 +lambda=0.5; +cs=100*lambda;// Corrected settlement for 0.5 lambda value in mm +disp(cs,"Corrected settlement for 0.5 lambda value in mm"); + +// assumption 2 +lambda=0.6; +cs=100*lambda;// Corrected settlement for 0.6 lambda value in mm +disp(cs,"Corrected settlement for 0.6 lambda value in mm"); diff --git a/3918/CH19/EX19.4/Ex19_4.sce b/3918/CH19/EX19.4/Ex19_4.sce new file mode 100644 index 000000000..6acbf0c00 --- /dev/null +++ b/3918/CH19/EX19.4/Ex19_4.sce @@ -0,0 +1,23 @@ +//Example 19_4 +clc; +clear; +close; + +//Given data : +E=5;// Undrained modulus of clay in N/mm^2 +mu=0.5; +B=2; +q=150; +ce=1.36;// L/B = 1.5 at centre is 1.36 +co=0.68;// L/B = 1.5 at centre is 0.68 +rhoece=q*B*(1-(mu^2))*(ce/E);// Elastic settlement at centre in mm +disp(rhoece,"Elastic settlement at centre in mm"); +rhoeco=q*B*(1-(mu^2))*(co/E);// Elastic settlement at corner in mm +disp(rhoeco,"Elastic settlement at corner in mm"); +AVG=(rhoece+rhoeco)/2;// Average elastic settlement in mm +disp(AVG,"Average elastic settlement in mm"); +// Consolidated settlement range is 566 mm to 629 mm +CS=600;// Consolidated settlement in mm +P=(AVG)*100/CS; +disp(P,"Elastic settlement is less than consolidated settlement in % by"); +// The answers vary due to round off error diff --git a/3918/CH19/EX19.5/Ex19_5.sce b/3918/CH19/EX19.5/Ex19_5.sce new file mode 100644 index 000000000..613b03479 --- /dev/null +++ b/3918/CH19/EX19.5/Ex19_5.sce @@ -0,0 +1,27 @@ +//Example 19_5 +clc; +clear; +close; + +//Given data : +Su=150;// Average undrained strength in kN/m^2 +E=300*Su/1000;//Undrained modulus of soil in N/mm^2 +disp("(i)"); +B=5; +q=100; +mu=0.35; +ce=1.12;// L/B = 1.5 at centre is 1.12 +rhoece=q*B*(1-(mu^2))*(ce/E);// Elastic settlement at centre in mm +disp(rhoece," Elastic settlement at centre in mm"); +// The answers vary due to round off error + +disp("(ii)"); +E1=30;// Undrained modulus of sand in N/mm^2 +h1=10;// Depth1 in m +E2=60;// Undrained modulus of sand in N/mm^2 +h2=15;// Depth2 in m +Eavg=((E1*h1)+(E2*h2))/(h1+h2)*1000;// Average Undrained modulus in kN/m^2 +mu=.3; +rhoece=q*B*(1-(mu^2))*(ce/E);// Elastic settlement at centre in mm +disp(rhoece," Elastic settlement at centre in mm"); +// The answers vary due to round off error diff --git a/3918/CH19/EX19.6/Ex19_6.sce b/3918/CH19/EX19.6/Ex19_6.sce new file mode 100644 index 000000000..accdbaa40 --- /dev/null +++ b/3918/CH19/EX19.6/Ex19_6.sce @@ -0,0 +1,13 @@ +//Example 19_6 +clc; +clear; +close; + +//Given data : +AS=0.8*60;// Average settlement in mm +DF=0.87;// Depth Factor +CS=600*DF;// Consolidation Settlement corrected for depth in mm +disp(CS,"Consolidation Settlement corrected for depth in mm"); +ES=AS*DF;// Elastic Settlement corrected for both rigidity and depth in mm +disp(ES,"Elastic Settlement corrected for both rigidity and depth in mm"); +// The answers vary due to round off error diff --git a/3918/CH19/EX19.7/Ex19_7.sce b/3918/CH19/EX19.7/Ex19_7.sce new file mode 100644 index 000000000..30a257663 --- /dev/null +++ b/3918/CH19/EX19.7/Ex19_7.sce @@ -0,0 +1,29 @@ +//Example 19_7 +clc; +clear; +close; + +//Given data : +E=60;//Undrained modulus of soil in N/mm^2 +disp("(a)"); +B=20; +q=150; +mu=0.3; +I=0.38;// Influence factor +rhoece=q*B*(1-(mu^2))*(I/E);// Elastic settlement at centre in mm +disp(rhoece," Elastic settlement at centre in mm"); +RF=0.8;// Rigidity Factor +a=1; +crhoece=rhoece*RF*a;// Corrected Elastic settlement at centre in mm +disp(crhoece," Corrected Elastic settlement at centre in mm"); +// The answers vary due to round off error + +disp("(b)"); +I=1.12;// Influence factor +rhoece=q*B*(1-(mu^2))*(I/E);// Elastic settlement at centre in mm +disp(rhoece," Elastic settlement at centre in mm"); +RF=0.8;// Rigidity Factor +a=1; +crhoece=rhoece*RF*a;// Corrected Elastic settlement at centre in mm +disp(crhoece," Corrected Elastic settlement at centre in mm"); +// The answer provided in the textbook is wrong diff --git a/3918/CH2/EX2.1/Ex2_1.sce b/3918/CH2/EX2.1/Ex2_1.sce new file mode 100644 index 000000000..171b206f4 --- /dev/null +++ b/3918/CH2/EX2.1/Ex2_1.sce @@ -0,0 +1,21 @@ +//Example 2_1 +clc; +clear; +close; + +//Given data : +d=38;// Diameter of soil sample in mm +h=76;// Height of soil sample in mm +ww=1.15;// Wet weight of soil sample in N +dw=0.5;// Dry weight of soil sample in N +G=2.7/100000;// Specific gravity of soil sample in +W=ww-dw;// void weight in N +w=(W/dw)*100;// Water content in percentage +disp(w,"Water content in percentage is"); +V=86200;// Volume in mm^3 +Vs=W/G;// Volume of solids on mm^3 +Vv=67.7*1000;// Volume of voids in mm^3 +Vw=65*1000;// Volume of water in mm^3 +S=(Vw/Vv)*100;// Degree of saturation in percentage +disp(S,"Degree of saturation in percentage is"); +// The answers vary due to round off error diff --git a/3918/CH2/EX2.2/Ex2_2.sce b/3918/CH2/EX2.2/Ex2_2.sce new file mode 100644 index 000000000..7affe61d3 --- /dev/null +++ b/3918/CH2/EX2.2/Ex2_2.sce @@ -0,0 +1,13 @@ +//Example 2_2 +clc; +clear; +close; + +//Given data : +Vv=67.7*1000;// Volume of voids in mm^3 +Vs=18.5*1000;// Volume of solids in mm63 +e=Vv/Vs;// Void ratio (no unit) +disp(e,"Void ratio is"); +n=e/(1+e);// Porosity +disp(n,"Porosity is"); +// The answers vary due to round off error diff --git a/3918/CH2/EX2.3/Ex2_3.sce b/3918/CH2/EX2.3/Ex2_3.sce new file mode 100644 index 000000000..2b0dfb975 --- /dev/null +++ b/3918/CH2/EX2.3/Ex2_3.sce @@ -0,0 +1,14 @@ +//Example 2_3 +clc; +clear; +close; + +//Given data : +W=1.15/1000;// Wet weight in kN +V=86.2/1000000;// Volume in m^3 +gammat=W/V;// Total unit weight in kN/m^3 +disp(gammat,"Total unit weight in kN/m^3 is"); +Ws=0.5/1000;// Dry weight in kN +gammad=Ws/V;// Dry unit weight in kN/m^3 +disp(gammad,"Dry unit weight in kN/m^3 is"); +// The answers vary due to round off error diff --git a/3918/CH20/EX20.1/Ex20_1.sce b/3918/CH20/EX20.1/Ex20_1.sce new file mode 100644 index 000000000..0442a6c84 --- /dev/null +++ b/3918/CH20/EX20.1/Ex20_1.sce @@ -0,0 +1,56 @@ +//Example 20_1 +clc; +clear; +close; + +//Given data : +disp("a)- Very deep water table"); +B=2;// Width of foundation in m +Df=1;// Depth of foundation in m +gammat=18;// Unit weight of soil in kN/m^2 +teta=35;// Angle in degree +Nq=41;// Bearing capacity factor +Ng=42;// Bearing capacity factor +qult=(Df*gammat*Nq)+(0.5*gammat*B*Ng);// Ultimate bearing capacity for footing in sand in kN/m^2 +disp(qult," Ultimate bearing capacity for footing in sand in kN/m^2"); + +disp("b)- Very deep water table"); +B=2;// Width of foundation in m +Df=2;// Depth of foundation in m +gammat=18;// Unit weight of soil in kN/m^2 +teta=35;// Angle in degree +Nq=41;// Bearing