

Python based implementation of a chaos
based cryptosystem using external key

Madhu Sharma
Assistant Professor

DIT, Dehradun

Outline of the presentation

 My introduction to Python
 Introduction to Cryptography and Chaos
 The paper's core
 Results
 Conclusions
 References

My Introduction to Python

 Internet
 Need for a commonly used scripting language
 Open source/free
 Lots of documentation
 Well connected
 Mature

Introduction to Cryptography

 Ever increasing trend towards virtualization
 Various valuable transactables like information,

education & money
 Continuous research towards newer cryptographic

implementations
 Rapid progress in Hardware
 Rapid progress in Software

Introduction to Chaos
 Pseudo-random number generation
 For e.g., the logistic map:
 High sensitivity to initial conditions & system

parameters
 Wide variety of chaotic maps
 Multidimensional chaotic maps
 Discrete/continuous maps
 Applications to cryptography [1-3]

Xn+ 1 =f (Xn)

Xn+ 1 =pXn (1−Xn) ,p=3 . 99

Introduction to the Chaos based
Cryptosystem - overview

 Two skew-tent chaotic maps [2]:

 The two maps differ in terms of the parameter p and
the number of iterations for each new random
number

 A 128-bit key is used to initialize the chaotic maps
and to specify other operational parameters

t (x) =x / p,when 0⩽ x<p
t (x)=(1−x) / (1−p) ,whenp ⩽ x⩽ 1

Introduction to the Chaos based
Cryptosystem – contd.

 Plaintext is broken into 8-byte blocks as:

The last block may be smaller
 The resulting ciphertext is similarly obtained in the

form of 8-byte blocks:

 The two skew-tent maps have p = 0.79 & 0.39 resp.

 The first map has a variable no. of iterations T
0
 and

the second map has only one iteration per step

P=P1 P2 P3 PmP=P1 P2 P3 Pm

C=C1 C2 C3Cm

Introduction to the Chaos based
Cryptosystem – contd.

 The 128-bit key is broken into four 32-bit parts:

 The initial value of T
0
 is an 8-bit integer, obtained as,

 The initial values X
0
 and Y

0
 are:

K=A1 A2 B1 B2

T0=(lowest 4 bitsofA 2)(highestfourbitsofB1)

X0=0 . ((A1 A2) XOR (B1 B2))

Y 0=0 . (A1 B2)

Introduction to the Chaos based
Cryptosystem – contd.

 Using these initial values (X
0
, Y

0
 and T

0
), the two

tent-maps are run to the updated - X
b
 and Y

b

 The next-to-decimal 64 bits of X
b
 and Y

b
 are used as

random integers X
bz
 and Y

bz
 in the further operations

 Block-wise encryption and decryption are defined
as: Cb =s (Pb) XORCb−1 XORXbz XORY bz

Pb =s−1
(Cb XORCb−1 XORXbz XORY bz)

Introduction to the Chaos based
Cryptosystem – contd.

 Here,
 The s(..) operator consists of the following 2 steps:

1. Each byte of the block P
b
 is rotated to a new

position in the block P
b
' – the rotation number being

the byte-wise sum of the block modulo the block-
size

2. The bits of of the resulting block P
b
' are swapped

left-right – the swap location being the 1-bit
population count of A

1
 B

2

C0=A2 B1

Introduction to the Chaos based
Cryptosystem – contd.

 The tent-maps' iterations are re-initialized as
follows:

 The z(..) operator being the byte-wise XOR operator
 The above steps are repeated until the complete

plaintext/ciphertext is exhausted

Xbz =Cb−1 XORX
(b−1) z

XORB2 A1

Y bz =C b−1 XORY
(b−1) z

Y bz =C b−1 XORY
(b−1) z

T b =z (Pb−1) XORT
(b−1)

Application of gmpy

 GMP – GNU Multi-precision library
 gmpy – the friendly Python interface to the gmp
 Example code:
import random, gmpy
mykey1 = gmpy.mpz(random.randrange(0, 2**128 – 1))
myB = mykey1.lowbits(64)
myA = mykey1 - myB
myA = myA.__rshift__(64)
myT0 = myA.lowbits(4)
myT0 = myT0.__lshift__(4)
myT0 = myT0 + myB.__rshift__(60)

The commands

The encryption:

./myxiang08v2.py e inaroundcampus.pdf goodpw1

The decryption:

./myxiang08v2.py d einaroundcampus.pdf goodpw1

The histogram:

./myhistogram.py inaroundcampus.pdf

./myhistogram.py einaroundcampus.pdf

Results

Results – contd.

Conclusions

 Python, as often stated, was found to be extremely
simple and user-friendly

 gmpy – provided a friendly interface to an otherwise
complicated C-library

 The actual Python code was extremely short in
comparison to the C-code

 The code was easily understandable and reusable
 Several straightforward extensions are possible –

biometrics, audio/video encryption etc.

References
[1] Muhammad Usama , Muhammad Khurram Khan , Khaled

Alghathbar and Changhoon Lee, Chaos-based secure
satellite imagery cryptosystem, Computers and
Mathematics with Applications 60 (2010) 326–337.

[2] Tao Xiang, Kwok-wo Wong and Xiaofeng Liao, An
improved chaotic cryptosystem with external key,
Communications in Nonlinear Science and Numerical
Simulation 13 (2008) 1879-87.

[3] Pareek NK, Patidar V, Sud KK. Cryptography using
multiple one-dimensional chaotic maps, Communications in
Nonlinear Sciences and Numerical Simulations, 10 (2005),
715-23.

THANKS!
Have a nice day!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

