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My Introduction to Python

 Internet
 Need for a commonly used scripting language
 Open source/free
 Lots of documentation
 Well connected
 Mature



  

Introduction to Cryptography

 Ever increasing trend towards virtualization
 Various valuable transactables like information, 

education & money
 Continuous research towards newer cryptographic 

implementations
 Rapid progress in Hardware
 Rapid progress in Software



  

Introduction to Chaos
 Pseudo-random number generation
 For e.g., the logistic map:
  High sensitivity to initial conditions & system 

parameters
 Wide variety of chaotic maps 
 Multidimensional chaotic maps
 Discrete/continuous maps
 Applications to cryptography [1-3]

Xn+ 1 =f ( Xn)

Xn+ 1 =pXn (1−Xn) ,p=3 . 99



  

Introduction to the Chaos based 
Cryptosystem - overview

 Two skew-tent chaotic maps [2]:

 The two maps differ in terms of the parameter p and 
the number of iterations for each new random 
number

 A 128-bit key is used to initialize the chaotic maps 
and to specify other operational parameters

t ( x ) =x / p,when 0⩽ x<p
t ( x )=(1−x ) / (1−p ) ,whenp ⩽ x⩽ 1



  

Introduction to the Chaos based 
Cryptosystem – contd.

 Plaintext is broken into 8-byte blocks as:

The last block may be smaller
 The resulting ciphertext is similarly obtained in the 

form of 8-byte blocks:

 The two skew-tent maps have p = 0.79 & 0.39 resp.

 The first map has a variable no. of iterations T
0
 and 

the second map has only one iteration per step

P=P1 P2 P3 . .. .. . PmP=P1 P2 P3 . .. .. . Pm

C=C1 C2 C3 . . .. ..Cm



  

Introduction to the Chaos based 
Cryptosystem – contd.

 The 128-bit key is broken into four 32-bit parts:

 The initial value of T
0
 is an 8-bit integer, obtained as,

 The initial values X
0
 and Y

0
 are:

K=A1 A2 B1 B2

T0=( lowest 4 bitsofA 2 )(highestfourbitsofB1)

X0=0 . (( A1 A2) XOR (B1 B2) )

Y 0=0 . ( A1 B2 )



  

Introduction to the Chaos based 
Cryptosystem – contd.

 Using these initial values (X
0
, Y

0
 and T

0
 ), the two 

tent-maps are run to the updated - X
b
 and Y

b
 

 The next-to-decimal 64 bits of X
b
 and Y

b
 are used as 

random integers X
bz
 and Y

bz
 in the further operations

 Block-wise encryption and decryption are defined 
as: Cb =s (Pb ) XORCb−1 XORXbz XORY bz

Pb =s−1
(Cb XORCb−1 XORXbz XORY bz )



  

Introduction to the Chaos based 
Cryptosystem – contd.

 Here,
 The s(..) operator consists of the following 2 steps:

1. Each byte of the block P
b
 is rotated to a new 

position in the block P
b
' – the rotation number being 

the byte-wise sum of the block modulo the block-
size

2. The bits of of the resulting block P
b
' are swapped 

left-right – the swap location being the 1-bit 
population count of A

1
 B

2

C0=A2 B1



  

Introduction to the Chaos based 
Cryptosystem – contd.

 The tent-maps' iterations are re-initialized as 
follows:

 The z(..) operator being the byte-wise XOR operator
 The above steps are repeated until the complete 

plaintext/ciphertext is exhausted

Xbz =Cb−1 XORX
(b−1 ) z

XORB2 A1

Y bz =C b−1 XORY
( b−1 ) z

Y bz =C b−1 XORY
( b−1 ) z

T b =z (Pb−1) XORT
( b−1 )



  

Application of gmpy

 GMP – GNU Multi-precision library
 gmpy – the friendly Python interface to the gmp
 Example code:
import random, gmpy
mykey1 = gmpy.mpz(random.randrange(0, 2**128 – 1))
myB = mykey1.lowbits(64)
myA = mykey1 - myB
myA = myA.__rshift__(64)
myT0 = myA.lowbits(4)
myT0 = myT0.__lshift__(4)
myT0 = myT0 + myB.__rshift__(60)



  

The commands

The encryption:

./myxiang08v2.py e inaroundcampus.pdf goodpw1

The decryption:

./myxiang08v2.py d einaroundcampus.pdf goodpw1

The histogram:

./myhistogram.py inaroundcampus.pdf

./myhistogram.py einaroundcampus.pdf



  

Results



  

Results – contd.



  

Conclusions

 Python, as often stated, was found to be extremely 
simple and user-friendly

 gmpy – provided a friendly interface to an otherwise 
complicated C-library

 The actual Python code was extremely short in 
comparison to the C-code

 The code was easily understandable and reusable
 Several straightforward extensions are possible – 

biometrics, audio/video encryption etc.
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THANKS!
Have a nice day!
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