capacity factor +Ng=42;// Bearing capacity factor +qult=(Df*gammat*Nq)+(0.5*gammat*B*Ng);// Ultimate bearing capacity for footing in sand in kN/m^2 +disp(qult," Ultimate bearing capacity for footing in sand in kN/m^2"); + +disp("c)- Very deep water table"); +B=4;// Width of foundation in m +Df=1;// Depth of foundation in m +gammat=18;// Unit weight of soil in kN/m^2 +teta=35;// Angle in degree +Nq=41;// Bearing capacity factor +Ng=42;// Bearing capacity factor +qult=(Df*gammat*Nq)+(0.5*gammat*B*Ng);// Ultimate bearing capacity for footing in sand in kN/m^2 +disp(qult," Ultimate bearing capacity for footing in sand in kN/m^2"); + +disp("d)- Ground surface water table"); +B=2;// Width of foundation in m +Df=1;// Depth of foundation in m +gammat=18;// Unit weight of soil in kN/m^2 +teta=35;// Angle in degree +Nq=41;// Bearing capacity factor +Ng=42;// Bearing capacity factor +qult=(Df*gammat*Nq)+(0.5*gammat*B*Ng);// Ultimate bearing capacity for footing in sand in kN/m^2 +disp(qult," Ultimate bearing capacity for footing in sand in kN/m^2"); +// The answer provided in the textbook is wrong + +disp("e)- Very deep water table"); +B=2;// Width of foundation in m +Df=1;// Depth of foundation in m +gammat=20;// Unit weight of soil in kN/m^2 +teta=37.5;// Angle in degree +Nq=61;// Bearing capacity factor +Ng=86;// Bearing capacity factor +qult=(Df*gammat*Nq)+(0.5*gammat*B*Ng);// Ultimate bearing capacity for footing in sand in kN/m^2 +disp(qult," Ultimate bearing capacity for footing in sand in kN/m^2"); diff --git a/3918/CH20/EX20.3/Ex20_3.sce b/3918/CH20/EX20.3/Ex20_3.sce new file mode 100644 index 000000000..7be9f8e69 --- /dev/null +++ b/3918/CH20/EX20.3/Ex20_3.sce @@ -0,0 +1,16 @@ +//Example 20_3 +clc; +clear; +close; + +//Given data : +a=2;// Side of footing in m +UL=600;// Ultimate vertical load of footing in kN +M1=90;// Ultimate moment of footing in one direction in kNm +M2=60;// Ultimate moment of footing in other direction in kNm +e1=M1/UL;// Eccentricity in the direction 90kNM acts in m +L=a+(a*e1);// Dimension of footing increased in the direction of 90kNm moment in m +disp(L,"Dimension of footing increased in the direction of 90kNm moment in m"); +e2=M2/UL;// Eccentricity in the direction 90kNM acts in m +L=a+(a*e2);// Dimension of footing increased in the direction of 60kNm moment in m +disp(L,"Dimension of footing increased in the direction of 60kNm moment in m"); diff --git a/3918/CH20/EX20.4/Ex20_4.sce b/3918/CH20/EX20.4/Ex20_4.sce new file mode 100644 index 000000000..0e632dd11 --- /dev/null +++ b/3918/CH20/EX20.4/Ex20_4.sce @@ -0,0 +1,14 @@ +//Example 20_4 +clc; +clear; +close; + +//Given data : +B=2;// Width of foundation in m +Df=1.5;// Depth of foundation in m +Rw=1; +Rwdash=1; +Ndashdash=14; +qult=(1/62)*((2*Ndashdash*Ndashdash*B*Rwdash)+(6*(100+(Ndashdash^2))*Df*Rw));// Ultimate bearing capacity in kN/m^2 +disp(qult,"Ultimate bearing capacity in kN/m^2"); +// The answers vary due to round off error diff --git a/3918/CH20/EX20.5/Ex20_5.sce b/3918/CH20/EX20.5/Ex20_5.sce new file mode 100644 index 000000000..3a00dc65b --- /dev/null +++ b/3918/CH20/EX20.5/Ex20_5.sce @@ -0,0 +1,52 @@ +//Example 20_5 +clc; +clear; +close; + +//Given data : +gt1=20;// Unit weight of top layer in kN/m^3 +t1=12;// Thickness of top layer in m +teta1=30;// Angle of top layer in degree +gt2=22;// Unit weight of bottom layer in kN/m^3 +t2=20;// Thickness of bottom layer in m +teta2=35;// Angle of bottom layer in degree +K=1;// Coefficient of earth pressure +Nq1=20; +Nq2=50; + +disp("For depth 10 m"); +svdash=(gt1-10)*10;// Vertical effective stress in kN/m2 +a=tand(teta1); +qb=svdash*Nq1;// Unit End Bearing in kN/m^2 +disp(qb," Unit End Bearing in kN/m^2"); +fs=K*svdash*a;// Unit Skin Friction in kN/m^2 +disp(fs," Unit Skin Friction in kN/m^2"); +// The answers vary due to round off error + +disp("For depth 15 m"); +svdash=((gt1-10)*t1)+((gt2-10)*(15-t1));// Vertical effective stress in kN/m2 +a=tand(teta2); +qb=svdash*Nq2;// Unit End Bearing in kN/m^2 +disp(qb," Unit End Bearing in kN/m^2"); +fs=K*svdash*a;// Unit Skin Friction in kN/m^2 +// This value is more than the limiting value which is 100 kN/m^2, hence fs=100 kN/m^2 +fs=100;// Unit Skin Friction in kN/m^2 +disp(fs," Unit Skin Friction in kN/m^2"); + +disp("For depth 20 m"); +svdash=((gt1-10)*t1)+((gt2-10)*(20-t1));// Vertical effective stress in kN/m2 +a=tand(teta2); +qb=svdash*Nq2;// Unit End Bearing in kN/m^2 +// This value is more than the limiting value which is 10000 kN/m^2, hence qb=10000 kN/m^2 +qb=10000;// Unit End Bearing in kN/m^2 +disp(qb," Unit End Bearing in kN/m^2"); +// fs is alredy at limiting value. i.e==> fs=100 kN/m^2 +fs=100;// Unit Skin Friction in kN/m^2 +disp(fs," Unit Skin Friction in kN/m^2"); + +disp("For depth 25 m"); +// qb and fs both are at limiting values +qb=10000;// Unit End Bearing in kN/m^2 +disp(qb," Unit End Bearing in kN/m^2"); +fs=100;// Unit Skin Friction in kN/m^2 +disp(fs," Unit Skin Friction in kN/m^2"); diff --git a/3918/CH20/EX20.7/Ex20_7.sce b/3918/CH20/EX20.7/Ex20_7.sce new file mode 100644 index 000000000..b0648500a --- /dev/null +++ b/3918/CH20/EX20.7/Ex20_7.sce @@ -0,0 +1,29 @@ +//Example 20_7 +clc; +clear; +close; + +//Given data : +D=300;// Diameter of pile in mm + +disp("i)"); +d=10/100*D;// 10% of pile diamater in mm +x1=27;// Settlement in mm +x2=34;// Settlement in mm +y1=140;// Load in kN +y2=160;// Load in kN +l=((d-x1)*(y2-y1)/(x2-x1))+y1;// Load at 30mm pile diamater settlement in kN +l=l/2;// Half the load at 30mm pile diamater settlement in kN +disp(l,"Half the load at 30mm pile diamater settlement in kN"); +// The answers vary due to round off error + +disp("ii)"); +d=12;// pile diamater in mm +x1=10;// Settlement in mm +x2=13;// Settlement in mm +y1=60;// Load in kN +y2=80;// Load in kN +l=((d-x1)*(y2-y1)/(x2-x1))+y1;// Load at 30mm pile diamater settlement in kN +l=l*2/3;// Two-third of the load at 12mm pile diamater settlement in kN +disp(l,"Two-third of the load at 12mm pile diamater settlement in kN"); +// The answers vary due to round off error diff --git a/3918/CH21/EX21.1/Ex21_1.sce b/3918/CH21/EX21.1/Ex21_1.sce new file mode 100644 index 000000000..3cbb4f8d6 --- /dev/null +++ b/3918/CH21/EX21.1/Ex21_1.sce @@ -0,0 +1,28 @@ +//Example 21_1 +clc; +clear; +close; + +//Given data : +d1=4;// Depth of layer A in m +d2=6;// Depth of layer B in m +c=30;// Average Su +gt1=19;// Unit weight of layer A in kN/m^3 +gt2=20;// Unit weight of layer B in kN/m^3 +Su1=30;// Undrained shear strength of layer A in kN/m^2 +Su2=50;// Undrained shear strength of layer B in kN/m^2 +i=20;// Slope in degree + +disp("Layer