Final report on Data Collection & Analysis of Delhi for the 14 variables

FOSSEE Project

Meet Bhatnagar

26 February 2019

Indian Institute of Technology Bombay

Contents

A	bstract	4
1.	Gross District Domestic Product Report Table	5 6 10 11
2.	Employment and Earnings Table Visualization Analysis Summary	12 12 13 17 19
3.	Fair Price Shops Table Visualization Analysis Summary	 20 20 20 22 23
4.	Courts Table Visualization Analysis Summary	24 24 24 26 26
5.	Electricity Table	27 27 27 33 35
6.	Healthcare Table Visualization Analysis Summary	36 36 37 38 39
7.	Tourism Table Visualization Analysis Summary	40 40 42 43 44
8.	Population and Education Data Table Visualization Analysis Summary	45 45 46 47 48
9.	Industries Table Visualization Analysis	49 49 50 51

Summary	52
10. Education	53
Table	53
Visualization	55
Analysis	56
Summary	57
11. Green Coverage	58
Table	58
Visualization	59
Summary	68
12. Krishi Vigyan Kendra	69
Table	69
Visualization	70
Analysis	72
Summary	73
13. Vehicles	74
Table	74
Visualization	74
Analysis	78
Summary	79
14. Usage of Computing Devices	80
Table	80
Visualization	80
Analysis	83
Summary	85
Reference	86

Reference

Abstract

In this report, results from the analysis of publicly available data related to Delhi from various government online portals and statistical handbooks are represented in order to better understand the status of development in the district level. Various data variables were analyzed like Fair Price Shops, Pending cases in the District Court, Population, Literacy, Kisan Credit Card, Loan, just to name a few. Analysis is done completely using a **Free-Libre / Open Source Software (FLOSS)** known as **'R'** as a part of **FOSSEE Project** by **IIT Bombay** and **MHRD**, **Government of India.** FOSSEE project is part of the National Mission on Education through ICT with the thrust area being adaptation and deployment of open source simulation packages equivalent to proprietary software, funded by MHRD, based at the Indian Institute of Technology Bombay (IITB). Results from analysis were found to indicate increase in population, literacy rate, pending court cases, usage of networking devices and much more. Please refer to each data variable section in order to better understand the data used, analysis performed and results obtained for each of the respective variable.

1. Gross District Domestic Product Report

Gross State Value Added (GSVA) is a method of total output and income in the economy of a particular district. It gives us the rupee value for the amount of goods and services produced in an economy after deducting the cost of inputs and raw materials that have gone into the production of those goods and services.

Gross State Domestic Product (GSDP) gives the economic output from the consumers' side. It is the sum of private consumption, gross investment in the economy, government investment, government spending and net foreign trade (difference between exports and imports).[1]

This report is based on **Gross State Value Added (GSVA)** and **Gross State Domestic Product** (**GSDP**) economic activity of **Delhi district**. This includes revenue earned in 3 sectors which are as follows:

- Primary Sector Agriculture, Forestry & Fishing, Crops, Livestock, Forestry & Logging, Fishing, Mining & Quarrying.
- Secondary Sector Manufacturing, Electricity, Gas & Water Supply & Other Utility Services, Construction.
- Tertiary Sector Trade, Hotels & Restaurants, Trade & Repair Services, Hotel & Restaurants, Transport, Storage & Communication, Railways, Road transport, Water transport, Air Transport, Services incidental to transport, Real estate ownership of dwellings & professional services.

Table

Here is the tabulation data for the **Gross District Domestic Product (GDDP)** of Delhi which is mainly judged on the basis of Primary, Secondary and Tertiary sectors :

GDDP=read.csv("GDDP.csv")
GDDP

##		SECTOR	Х	X2011.12
##	1	Agriculture, Forestry & Fishing	1	285471
##	2	Crops	1.1	65772
##	3	Livestock	1.2	217867
##	4	Forestry & Logging	1.3	1007
##	5	Fishing	1.4	826
##	6	Mining & Quarrying	2	772879
##	7	PRIMARY	a	1058350
##	8	Manufacturing	3	1890728
##	9	Electricity, Gas & Water Supply & Other Utility Services	4	410538
##	10	Construction	5	1666852
##	11	SECONDARY	b	3968117
##	12	Trade, Hotels & Restaurants	6	4212068
##	13	Trade & Repair Services	6.1	3806351
##	14	Hotel & Restaurants	6.2	405718
##	15	Transport, Storage & Communication	7	3929455
##	16	Railways	7.1	190731
##	17	Road transport	7.2	664297
##	18	Water transport	7.3	546
##	19	Air Transport	7.4	98961
##	20	Services incidental to transport	7.5	2368549
##	21	Storage	7.6	21247
##	22	Communication & Services related to broadcasting	7.7	585124
##	23	Financial Services	8	5388295
##	24	Real estate, ownership of dwellings & professional services	9	7248036
##	25	Public Administration	10	1957156

