

Open Source – Of Course!

Lessons Learned from two decades of
Scientific Open Source Software development

Dr Ole Nielsen

● Became aware of Linux, GNU emacs and
Netlib (1994): Disks mailed to Bulgaria!

● Published Matlab, C and F90 toolboxes for
wavelet transforms (1997): A procrastinating
PhD student.

● Discovered Python (1999): Boss didn't want to
pay for Matlab

Last Century

Early Days

● Datamining Web Tools (Australian National University 2001)

● Required caching module (persistent memoization)

result = func(args, kwargs)

result = cache(func, args, kwargs, dependencies = <files>)

Pushing Python (pypar - 2002)

int MPI_Send(
 void *buf,
 int count,
 MPI_Datatype datatype,
 int dest,
 int tag,
 MPI_Comm comm
);

pypar.send(A, p)

● Standard MPI

Pypar

10 years on Pypar is still used

ANUGA

Open Source

Hydrodynamic Modelling

Ole Nielsen

Python in Government (2004-2009)

What is ANUGAWhat is ANUGA

Riverine Flooding

Dam BreaksHydraulic Engineering

Tsunami Inundation

ANUGA CapabilitiesANUGA Capabilities

• Resolution of Hydraulic shocks
• Transitions from sub- to super critical flows
• Robust wetting/drying capability
• Flexible API (e.g. dynamic typing)

Australian Tsunami Inundation Australian Tsunami Inundation

Flood Related Applications:Flood Related Applications:
• Assess the impact of new developments

Without proposed buildings

With proposed buildings

• 110km2 Full 2-D Model

• Investigating existing Flood problems…

Real World Flood…

ANUGA interpretation

Okushiri Island 1993 Tsunami

● Magnitude 7.8 earthquake
● 32 m run up height
● Numerical Simulation of

wave tank experiment
shows why

Predicting Tsunami Run Up – Predicting Tsunami Run Up –
The Importance of ModellingThe Importance of Modelling

Sea of Japan

Monai
Valley

Okushiri
Island

Sea of Japan

Monai
Valley

Okushiri
Island

Drawdown

Sea of Japan

Monai
Valley

Okushiri
Island

Sea of Japan

Monai
Valley

Okushiri
Island

Sea of Japan

Monai
Valley

Okushiri
Island

Reflection

Sea of Japan

Monai
Valley

Okushiri
Island

Reflection

Sea of Japan

Monai
Valley

Okushiri
Island

Shoaling

Sea of Japan

Monai
Valley

Okushiri
Island

Run
up

Sea of Japan

Monai
Valley

Okushiri
Island

Run
up

Sea of Japan

Monai
Valley

Okushiri
Island

Run
up

Testing and validation

• 890 individual unit tests
• Numerous wave tank experiments
• 2004 Tsunami impact on Patong Beach

Validation 2004 Tsunami

● Took 2 years to get elevation, source and
survey data.

● Validation run and comparison is part of the
ANUGA test suite (although it takes forever to
run :-).

Featured on Australian TV

Further information:
Email: Ole.Nielsen@ga.gov.au

Stephen.Roberts@anu.edu.au

Google Search: ANUGA software
(ANUGA by itself will get German food fair)

mailto:Ole.Nielsen@ga.gov.au
mailto:Stephen.Roberts@anu.edu.au

InaSAFE
Indonesia Scenario Assessment For Emergencies

Python in International AID: 2010 - 2012

Hazard Maps
(Ground shaking,Inundation, etc)

Science Agencies

Population and Buildings
Mapping and statistical agencies

Also Communities

Decision Making

Who has used OpenStreetMap?

● OSM is a community driven, community owned version of Google
Maps

●

– Free (download the data and do anything with it)
– Open (anyone can create new tools on top of it)
– Editable (you can map what is important to you)

Spatial Data is often not available.
Open Street Map allows communities to self map

So what have I learned (if anything)?

7 noble steps to software that works

No news is good news

If it can't install – it doesn't exist

Without docs – it doesn't exist
Without testing – it doesn't exist

No future without a past

Get it right – then fast

Sleep in the bed you make

No news is good news

● Either do as requested or raise an exception
● Good error messages help everyone
● Exception handling allows the error to be treated at

the appropriate level
● Index error at low level becomes a matter of selecting a

viewport at a higher level
● XML parse error is typically not helpful at application

level – it should explain why
● Conditions like “file cannot open” or “division by zero”

can often be handled sensibly without raising errors.

My online visa applicationØ

Saving the application

Loading it again

What?

The Story of Ø

Other error messages I have seen

● (my>ky) failed for hidden my: regrid_smth:my=2
● syntax error: line 1, column 0
● write_dbs_grid: error in nf90_enddef

Good error message

 try:
 infile = open(self.projection_file)
 except IOError:
 msg = ('Projection file %s could not be opened. '
 'The topography file must have a projection file with '
 'extension .prj to georeference the model outputs '
 'correctly. The projection file is assumed to follow '
 'the ESRI WKT format ' % self.projection_file)
 raise Exception(msg)

Example of error messaging

Without docs – it doesn't exist

● Minimum
● installation documentation
● how to run a few examples
● docstrings

● Ideally – documentation driven
● Critical if software is to take on its own life

Bad docstrings

def delete_style(self, style_name):
 """docstring for delete_style"""

def compatible_layers(func, layer_descriptors):
 """Fetches all the layers that match the plugin requirements.
 “””

Good docstrings
def osm2padang(E):
 """Map OSM attributes to Padang vulnerability classes

 This maps attributes collected in the OpenStreetMap exposure data
 (data.kompetisiosm.org) to 9 vulnerability classes identified by
 Geoscience Australia and ITB in the post 2009 Padang earthquake
 survey (http://trove.nla.gov.au/work/38470066).
 The mapping was developed by Abigail Baca, GFDRR.