A"); +ZA=c/(gt1*cosd(i)*sind(i));// Depth to failure plane in m +disp(ZA," Depth to failure plane in m"); +// The answers vary due to round off error + +disp("layer B"); +Z=4;// Depth in m +GA=gt1*Z*cosd(i)*sind(i);// Driving stress produced by layer A in kN/m^2 +Cleft=Su2-GA;// Strength left in soil of layer B to resist the driving stress generated by layer B in kN/m^2 +ZB=Cleft/(gt2*cosd(i)*sind(i));// Depth to failure plane in m +disp(round(ZB)," Depth to failure plane in m"); +d=d2-ZB; +disp(round(d),"Failure at layer B will occur on plane located above the rock surface in m"); diff --git a/3918/CH21/EX21.2/Ex21_2.sce b/3918/CH21/EX21.2/Ex21_2.sce new file mode 100644 index 000000000..a020c4855 --- /dev/null +++ b/3918/CH21/EX21.2/Ex21_2.sce @@ -0,0 +1,12 @@ +//Example 21_2 +clc; +clear; +close; + +//Given data : +gt=19;// Unit weight of sand in kN/m^3 +teta=30;// slope in degree +gw=10;// Unit weight of water in kN/m^3 +i=atand(tand(teta)*((gt-gw)/gt));// Slope in degree +disp(i,"The slope will be stable in degree"); +// The answers vary due to round off error diff --git a/3918/CH21/EX21.3/Ex21_3.sce b/3918/CH21/EX21.3/Ex21_3.sce new file mode 100644 index 000000000..416dfd8c0 --- /dev/null +++ b/3918/CH21/EX21.3/Ex21_3.sce @@ -0,0 +1,17 @@ +//Example 21_3 +clc; +clear; +close; + +//Given data : +Su=40;// Undrained shear strength of clay in kN/m^2 +gt=20;// Unit weight of clay in kN/m^3 +betaa=30;// Inclined angle in degree +H=10;// Elevation difference in m +D=2; +Ns=0.172;// Stability number (From table 21.1) +Cr=gt*H*Ns;// Amount of c required to maintain stable slope kN/m^2 +C=40;// Cohesion intercept in kN/m^2 +SF=C/Cr;// Safety Factor of a finite slope in clay +disp(SF,"Safety Factor of a finite slope in clay"); +// The answers vary due to round off error diff --git a/3918/CH21/EX21.4/Ex21_4.sce b/3918/CH21/EX21.4/Ex21_4.sce new file mode 100644 index 000000000..82e62d9e3 --- /dev/null +++ b/3918/CH21/EX21.4/Ex21_4.sce @@ -0,0 +1,27 @@ +//Example 21_4 +clc; +clear; +close; + +//Given data : +teta=30;// Slope in degree +c=0;// Cohesion intercept in kN/m^2 +T1=-2;// Wsin(alpha) of slice no. 1 +T2=-1;// Wsin(alpha) of slice no. 1 +T3=0;// Wsin(alpha) of slice no. 1 +T4=2;// Wsin(alpha) of slice no. 1 +T5=3;// Wsin(alpha) of slice no. 1 +T6=4;// Wsin(alpha) of slice no. 1 +T7=3;// Wsin(alpha) of slice no. 1 +T=T1+T2+T3+T4+T5+T6+T7;// Total Wsin(alpha) of slice no. 1 to 7 +P1=2;// Wsin(alpha) of slice no. 1 +P2=3;// Wsin(alpha) of slice no. 1 +P3=5;// Wsin(alpha) of slice no. 1 +P4=4;// Wsin(alpha) of slice no. 1 +P5=5;// Wsin(alpha) of slice no. 1 +P6=2;// Wsin(alpha) of slice no. 1 +P7=1;// Wsin(alpha) of slice no. 1 +P=P1+P2+P3+P4+P5+P6+P7;// Total Wsin(alpha) of slice no. 1 to 7 +SF=(P*tand(teta))/T;// Safety Factor of the slope +disp(SF,"Safety Factor of the slope"); +// The answers vary due to round off error diff --git a/3918/CH22/EX22.1/Ex22_1.sce b/3918/CH22/EX22.1/Ex22_1.sce new file mode 100644 index 000000000..70bcea92d --- /dev/null +++ b/3918/CH22/EX22.1/Ex22_1.sce @@ -0,0 +1,38 @@ +//Example 22_1 +clc; +clear; +close; + +//Given data : +H=6;// Vertical height of wall in m + +disp("(a)"); +teta1=30;// Slope in degree +c=0;// Cohesion intercept in kN/m^2 +g=18;// Unit weight of sand in kN/m^3 +Ka=(1-sind(teta1))/(1+sind(teta1));// Coefficient of Active Earth Pressure +// At top of the wall +sigmav1=0;// Vertical stress in kN/m^2 +sigmah1=Ka*sigmav1;// Horizontal stress in kN/m^2 +// At base of the wall +sigmav2=g*H;// Vertical stress in kN/m^2 +sigmah2=Ka*sigmav2;// Horizontal stress in kN/m^2 +printf(" The active pressure increases linearly from %d to %d kN/m^2\n",sigmah1,sigmah2); +Pa=0.5*Ka*g*H*H;// Total lateral pressure per metre run of the wall in kN/m +disp(Pa," Total lateral pressure per metre run of the wall in kN/m"); + +disp("(b)"); +teta2=40;// Slope in degree +c=0;// Cohesion intercept in kN/m^2 +g=20;// Unit weight of sand in kN/m^3 +Ka=(1-sind(teta2))/(1+sind(teta2));// Coefficient of Active Earth Pressure +// At top of the wall +sigmav1=0;// Vertical stress in kN/m^2 +sigmah1=Ka*sigmav1;// Horizontal stress in kN/m^2 +// At base of the wall +sigmav2=g*H;// Vertical stress in kN/m^2 +sigmah2=Ka*sigmav2;// Horizontal stress in kN/m^2 +printf(" The active pressure increases linearly from %d to %0.2f kN/m^2\n",sigmah1,sigmah2); +Pa=0.5*Ka*g*H*H;// Total lateral pressure per metre run of the wall in kN/m +disp(Pa," Total lateral pressure per metre run of the wall in kN/m"); +// The answers vary due to round off error diff --git a/3918/CH22/EX22.2/Ex22_2.sce b/3918/CH22/EX22.2/Ex22_2.sce new file mode 100644 index 000000000..57678093a --- /dev/null +++ b/3918/CH22/EX22.2/Ex22_2.sce @@ -0,0 +1,42 @@ +//Example 22_2 +clc; +clear; +close; + +//Given data : +teta1=30;// Slope in degree +c=0;// Cohesion intercept in kN/m^2 +g1=18;// Unit weight of sand in kN/m^3 +g2=21;// Unit weight of sand in kN/m^3 +gw=10;// Unit weight of water in kN/m^3 +Ka=(1-sind(teta1))/(1+sind(teta1));// Coefficient of Active Earth Pressure +// At top of wall +H1=0; // Depth in m +sigmav1=g1*H1;// Vertical stress in kN/m^2 +sigmah1=Ka*sigmav1;// Horizontal stress in kN/m^2 +disp(sigmah1,"Active pressure at top of wall in kN/m^2"); +// At 2 m below top of wall +H2=2;// Depth in m +sigmav2=g1*H2;// Vertical stress in kN/m^2 +sigmah2=Ka*sigmav2;// Horizontal stress in kN/m^2 +disp(sigmah2,"Active pressure at 2 m below top of wall in kN/m^2"); +// At 6 m below top of wall +H3=6;// Depth in m +sigmav3=sigmav2+(g2*(H3-H2))-(gw*(H3-H2));// Vertical stress in kN/m^2 +sigmah3=Ka*sigmav3;// Horizontal stress in kN/m^2 +disp(sigmah3,"Active pressure at 6 m below top of wall in kN/m^2"); +Pa1=0.5*H2*sigmah2;// Lateral pressure per metre run of the wall in kN/m +disp(Pa1," Lateral pressure Pa1 per metre run of the wall in kN/m"); +Pa2=0.5*(H2+H3)*sigmah2;// Lateral pressure per metre run of the wall in kN/m +disp(Pa2," Lateral pressure Pa2 per metre run of the wall in kN/m"); +Pa3=0.5*(H3-H2)*(sigmah3-sigmah2);// Lateral pressure per metre run of the wall in kN/m +disp(Pa3," Lateral pressure Pa3 per metre run of the wall in kN/m"); +// The answers vary due to round off error +Pw=0.5*(H3-H2)*(gw*(H3-H2));// Lateral pressure per metre run of the wall in kN/m +disp(Pw," Lateral pressure Pw per metre run of the wall in kN/m"); +TP=Pa1+Pa2+Pa3+Pw;// Total lateral pressure per metre run of the wall in kN/m +disp(TP," Total lateral pressure per metre run of the wall in kN/m"); +// The answers vary due to round off error +z=(((4+(2/3))*Pa1)+(2*Pa2)+(4/3*Pa3)+(4/3*Pw))/TP;// Point of application of Total lateral pressure in m +disp(z,"Point of application of Total