

Python based implementation of a chaos
based cryptosystem using external key

Madhu Sharma
Assistant Professor

DIT, Dehradun

Outline of the presentation

 My introduction to Python
 Introduction to Cryptography and Chaos
 The paper's core
 Results
 Conclusions
 References

My Introduction to Python

 Internet
 Need for a commonly used scripting language
 Open source/free
 Lots of documentation
 Well connected
 Mature

Introduction to Cryptography

 Ever increasing trend towards virtualization
 Various valuable transactables like information,

education & money
 Continuous research towards newer cryptographic

implementations
 Rapid progress in Hardware
 Rapid progress in Software

Introduction to Chaos
 Pseudo-random number generation
 For e.g., the logistic map:
 High sensitivity to initial conditions & system

parameters
 Wide variety of chaotic maps
 Multidimensional chaotic maps
 Discrete/continuous maps
 Applications to cryptography [1-3]

Xn+ 1 =f (Xn)

Xn+ 1 =pXn (1−Xn) ,p=3 . 99

Introduction to the Chaos based
Cryptosystem - overview

 Two skew-tent chaotic maps [2]:

 The two maps differ in terms of the parameter p and
the number of iterations for each new random
number

 A 128-bit key is used to initialize the chaotic maps
and to specify other operational parameters

t (x) =x / p,when 0⩽ x<p
t (x)=(1−x) / (1−p) ,whenp ⩽ x⩽ 1

Introduction to the Chaos based
Cryptosystem – contd.

 Plaintext is broken into 8-byte blocks as:

The last block may be smaller
 The resulting ciphertext is similarly obtained in the

form of 8-byte blocks:

 The two skew-tent maps have p = 0.79 & 0.39 resp.

 The first map has a variable no. of iterations T
0
 and

the second map has only one iteration per step

P=P1 P2 P3 PmP=P1 P2 P3 Pm

C=C1 C2 C3Cm

Introduction to the Chaos based
Cryptosystem – contd.

 The 128-bit key is broken into four 32-bit parts:

 The initial value of T
0
 is an 8-bit integer, obtained as,

 The initial values X
0
 and Y

0
 are:

K=A1 A2 B1 B2

T0=(lowest 4 bitsofA 2)(highestfourbitsofB1)

X0=0 . ((A1 A2) XOR (B1 B2))

Y 0=0 . (A1 B2)

Introduction to the Chaos based
Cryptosystem – contd.

 Using these initial values (X
0
, Y

0
 and T

0
), the two

tent-maps are run to the updated - X
b
 and Y

b

 The next-to-decimal 64 bits of X
b
 and Y

b
 are used as

random integers X
bz
 and Y

bz
 in the further operations

 Block-wise encryption and decryption are defined
as: Cb =s (Pb) XORCb−1 XORXbz XORY bz

Pb =s−1
(Cb XORCb−1 XORXbz XORY bz)

Introduction to the Chaos based
Cryptosystem – contd.

 Here,
 The s(..) operator consists of the following 2 steps:

1. Each byte of the block P
b
 is rotated to a new

position in the block P
b
' – the rotation number being

the byte-wise sum of the block modulo the block-
size

2. The bits of of the resulting block P
b
' are swapped

left-right – the swap location being the 1-bit
population count of A

1
 B

2

C0=A2 B1

Introduction to the Chaos based
Cryptosystem – contd.

 The tent-maps' iterations are re-initialized as
follows:

 The z(..) operator being the byte-wise XOR operator
 The above steps are repeated until the complete

plaintext/ciphertext is exhausted

Xbz =Cb−1 XORX
(b−1) z

XORB2 A1

Y bz =C b−1 XORY
(b−1) z

Y bz =C b−1 XORY
(b−1) z

T b =z (Pb−1) XORT
(b−1)

Application of gmpy

 GMP – GNU Multi-precision library
 gmpy – the friendly Python interface to the gmp
 Example code:
import random, gmpy
mykey1 = gmpy.mpz(random.randrange(0, 2**128 – 1))
myB = mykey1.lowbits(64)
myA = mykey1 - myB
myA = myA.__rshift__(64)
myT0 = myA.lowbits(4)
myT0 = myT0.__lshift__(4)
myT0 = myT0 + myB.__rshift__(60)

The commands

The encryption:

./myxiang08v2.py e inaroundcampus.pdf goodpw1

The decryption:

./myxiang08v2.py d einaroundcampus.pdf goodpw1

The histogram:

./myhistogram.py inaroundcampus.pdf

./myhistogram.py einaroundcampus.pdf

Results

Results – contd.

Conclusions

 Python, as often stated, was found to be extremely
simple and user-friendly

 gmpy – provided a friendly interface to an otherwise
complicated C-library

 The actual Python code was extremely short in
comparison to the C-code

 The code was easily understandable and reusable
 Several straightforward extensions are possible –

biometrics, audio/video encryption etc.

References
[1] Muhammad Usama , Muhammad Khurram Khan , Khaled

Alghathbar and Changhoon Lee, Chaos-based secure
satellite imagery cryptosystem, Computers and
Mathematics with Applications 60 (2010) 326–337.

[2] Tao Xiang, Kwok-wo Wong and Xiaofeng Liao, An
improved chaotic cryptosystem with external key,
Communications in Nonlinear Science and Numerical
Simulation 13 (2008) 1879-87.

[3] Pareek NK, Patidar V, Sud KK. Cryptography using
multiple one-dimensional chaotic maps, Communications in
Nonlinear Sciences and Numerical Simulations, 10 (2005),
715-23.

THANKS!
Have a nice day!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