 Input
 E: Vector object representing the OSM data

 Output:
 Vector object like E, but with one new attribute ('VCLASS')
 representing the vulnerability class used in the Padang dataset

 Algorithm
…
...

def interpolate2d(x, y, Z, points, mode='linear', bounds_error=False):
 """Fundamental 2D interpolation routine

 Input
 x: 1D array of x-coordinates of the mesh on which to interpolate
 y: 1D array of y-coordinates of the mesh on which to interpolate
 Z: 2D array of values for each x, y pair
 points: Nx2 array of coordinates where interpolated values are sought
 mode: Determines the interpolation order. Options are
 'constant' - piecewise constant nearest neighbour interpolation
 'linear' - bilinear interpolation using the four
 nearest neighbours (default)
 bounds_error: Boolean flag. If True (default) an exception will
 be raised when interpolated values are requested
 outside the domain of the input data. If False, nan
 is returned for those values
 Output
 1D array with same length as points with interpolated values

 Notes
 Input coordinates x and y are assumed to be monotonically increasing,
 but need not be equidistantly spaced.

 Z is assumed to have dimension M x N, where M = len(x) and N = len(y).
 In other words it is assumed that the x values follow the first
 (vertical) axis downwards and y values the second (horizontal) axis
 from left to right.

Without testing – it doesn't exist

● Known as unit-, regression-, system- or integration-testing
● Have tests for the functionality you care about
● The extra time invested comes back 100 fold when debugging,

refactoring and moving to new platforms
● Crucial when optimising (“Faster and faster – but wrong”!)
● Also serves as trusted documentation

● The single most important practice – I'd rather keep my
tests than the source code!

● InaSAFE has over 300 tests - ANUGA almost 1000,

● Not possible to manually test all cases of a complex
software project – must be automatic!

What makes good testing
● Sets up all conditions, call the test, verify the result.
● Verify result using known invariant conditions (e.g. conservation of mass,

linearly interpolated points must lie within certain bounds, inverse transforms
reproduce original inputs, ...)

● Not only “happy path” but also corner cases (None, NaN, 0, max, min, %, &,
$): E.g. intersection (Parallel lines, coinciding lines, intersecting at
endpoints, ...)

● Input that causes error conditions
● If a new bug is found, write new test revealing it “It is a lot easier to debug a

test than running the application” (Tim Sutton)
● Independent of context, time and other tests
● Named after what is being tested: (see next slides)
● Good coverage (>80%) - but not 100%!
● Programmers need GUTs

Google: Klaus P. Berg – Good Unit Tests

Simple but real test example

pl

#148 Linear and quantile bins are correct ... ok
#149 Bounding boxes can be converted between list and string ... ok
#150 Intersections of bounding boxes work ... ok
#151 Bounding box can be buffered ... ok
#152 Centroid point data can be derived from polygon data ... ok
#153 Projections that are compatible but not identical are recognised ... ok
#154 Donut polygon can be read, interpreted and written correctly ... ok
#155 Empty keywords can be handled ... ok
#156 Bounding box can be extracted from geotransform ... ok
#157 Resolution can be extracted from geotransform ... ok
#158 Bounding box is correctly extracted from file. ... ok
#160 Vector and Raster objects can be instantiated with None ... ok
#161 Keywords can be written and read ... ok
#162 Keywords and values with colons raise error messages ... ok
#163 Vector and Raster instances have a similar API ... ok
#164 Points along line are computed correctly ... ok
#165 Bounding box minimal size can be controlled ... ok
#166 Multipart polygons are be converted to singlepart ... ok
#167 Raster layers with no projection causes Exception to be raised ... ok
#168 NODATA value is correctly handled for GDAL layers ... ok
#169 Ordering of polygon vertices is preserved when writing and reading ... ok
#170 Polygon areas are computed correctly ... ok
#171 Polygon centroids are computed correctly ... ok
#172 Polygons with inner rings can be written and read ... ok
#173 Projection information can be correctly compared ... ok
#174 Raster extrema (including NAN's) are correct. ... ok
#175 Raster layers can be converted to vector point layers ... ok

Other types of testing

● PEP8: Style checking
● Pylint: Static code analysis
● Customised checks:

● Scan for unwanted strings, e.g. assert, settrace, …
● IP status of bundled data (is it ok to publish?)
● Missing translations
● - anything you care about, that can be automated

Get it right – Then fast

Recipe refined during development of ANUGA

1.Write one or two tests

2.Implement brute force simple algorithm

3.Implement smarter algorithm and more tests

4.After profiling, write bottlenecks in C using test
suite to maintain correctness

Never optimise without profiling and testing!

Why use and make Open SourceWhy use and make Open Source

• Open Source makes software better
– Generates interest and attracts feedback
– Facilitates re-use
– Allows large teams to collaborate
– Critical to scientific reproducibility

(please include the source code in papers!)

Appeal: Get involved in QGIS!

http://www.qgis.org

Spatial Capabilities

Numerical Algorithms

Thank You So Much!

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Tsunami Inundation Map Examples
	Flood Related Applications:
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Testing and validation
	Slide 27
	Thank You!
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Time for a live demonstration
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Why is ANUGA freely available?
	Slide 63
	Slide 64