lateral pressure in m"); +// The answers vary due to round off error diff --git a/3918/CH22/EX22.3/Ex22_3.sce b/3918/CH22/EX22.3/Ex22_3.sce new file mode 100644 index 000000000..95cdce4f1 --- /dev/null +++ b/3918/CH22/EX22.3/Ex22_3.sce @@ -0,0 +1,27 @@ +//Example 22_3 +clc; +clear; +close; + +//Given data : +H=6;// Vertical height of wall in m +teta1=30;// Slope in degree +gt=18;// Unit weight of sand in kN/m^3 +disp("(i)"); +a=90;// Alpha in degree +b=0;// Beta in degree +g=0;// Gamma in degree +Ka=((sind(a-teta1)/sind(a))/(sqrt(sind(a+g))+sqrt(sind(teta1+g)*sind(teta1-b)/sind(a-b))))^2;// Coefficient of Active Earth Pressure +disp(Ka," Coefficient of Active Earth Pressure"); +Pa=0.5*Ka*gt*H*H;// Total lateral pressure per metre run of the wall in kN/m +disp(Pa," Total lateral pressure per metre run of the wall in kN/m"); + +disp("(ii)"); +a=90;// Alpha in degree +b=15;// Beta in degree +g=0;// Gamma in degree +Ka=((sind(a-teta1)/sind(a))/(sqrt(sind(a+g))+sqrt(sind(teta1+g)*sind(teta1-b)/sind(a-b))))^2;// Coefficient of Active Earth Pressure +disp(Ka," Coefficient of Active Earth Pressure"); +Pa=0.5*Ka*gt*H*H;// Total lateral pressure per metre run of the wall in kN/m +disp(Pa," Total lateral pressure per metre run of the wall in kN/m"); +// The answers vary due to round off error diff --git a/3918/CH22/EX22.4/Ex22_4.sce b/3918/CH22/EX22.4/Ex22_4.sce new file mode 100644 index 000000000..fa9743394 --- /dev/null +++ b/3918/CH22/EX22.4/Ex22_4.sce @@ -0,0 +1,32 @@ +//Example 22_4 +clc; +clear; +close; + +//Given data : +H=6;// Vertical height of wall in m +teta1=30;// Slope in degree +gt=18;// Unit weight of sand in kN/m^3 +disp("(i)"); +a=90;// Alpha in degree +b=0;// Beta in degree +g=0;// Gamma in degree +Ka=((sind(a-teta1)/sind(a))/(sqrt(sind(a+g))+sqrt(sind(teta1+g)*sind(teta1-b)/sind(a-b))))^2;// Coefficient of Active Earth Pressure +disp(Ka," Coefficient of Active Earth Pressure"); +Pa=0.5*Ka*gt*H*H;// Total lateral pressure per metre run of the wall in kN/m +disp(Pa," Total lateral pressure per metre run of the wall in kN/m"); + +disp("(ii)"); +a=90;// Alpha in degree +b=0;// Beta in degree +g=20;// Gamma in degree +Ka=((sind(a-teta1)/sind(a))/(sqrt(sind(a+g))+sqrt(sind(teta1+g)*sind(teta1-b)/sind(a-b))))^2;// Coefficient of Active Earth Pressure +disp(Ka," Coefficient of Active Earth Pressure"); +Pa=0.5*Ka*gt*H*H;// Total lateral pressure per metre run of the wall in kN/m +disp(Pa," Total lateral pressure per metre run of the wall in kN/m"); +// The answers vary due to round off error +Pah=Pa*cosd(g);// Total horizontal lateral pressure per metre run of the wall in kN/m +disp(Pah,"Total horizontal lateral pressure per metre run of the wall in kN/m"); +Pav=Pa*sind(g);// Total vertical lateral pressure per metre run of the wall in kN/m +disp(Pav,"Total vertical lateral pressure per metre run of the wall in kN/m"); +// The answers vary due to round off error diff --git a/3918/CH22/EX22.5/Ex22_5.sce b/3918/CH22/EX22.5/Ex22_5.sce new file mode 100644 index 000000000..6996f48f1 --- /dev/null +++ b/3918/CH22/EX22.5/Ex22_5.sce @@ -0,0 +1,34 @@ +//Example 22_5 +clc; +clear; +close; + +//Given data : +H=6;// Vertical height of wall in m +teta1=30;// Slope in degree +gt=18;// Unit weight of sand in kN/m^3 +disp("(i)"); +a=90;// Alpha in degree +b=0;// Beta in degree +g=0;// Gamma in degree +Ka=((sind(a-teta1)/sind(a))/(sqrt(sind(a+g))+sqrt(sind(teta1+g)*sind(teta1-b)/sind(a-b))))^2;// Coefficient of Active Earth Pressure +disp(Ka," Coefficient of Active Earth Pressure"); +Pa=0.5*Ka*gt*H*H;// Total lateral pressure per metre run of the wall in kN/m +disp(Pa," Total lateral pressure per metre run of the wall in kN/m"); + +disp("(ii)"); +a=110;// Alpha in degree +b=0;// Beta in degree +g=00;// Gamma in degree +Ka=((sind(a-teta1)/sind(a))/(sqrt(sind(a+g))+sqrt(sind(teta1+g)*sind(teta1-b)/sind(a-b))))^2;// Coefficient of Active Earth Pressure +disp(Ka," Coefficient of Active Earth Pressure"); +Pa=0.5*Ka*gt*H*H;// Total lateral pressure per metre run of the wall in kN/m +disp(Pa," Total lateral pressure per metre run of the wall in kN/m"); +// The answers vary due to round off error +teta2=20;// Angle in degree +Pah=Pa*cosd(teta2);// Total horizontal lateral pressure per metre run of the wall in kN/m +disp(Pah,"Total horizontal lateral pressure per metre run of the wall in kN/m"); +Pav=Pa*sind(teta2);// Total vertical lateral pressure per metre run of the wall in kN/m +// The answers vary due to round off error +disp(Pav,"Total vertical lateral pressure per metre run of the wall in kN/m"); +// The answer provided in the textbook is wrong diff --git a/3918/CH22/EX22.6/Ex22_6.sce b/3918/CH22/EX22.6/Ex22_6.sce new file mode 100644 index 000000000..ba4d0b235 --- /dev/null +++ b/3918/CH22/EX22.6/Ex22_6.sce @@ -0,0 +1,22 @@ +//Example 22_6 +clc; +clear; +close; + +//Given data : +H=6;// Vertical height of wall in m +q=12;// Uniform surcharge in kN/m^2 +teta1=30;// Slope in degree +g=18;// Unit weight of sand in kN/m^3 +Ka=(1-sind(teta1))/(1+sind(teta1));// Coefficient of Active Earth Pressure +Pa=0.5*Ka*g*H*H;// Total lateral pressure per metre run of the wall in kN/m +disp(Pa,"Lateral pressure per metre run of the wall in kN/m"); +AP=Ka*q;// Additional Active Pressure on account of surcharge acting along entire height of wall in kN/m^2 +disp(AP,"Additional Active Pressure on account of surcharge acting along entire height of wall in kN/m^2"); +Pa1=AP*H;// Additional lateral pressure on account of surcharge per metre run of the wall in kN/m +disp(Pa1,"Additional lateral pressure on account of surcharge per metre run of the wall in kN/m"); +TP=Pa+Pa1;// Total lateral pressure per metre run of the wall in kN/m +disp(TP,"Total lateral pressure per metre run of the wall in kN/m"); +z=((Pa*2)+(Pa1*3))/TP;// Point of application of Total Lateral pressure in m +disp(z,"Point of application of Total Lateral pressure in m"); +// The answers vary due to round off error diff --git a/3918/CH22/EX22.7/Ex22_7.sce b/3918/CH22/EX22.7/Ex22_7.sce new file mode 100644 index 000000000..c366075c1 --- /dev/null +++ b/3918/CH22/EX22.7/Ex22_7.sce @@ -0,0 +1,44 @@ +//Example 22_7 +clc; +clear; +close; + +//Given data : +disp("i)For the short term"); +c=50;// in kN/m^2 +teta=0;// Slope in degree +H=6;// Vertical height of wall in m +g=18;// Unit weight of soil in kN/m^3 +// At top of the wall +sigmav1=0;// Vertical stress in kN/m^2 +sigmaa1=sigmav1-(2*c);// Active pressure in kN/m^2 +// At base of the wall +sigmav2=g*H;// Vertical stress in kN/m^2 +sigmaa2=sigmav2-(2*c);// Active pressure in kN/m^2 +z=2*c/g;// Point at which active earth pressure is zero in m +Pa=0.5*(H-z)*sigmaa2;// Total lateral pressure per metre run of the wall in kN/m +disp(Pa," Total lateral pressure per metre run of the wall in kN/m"); +Z=(H-z)/3;// Point of application of Lateral pressure on the wall above the base in m +disp(Z," Point of application of Lateral pressure on the wall above the base in m"); +// The answers vary due to round off error + + +disp("ii)For the long term"); +c=5;// in kN/m^2 +teta=20;// Slope in degree +H=6;// Vertical height of wall in m +g=18;// Unit weight of soil in kN/m^3 +Ka=(1-sind(teta))/(1+sind(teta));// Coefficient of Active Earth Pressure +// At top of the wall +sigmav1=0;// Vertical stress in kN/m^2 +sigmaa1=(sigmav1*Ka)-(2*c*sqrt(Ka));// Active pressure in kN/m^2 +// At base of the wall +sigmav2=g*H;// Vertical stress in kN/m^2 +sigmaa2=(sigmav2*Ka)-(2*c*sqrt(Ka));// Active pressure in kN/m^2 +disp(sigmaa2); +z=(2*c*sqrt(Ka))/(g*Ka);// Point at which active earth pressure is zero in m +Pa=0.5*(H-z)*sigmaa2;// Total lateral pressure per metre run of the wall in kN/m +disp(Pa," Total lateral pressure per metre run of the wall in kN/m"); +Z=(H-z)/3;// Point of application of Lateral pressure on the wall above the base in m +disp(Z," Point of application of Lateral pressure on the wall above the base in m"); +// The answers vary due to round off error diff --git a/3918/CH23/EX23.1/Ex23_1.sce b/3918/CH23/EX23.1/Ex23_1.sce new file mode 100644 index 000000000..bfc2eb7bf --- /dev/null +++ b/3918/CH23/EX23.1/Ex23_1.sce @@ -0,0 +1,29 @@ +//Example 23_1 +clc; +clear; +close; + +//Given data : +Sa=20;// Estimated settlement of structure A(sand) in mm +Sb=36;// Estimated settlement of structure B(clay) in mm + +//Structure A +la=6000;// Column spacing in structure A in m +pa=80/100;// Percentage +DSa=pa*Sa;// Differential settlement of structure A in mm +ADa=DSa/la;// Angular distortion of structure A + +//Structure B +lb=9000;// Column spacing in structure B in mm +pb=50/100;// Percentage +DSb=pb*Sb;// Differential settlement of structure B in mm +ADb=DSb/lb;// Angular distortion of structure B + +if ADa>ADb then + disp("Structure A experiences the higher angular distortion"); +elseif ADb>ADa then + disp("Structure B experiences the higher angular distortion"); +else + disp("Both Structures A and B have same angular distortion"); +end + diff --git a/3918/CH23/EX23.2/Ex23_2.sce b/3918/CH23/EX23.2/Ex23_2.sce new file mode 100644 index 000000000..2eac870b6 --- /dev/null +++ b/3918/CH23/EX23.2/Ex23_2.sce @@ -0,0 +1,37 @@ +//Example 23_2 +clc; +clear; +close; + +//Given data : +disp("a)"); +Su1=15;// Average Undrained shear strength at 1 m depth in kN/m^2 +Su5=35;// Average Undrained shear strength at 5 m depth in kN/m^2 +Sud=0.5*(Su1+Su5);// Design Undrained shear strength in kN/m^2 +disp(Sud," Design Undrained shear strength in kN/m^2"); + +disp("b)"); +// Sub-zone 1: +disp("Sub-zone 1:"); +Su0=10;// Average Undrained shear strength at 0 m depth in kN/m^2 +Su5=35;// Average Undrained shear strength at 5 m depth in kN/m^2 +Sud=0.5*(Su0+Su5);// Design Undrained shear strength in kN/m^2 +disp(Sud," Design Undrained shear strength in kN/m^2"); +// Sub-zone 2: +disp("Sub-zone 2:"); +Su5=35;// Average Undrained shear strength at 5 m depth in kN/m^2 +Su10=60;// Average Undrained shear strength at 10 m depth in kN/m^2 +Sud=0.5*(Su5+Su10);// Design Undrained shear strength in kN/m^2 +disp(Sud," Design Undrained shear strength in kN/m^2"); +// Sub-zone 3: +disp("Sub-zone 3:"); +Su10=60;// Average Undrained shear strength at 10 m depth in kN/m^2 +Su15=85;// Average Undrained shear strength at 15 m depth in kN/m^2 +Sud=0.5*(Su10+Su15);// Design Undrained shear strength in kN/m^2 +disp(Sud," Design Undrained shear strength in kN/m^2"); +// Sub-zone 4: +disp("Sub-zone 4:"); +Su15=85;// Average Undrained shear strength at 15 m depth in kN/m^2 +Su20=91;// Average Undrained shear strength at 20 m depth in kN/m^2 +Sud=0.5*(Su15+Su20);// Design Undrained shear strength in kN/m^2 +disp(Sud," Design Undrained shear strength in kN/m^2"); diff --git a/3918/CH23/EX23.5/Ex23_5.sce b/3918/CH23/EX23.5/Ex23_5.sce new file mode 100644 index 000000000..e85ff6612 --- /dev/null +++ b/3918/CH23/EX23.5/Ex23_5.sce @@ -0,0 +1,22 @@ +//Example 23_5 +clc; +clear; +close; + +//Given data : +Ca=250;// Safe capacity of pile A in kN +Cb=400;// Safe capacity of pile B in kN +Lc=1200;// Corner column load in kN +Li=4000;// Interior column load in kN + +disp("If pile A is chosen"); +Nc=Lc/Ca;// Number of piles required for corner columns +disp(round(Nc)," Number of piles required for corner columns"); +Ni=Li/Ca;// Number of piles required for corner columns +disp(Ni," Number of piles required for interior columns"); + +disp("If pile B is chosen"); +Nc=Lc/Cb;// Number of piles required for corner columns +disp(Nc," Number of piles required for corner columns"); +Ni=Li/Cb;// Number of piles required for corner columns +disp(Ni," Number of piles required for interior columns"); diff --git a/3918/CH24/EX24.2/Ex24_2.sce b/3918/CH24/EX24.2/Ex24_2.sce new file mode 100644 index 000000000..28e3a519e --- /dev/null +++ b/3918/CH24/EX24.2/Ex24_2.sce @@ -0,0 +1,32 @@ +//Example 24_2 +clc; +clear; +close; + +//Given data : +D15p=0.001;// D15 protected soil in mm +D85p=0.006;// D85 protected soil in mm + +// Soil A: +D15f=0.0025;// D15 filter for soil A in mm +a1=D15f/D15p; +b1=D15f/D85p; + +// Soil B: +D15f=0.006;// D15 filter for soil A in mm +a2=D15f/D15p; +b2=D15f/D85p; + +// Soil C: +D15f=0.036;// D15 filter for soil A in mm +a3=D15f/D15p; +b3=D15f/D85p; + +if((a1>=5)&&(b1<=5)) then + disp("Soil A meets all the three criteria and can therefore be used for transition filter"); + elseif((a2>=5)&&(b2<=5)) then + disp("Soil B meets all the three criteria and can therefore be used for transition filter"); + else((a1>=5)&&(b1<=5)) + disp("Soil C meets all the three criteria and can therefore be used for transition filter"); +end + diff --git a/3918/CH24/EX24.3/Ex24_3.sce b/3918/CH24/EX24.3/Ex24_3.sce new file mode 100644 index 000000000..b4cbc9619 --- /dev/null +++ b/3918/CH24/EX24.3/Ex24_3.sce @@ -0,0 +1,16 @@ +//Example 24_3 +clc; +clear; +close; + +//Given data : +gd=16;// Unit dry weight of soil in kN/m^3 +gs=19;// Unit saturated weight of soil in kN/m^3 +gw=10;// Unit weigh of water in kN/m^3 +b=atand(1/2);// Beta for downstream slope in degree +teta=35;// Slope in degree +SFB=tand(teta)/tand(b);// Safety Factor for soil section B +disp(SFB,"Safety Factor for soil section B"); +SFA=((gs-gw)/gs)*(tand(teta)/tand(b));// Safety Factor for soil section A +disp(SFA,"Safety Factor for soil section A"); +// The answers vary due to round off error diff --git a/3918/CH25/EX25.3/Ex25_3.sce b/3918/CH25/EX25.3/Ex25_3.sce new file mode 100644 index 000000000..6adf5b9bd --- /dev/null +++ b/3918/CH25/EX25.3/Ex25_3.sce @@ -0,0 +1,40 @@ +//Example 25_3 +clc; +clear; +close; + +//Given data : +H1=4.5;// Height of wall above ground level in m +H2=4.5;// Height of wall below ground level in m +// Above ground level +Ka1=0.33;// Coefficient of Active Earth Pressure above ground level +g1=18;// Unit weight of soil above ground level in kN/m^3 +c1=0; +teta1=30;// Slope above ground level in degree + +// Below ground level +Ka2=0.27;// Coefficient of Active Earth Pressure below ground level +Kp2=3.68;// Coefficient of Passsive Earth Pressure below ground level +g2=20;// Unit weight of soil below ground level in kN/m^3 +c2=0; +teta2=35;// Slope below ground level in degree + +sigmaa1=Ka1*g1*H1;// Active pressure above ground level in kN/m^2 +sigmaa2=(Ka2*g1*H1)+(g2*H2);// Active pressure below ground level in kN/m^2 +sigmap=Kp2*g2*H2;// Passive pressure below ground level in kN/m^2 +Pa1=0.5*sigmaa1*H1;// Lateral pressure per metre run of the wall in kN/m +Pa2=sigmaa1*H2;// Lateral pressure per metre run of the wall in kN/m +Pa21=0.5*(sigmaa2-sigmaa1);// Lateral pressure per metre run of the wall in kN/m +Pp=0.5*sigmap*H2;// Lateral pressure per metre run of the wall in kN/m +Mo=(Pa1*(H1+(H1/3)))+(Pa2*H2/2)+(Pa21*H2/3);// Overturning Moment in kNm/m +Mr=Pp*H2/3;// Resisting Momemnt kNm/m +SF=Mr/Mo;// Safety Factor +if(SF>1.5) then + disp(SF,"Safety Factor is"); +else + disp("Safety factor is 1.50"); +end +// The answers vary due to round off error + + + diff --git a/3918/CH25/EX25.4/Ex25_4.sce b/3918/CH25/EX25.4/Ex25_4.sce new file mode 100644 index 000000000..683264bce --- /dev/null +++ b/3918/CH25/EX25.4/Ex25_4.sce @@ -0,0 +1,27 @@ +//Example 25_4 +clc; +clear; +close; + +//Given data : +g=18;// Unit weight of soil in kN/m^3 +teta=30;// Slope in degree +c=0; +H=5;// Height in m +Ka=(1-sind(teta))/(1+sind(teta));// Coefficient of Active Earth Pressure +// At top of wall +H1=0; // Depth in m +sigmav1=g*H1;// Vertical stress in kN/m^2 +sigmaa1=Ka*sigmav1;// Active pressure in kN/m^2 +// At 6 m below top of wall +H2=H;// Height in m +sigmav2=g*H2;// Vertical stress in kN/m^2 +sigmaa2=Ka*sigmav2;// Horizontal stress in kN/m^2 +Pa=0.5*H*sigmaa2;// Lateral pressure per metre run of the wall in kN/m +disp(Pa,"Lateral pressure resisted by retaining wall per metre run of the wall in kN/m"); +Sigmaat=0.65*Ka*g*H;// Active pressure at top of excavation in kN/m^2 +Sigmaab=0.65*Ka*g*H;// Active pressure at bottom of excavation in kN/m^2 +Pa=H*Sigmaat;// Lateral pressure per metre run of the wall in kN/m +disp(Pa,"Lateral pressure at braced excavation per metre run of the wall in kN/m"); +disp("The wall of the braced excavation and the struts resist a total force of 97.5kN/m which is higher than the 75kN/m resisted by the retaining wall."); +disp("The earth pressure at the base of the retaining wall is higher than the braced excavation."); diff --git a/3918/CH26/EX26.1/Ex26_1.sce b/3918/CH26/EX26.1/Ex26_1.sce new file mode 100644 index 000000000..2a5f471cf --- /dev/null +++ b/3918/CH26/EX26.1/Ex26_1.sce @@ -0,0 +1,21 @@ +//Example 26_1 +clc; +clear; +close; + +//Given data : +BC=3;// Blade capacity in m^3 +sf=25/100;// Swelling factor +d=50;// Horizontal layer distance in m +fs=2*1000;// Dozer's forward speed in m/hr +rs=5*1000;// Dozer's return speed in m/hr +tf=0.4;// Time for shifting gears in minutes +tp=d/fs*60;// Time for cutting and pushing at forward speed in minutes +tr=d/rs*60;// Time for returining at return speed in minutes +V=BC/(1+sf);// Volume stripped per cycle in m^3 +tc=tp+tr+tf;// Cycle time in minutes +k=0.8;// Efficiency factor(assumption) +T=k*60/tc;// Trips per hour +O=V*T;// Output per hour in m^3/hr +disp(O,"Output per hour in m^3/hr"); +// The answers vary due to round off error diff --git a/3918/CH26/EX26.2/Ex26_2.sce b/3918/CH26/EX26.2/Ex26_2.sce new file mode 100644 index 000000000..0b3558137 --- /dev/null +++ b/3918/CH26/EX26.2/Ex26_2.sce @@ -0,0 +1,18 @@ +//Example 26_2 +clc; +clear; +close; + +//Given data : +BC=1.5;// Bucket capacity in m^3 +tc=30;// Cycle time in seconds +sf=20/100;// Swell factor of soil +V=9;// Volume of Dumper in m^3 +t=120;// Time delay in seconds +Q=0.8*BC/(1+sf)*(3600/tc);// Volume stripped per cycle in m^3 +N=V/BC;// Number of cycles to load a dumper +at=t/N;// Average delay per cycle in seconds +tc=tc+at;// Cycle time including delay in seconds +O=0.8*BC/(1+sf)*3600/tc;// Output with spotting delay in m^3/hr +PO=((Q-O)/Q)*100;// Percentage decrease in output in percent +disp(PO,"Percentage decrease in output in percent"); diff --git a/3918/CH26/EX26.3/Ex26_3.sce b/3918/CH26/EX26.3/Ex26_3.sce new file mode 100644 index 000000000..da82a30f1 --- /dev/null +++ b/3918/CH26/EX26.3/Ex26_3.sce @@ -0,0 +1,29 @@ +//Example 26_3 +clc; +clear; +close; + +//Given data : +disp("a)"); +w=8;// Width in m +h=3;// Height in m +l=2500;// Length in m +v=2000;// velocity of roller in m/hr +s=1.5/1;// Side slope +V=0.5*h*(w+(w+(2*h*s)))*l;// Volume of earth work in m^3 +rw=1.8;// Roller width in m +t=0.45;// Compacted layer thickness in m +n=6;// Number of passes +O1=0.8*rw*v*t/n;// Output of 1 roller in m^3/hr +T=8*30;// Number of hours roller will work in hours +O1m=O1*T;// Output of one roller per month +N=V/O1m;// Number of rollers required +// One extra roller to take care of the breakdown +disp(round(N)+1," Hence minimum number of rollers required will be"); + +disp("b)"); +// If each roller will remain idle for 40% time, then the output of the roller per month will be 60% of full output +O1m=0.6*O1m;// Output of one roller per month +N=V/O1m;// Number of rollers required +// One extra roller to take care of the breakdown +disp(round(N)+1," Hence minimum number of rollers required will be"); diff --git a/3918/CH29/EX29.1/Ex29_1.sce b/3918/CH29/EX29.1/Ex29_1.sce new file mode 100644 index 000000000..3054bc859 --- /dev/null +++ b/3918/CH29/EX29.1/Ex29_1.sce @@ -0,0 +1,21 @@ +//Example 29_1 +clc; +clear; +close; + +//Given data : +d=3.5;// Depth of soil in m +l=1;// Length of soil in m +w=1;// Breath of soil in m +V=d*l*w;// Volume in m^3 +C1=30;// Cost for excavation per m^3 in Rs. +C2=45;// Cost for relaying soil per m^3 with compaction in Rs. +C=V*(C1+C2);// Cost of excavation and relaying of soil per m^2 in Rs. +disp(C,"Cost of excavation and relaying of soil per m^2 in Rs."); +Cc=350;// Cost of compaction per m^2 in Rs. +disp(Cc,"Cost of compaction per m^2 in Rs."); +if(C10) then + disp("Factor of Safety is greater than 10,hence OK"); +else + disp("Factor of Safety is lesser than 10,hence adopt it as 10"); +end + +// Check for retention of soil +D85=0.03;// D85 value in mm +O95=0.04;// O95 value in mm +SF=2.5*D85/O95;// Safety facor +disp(SF,"Safety Factor is"); +if(SF>1) then + disp("Safety Factor is greater than 1,hence OK"); +else + disp("Safety Factor is lesser than 1,hence adopt it as 1"); +end +disp("Thus geotextile is suitable as filter"); +// The answers vary due to round off error \ No newline at end of file diff --git a/3918/CH33/EX33.3/Ex33_3.sce b/3918/CH33/EX33.3/Ex33_3.sce new file mode 100644 index 000000000..e059d9839 --- /dev/null +++ b/3918/CH33/EX33.3/Ex33_3.sce @@ -0,0 +1,37 @@ +//Example 33_3 +clc; +clear; +close; + +//Given data : +k=1/100000;// k value of soil in m/sec +H=7;// Height in m +nf=6;// Number of flow paths +nd=7;// Number of equipotential drops +w=1; +Q=k*H*nf/nd*w;// Maximum flow rate into the drain in m^3/sec +i=1;// Hydraulic gradient within the drain +tetar=Q/(i*w);// Required transmissivity in m^2/sec + +// Case A: nonwoven geotextile +disp("Case A: nonwoven geotextile"); +tetaa=2.5/100000;// Allowable transmissivity of geotextile in m^2/sec +SF=tetaa/tetar;// Safety Factor for geotextile +disp(SF," Safety Factor for geotextile is"); +if(SF>5) then + disp(" Safety Factor is greater than 5,hence OK"); +else + disp(" Safety Factor is lesser than 5,hence not OK"); +end + +// Case B: geonet +disp("Case B: geonet"); +tetaa=1.2/1000;// Allowable transmissivity of geonet in m^2/sec +SF=tetaa/tetar;// Safety Factor for geonet +disp(SF," Safety Factor for geonet is"); +if(SF>5) then + disp(" Safety Factor is greater than 5,hence OK"); +else + disp(" Safety Factor is lesser than 5,hence not OK"); +end +// The answers vary due to round off error diff --git a/3918/CH33/EX33.4/Ex33_4.sce b/3918/CH33/EX33.4/Ex33_4.sce new file mode 100644 index 000000000..710cc44e8 --- /dev/null +++ b/3918/CH33/EX33.4/Ex33_4.sce @@ -0,0 +1,18 @@ +//Example 33_4 +clc; +clear; +close; + +//Given data : +disp("a)"); +Td=53.3;// Tension developed in reinforcement in kN ( From Example 32.2) +SF=2;// Minimum acceptable Safety Factor +Tall=SF*Td;// Allowable strength of geotextile or geogrid in kN/m +disp(Tall," Allowable strength of geotextile or geogrid in kN/m"); + +disp("b)"); +teta=24;// angle of friction in degree +sigmav=17*9.5; +Le=Tall/(sigmav*tand(teta)*2*1);// Effective length required to prevent slippage in m +disp(Le," Effective length required to prevent slippage in m"); +// The answers vary due to round off error diff --git a/3918/CH35/EX35.1/Ex35_1.sce b/3918/CH35/EX35.1/Ex35_1.sce new file mode 100644 index 000000000..f36814468 --- /dev/null +++ b/3918/CH35/EX35.1/Ex35_1.sce @@ -0,0 +1,14 @@ +//Example 35_1 +clc; +clear; +close; + +//Given data : +i=0.007;// Hydraulic gradient causing water flow +k=2/10000;// Coefficient of permeability in m/sec +n=35/100;// Porosity +L=1.5*1000;// Distance between drinking water tube well and injection well in m +v=k*i;// in m/sec (From Darcy's law) +vs=v/n;// Seepage velocity in m/sec +t=L/(vs*365*24*60*60);// Time taken for liquid waste to reach the drinking water tube well in years +disp(round(t),"Time taken for liquid waste to reach the drinking water tube well in years"); diff --git a/3918/CH35/EX35.2/Ex35_2.sce b/3918/CH35/EX35.2/Ex35_2.sce new file mode 100644 index 000000000..b7c8370b7 --- /dev/null +++ b/3918/CH35/EX35.2/Ex35_2.sce @@ -0,0 +1,17 @@ +//Example 35_2 +clc; +clear; +close; + +//Given data : +c=1500*1000;// Concentration of chloride in the leachate in mg/m^3 +c1=200*1000;// Concentration of chloride beneath the linear in mg/m^3 +k=1/(10^9);// Permeability of clay in m/sec +D=0.5/(10^9);// Diffusion Coefficient in m^2/sec +n=0.4;// Porosity of clay +i=-1.3/1;// Hydraulic gradient +JA=-k*i*c;// Advective mass flux in mg/m^2 sec +JD=-D*n*(c1-c);// Diffusive mass flux in mg/m^2 sec +JT=(JA+JD)*3.15*(10^7)/1000;// Total mass flux of chloride ions in g/m^2 yr +disp(JT,"Total mass flux of chloride ions in g/m^2 yr"); +// The answers vary due to round off error diff --git a/3918/CH36/EX36.1/Ex36_1.sce b/3918/CH36/EX36.1/Ex36_1.sce new file mode 100644 index 000000000..aff23b314 --- /dev/null +++ b/3918/CH36/EX36.1/Ex36_1.sce @@ -0,0 +1,32 @@ +//Example 36_1 +clc; +clear; +close; + +//Given data : +GS=5*1000000*(0.5-0.3)*365/100;// Municipal solid waste(MSW) generation per year in kN/yr +GS1=GS*10;// Municipal solid waste generation(MSW) for 10 years in kN +DS=8.5;// Estimated Density of MSW in kN/m^3 +VS=GS1/DS;// Volume of MSW in m^3 +TS=15;// Thickness of MSW landfill in m +AS=VS/TS;// Approximate Area required MSW landfill in m^2 +disp(AS,"Approximate Area required MSW landfill in m^2"); +// The answer provided in the textbook is wrong + +GH=250000;// Municipal Hazardous waste(MHW) generation per year in kN +GH1=GH*10;// Municipal Hazardous waste(MHW) for 10 years in kN/yr +DH=12;// Estimated Density of MHW in kN/m^3 +VH=GH1/DH;// Volume of MHW in m^3 +TH=15;// Thickness of MHW landfill in m +AH=VH/TH;// Approximate Area required MHW landfill in m^2 +disp(AH,"Approximate Area required MHW landfill in m^2"); +// The answer provided in the textbook is wrong + +tl=0.90;// Layer of thickness in liner in m +tc=0.60;// Layer of thickness in cover in m +VC=(tl+tc)*AS;// Approximate quantity of clay required for MSW landfill in m^3 +disp(VC,"Approximate quantity of clay required for MSW landfill in m^3"); +// The answer provided in the textbook is wrong +VG=(tl+tc)*AS;// Approximate quantity of geomembrane required for MSW landfill in m^3 +disp(VG,"Approximate quantity of geomembrane required for MSW landfill in m^3"); +// The answer provided in the textbook is wrong diff --git a/3918/CH36/EX36.3/Ex36_3.sce b/3918/CH36/EX36.3/Ex36_3.sce new file mode 100644 index 000000000..e4ee72ffa --- /dev/null +++ b/3918/CH36/EX36.3/Ex36_3.sce @@ -0,0 +1,31 @@ +//Example 36_3 +clc; +clear; +close; + +//Given data : +b=atand(1/2.5);// Beta in degree +sc=10;// Sigma in degree +SF=tand(sc)/tand(b);// Safety Factor +disp(SF,"Safety Factor is"); +if(SF<1) then + disp("Geomembrane will slide without anchorage"); +else + disp("Geomembrane will not slide without anchorage"); +end +D=9.4;// Density of HDPE in kN/m^3 +T=1.5/1000;// Thickness of geomembrane in m +TS=18;// Tensile Strength at yield in kN/m +d=10;// depth in m +L=d/sind(b);// Length in m +Wg=D*T*L;// Weight of geomembrane in kN/m +D=Wg*sind(b);// Driving Force in kN/m +R=Wg*cosd(b)*tand(sc);// Resisting Force in kN/m +Tg=D-R;// Tension in geomembrane in kN/m +disp(Tg,"Tension in geomembrane in kN/m"); +if(Tgtcyc) then + disp("Since the cyclic shear stress induced during earthquake is more than the cyclic shear resistance available, the soil at depth of 3 m will liquefy"); +else + disp("Since the cyclic shear stress induced during earthquake is less than the cyclic shear resistance available, the soil at depth of 3 m will not liquefy"); +end +// The answer provided in the textbook is wrong diff --git a/3918/CH42/EX42.7/Ex42_7.sce b/3918/CH42/EX42.7/Ex42_7.sce new file mode 100644 index 000000000..9ab701457 --- /dev/null +++ b/3918/CH42/EX42.7/Ex42_7.sce @@ -0,0 +1,29 @@ +//Example 42_7 +clc; +clear; +close; + +//Given data : +b2=30;// in m +b1=20;// in m +b=b2-b1;// Base in m +h=10;// Height in m +A=1/2*b*h;// Area of failure wedge in m^2 +gt=18;// Total Unit weight in kN/m^3 +c=15;// in kPa +teta=0;// Angle in degree +W=A*gt;// Weight of failure wedge per metre length in kN/m +L=sqrt((h*h)+(b2*b2));// Length of the slip surface in m +b=atand(h/b2);// Inclination of the failure wedge in degree + +// Safety Factor under static condition +SF=((c*L)+(W*cosd(b)*tand(teta)))/(W*sind(b));// Safety Factor under static condition +disp(SF,"Safety Factor under static condition is"); +// The answers vary due to round off error + +// Dynamic factor of Safety under seismic condition +kh=0.3;// Pseudostatic seismic coefficient +Fh=kh*W;// Static force acting horizontally in kN +DFS=((c*L)+(((W*cosd(b))-(Fh*sind(b)))*tand(teta)))/((W*sind(b))+(Fh*cosd(b)));// Dynamic Factor of Safety under seismic condition +disp(DFS,"Dynamic Factor of Safety under seismic condition"); +// The answers vary due to round off error diff --git a/3918/CH42/EX42.8/Ex42_8.sce b/3918/CH42/EX42.8/Ex42_8.sce new file mode 100644 index 000000000..87b6a3052 --- /dev/null +++ b/3918/CH42/EX42.8/Ex42_8.sce @@ -0,0 +1,27 @@ +//Example 42_8 +clc; +clear; +close; + +//Given data : +b2=30;// in m +b1=20;// in m +b=b2-b1;// Base in m +h=10;// Height in m +A=1/2*b*h;// Area of failure wedge in m^2 +gt=18;// Total Unit weight in kN/m^3 +c=15;// in kPa +teta=0;// Angle in degree +W=A*gt;// Weight of failure wedge per metre length in kN/m +L=sqrt((h*h)+(b2*b2));// Length of the slip surface in m +b=atand(h/b2);// Inclination of the failure wedge in degree +DFS=1;// Dynamic Factor of Safety under seismic condition +// Where Fh = kh +// Since tan(0) = 0, ((W*cosd(b))-(Fh*sind(b)))*tand(teta)) = 0 +Fh=((c*L)-(W*sind(b)))/(cosd(b));// Static force acting horizontally in kN +kh=Fh/W;// Pseudostatic seismic coefficient +// kh= ac/g +g=9.81;// Acceleration due to gravity in m/s^2 +ac=kh*g;// Critical acceleration in m/s^2 +disp(ac,"Critical acceleration in m/s^2"); +// The answer provided in the textbook is wrong diff --git a/3918/CH6/EX6.1/Ex6_1.sce b/3918/CH6/EX6.1/Ex6_1.sce new file mode 100644 index 000000000..91f7557e9 --- /dev/null +++ b/3918/CH6/EX6.1/Ex6_1.sce @@ -0,0 +1,16 @@ +//Example 6_1 +clc; +clear; +close; + +//Given data : +H1=3500;// Height1 in mm +H2=550;// Height2 in mm +L=300;// Length in mm +A=10000;// Area in mm^2 +V=1000000;// Volume of jar in mm^3 +t=50;// Time taken to fill graduated jar in seconds +DH=H1-H2;// Difference in Heights(H1-H2) in mm +k=(V/(t*A))*(L/DH)*(1/1000);// Permeability of silty sand sample in the permeameter in m/sec +disp(k,"Permeability of silty sand sample in the permeameter in m/sec"); +// The answers vary due to round off error diff --git a/3918/CH6/EX6.2/Ex6_2.sce b/3918/CH6/EX6.2/Ex6_2.sce new file mode 100644 index 000000000..ce9458484 --- /dev/null +++ b/3918/CH6/EX6.2/Ex6_2.sce @@ -0,0 +1,18 @@ +//Example 6_2 +clc; +clear; +close; + +//Given data : +L=150;// Length of sample in mm +D=100;// Diameter of sample in mm +d=2;// Diameter of vertical pipe in mm +a=3.14*d*d/4;// Area of the vertical pipe in mm^2 +A=3.14*D*D/4;// Area of sample in mm^2 +hi=350;// Height1 in mm +hf=200;// height2 in mm +t=60;// Time in seconds +V=1000000;// Volume of jar in mm^3 +k=(L*a/A)*(log(hi/hf)/t)*(1/1000);// Permeability of silty sand sample in the permeameter in m/sec +disp(k,"Permeability of silty sand sample in the permeameter in m/sec"); +// The answers vary due to round off error diff --git a/3918/CH7/EX7.1/Ex7_1.sce b/3918/CH7/EX7.1/Ex7_1.sce new file mode 100644 index 000000000..d02ad312e --- /dev/null +++ b/3918/CH7/EX7.1/Ex7_1.sce @@ -0,0 +1,28 @@ +//Example 7_1 +clc; +clear; +close; + +//Given data : + +// At Point A +disp("At Point A"); +uwa=10;// Unit weight in kN/m^3 +ha=100/1000;// Height from top till point A in m +pi=uwa*ha;// Magnitude of pi in kN/m^2 +u=uwa*ha;// Magnitude of u in kN/m^2 +pidash=pi-u;// Magnitude of pidash in kN/m^2 +disp(pi," Magnitude of pi in kN/m^2"); +disp(u," Magnitude of u in kN/m^2"); +disp(pidash," Magnitude of pidash in kN/m^2"); + +// At Point B +disp("At Point B"); +uwb=20;// Unit weight of soil sample in kN/m^3 +hb=300/1000;// Height from top till point B in m +pi=pi+(uwb*hb);// Magnitude of pi in kN/m^2 +u=uwa*ha;// Magnitude of u in kN/m^2 +pidash=pi-u;// Magnitude of pidash in kN/m^2 +disp(pi," Magnitude of pi in kN/m^2"); +disp(u," Magnitude of u in kN/m^2"); +disp(pidash," Magnitude of pidash in kN/m^2"); diff --git a/3918/CH7/EX7.2/Ex7_2.sce b/3918/CH7/EX7.2/Ex7_2.sce new file mode 100644 index 000000000..3978a0cb5 --- /dev/null +++ b/3918/CH7/EX7.2/Ex7_2.sce @@ -0,0 +1,44 @@ +//Example 7_2 +clc; +clear; +close; + +//Given data : + +// At Point A +disp("a)"); +disp(" At Point A"); +uwa=10;// Unit weight in kN/m^3 +ha=100/1000;// Height from top till point A in m +pi=uwa*ha;// Magnitude of pi in kN/m^2 +u=uwa*ha;// Magnitude of u in kN/m^2 +pidash=pi-u;// Magnitude of pidash in kN/m^2 +disp(pi," Magnitude of pi in kN/m^2"); +disp(u," Magnitude of u in kN/m^2"); +disp(pidash," Magnitude of pidash in kN/m^2"); + +// At Point B +disp(" At Point B"); +uwb=20;// Unit weight of soil sample in kN/m^3 +hb=300/1000;// Height from top till point B in m +h=600/1000;// Height in mm +pi1=pi+(uwb*hb);// Magnitude of pi in kN/m^2 +u=uwa*h;// Magnitude of u in kN/m^2 +pidash=pi1-u;// Magnitude of pidash in kN/m^2 +disp(pi1," Magnitude of pi in kN/m^2"); +disp(u," Magnitude of u in kN/m^2"); +disp(pidash," Magnitude of pidash in kN/m^2"); + +disp("b)"); +uwb=20;// Unit weight of soil sample in kN/m^3 +hb=300/1000;// Height from top till point B in m +h=700/1000;// Height in mm +pi2=pi+(uwb*hb);// Magnitude of pi in kN/m^2 +u=uwa*h;// Magnitude of u in kN/m^2 +pidash=pi2-u;// Magnitude of pidash in kN/m^2 +disp(pi2," Magnitude of pi in kN/m^2"); +disp(u," Magnitude of u in kN/m^2"); +disp(pidash," Magnitude of pidash in kN/m^2"); +disp("Therefore effective stress is zero by increasing the water reservoir by another 100 mm"); +disp(hb*1000,"Hence, the total head causing flow in mm"); + -- cgit