##	26						Other Services	11	2558685
##	27		тот				IERIIARY	c	25293696
##	28		1017	AL GRUSS :	SIAIE VALU	JE ADDED A	t Basic Prices	a	30320163
##	29					D	Product laxes	e	4442090
## ##	30		an o			PTO	Mariat Drives	I	303309
##	31		GRU	55 STATE I	JUMESTIC I	PRODUCI AT	Market Prices	g	3437664
## ##	3Z				1	Dem Cemite	Population	n -	109/50
## ##	33	¥0010 12	V0012 14	V0014 1E	X001E 16	vooic 17	GSDP (In RS.)	1	202513
## ##	1	AZU12.13	A2013.14 05500/	AZ014.15	220020	A2010.17			
## ##	л Т	207040	200004	200000	102200	407740			
## ##	2	100767	170125	102770	103300	100370			
## ##	3 1	102/07	1/9133	103770	20010	297333			
## ##	4 5	991 840	930	001	1000	1022			
## ##	6	7/6562	1015528	063777	108/338	1167318			
## ##	7	1003608	1010020	101/3/5	1/03370	1575064			
## ##	ı Q	233/070	2533760	27/0307	3630007	1575004			
##	a	708073	2000700 000613	071255	1176605	1309075			
## ##	9 10	1786576	1982965	2048788	2116833	2186958			
##	11	4849828	5426347	5769350	6923445	8064896			
##	12	4905111	5653195	5896633	6105266	6357232			
##	13	4458194	5170922	5359605	5525480	5729645			
##	14	446917	482273	537028	579786	627587			
##	15	4534332	4997533	5597141	6047627	6549455			
##	16	207226	258697	293836	307520	336670			
##	17	718643	713493	718343	722346	726279			
##	18	597	541	574	607	639			
##	19	178752	146607	420460	444250	537371			
##	20	2748292	3059301	3259417	3584423	3867212			
##	21	24271	27667	29922	36012	40992			
##	22	656551	791227	874588	952470	1040291			
##	23	5992774	6449101	6974870	7516907	8058944			
##	24	8242110	9618416	11733335	13454970	16199181			
##	25	1802787	1876644	2008191	2219503	2424599			
##	26	2913283	3282734	3829385	4392490	5108606			
##	27	28390396	31877623	36039554	39736762	44698016			
##	28	34243833	38575381	43023249	48083578	54337976			
##	29	5380588	6308016	6611719	7686011	8700135			
##	30	500578	505118	392546	573248	799647			
##	31	39123843	44378279	49242422	55196341	62238464			
##	32	17300	176310	179690	183140	186640			
##	33	226149	251706	274041	301389	333468			

Visualization

Let's analyse the pie charts for the years 2011 to 2016 :

Primary Sector maximum growth was in year 2016 which was about 20.87 % of the total. Secondary Sector maximum growth was in year 2016 which was about 23.04 % of the total. Primary Sector maximum growth was in year 2016 which was about 21.69 % of the total.

Net growth rate in 3 sectors from 2011 to 2016 can be visualized as:

a1= Net revenue in Primary sector; a2= Net revenue in Secondary sector; a3= Net revenue in Tertiary sector;

Secondary Sector

Tertiary Sector

Let's see the together growth of GSVA (at basic prices) and GSDP (at market prices)

```
market=c(3437.67,3912.38,4437.83,4229.20,4602.17,4982.17)
basic=c(3032.02,3424.38,3857.54,3699.15,3985.63,4316.87)
plot(market,type = "o", col = "red", xlab = "Consecutive Year (2012-2017)",
    ylab = "Revenue (in billions)",ylim=c(3000,5000),
    main = "Comparing GSVA (Basic Prices) and GSDP (Market Prices)")
lines(basic, type = "o", col = "blue")
legend("topleft", c("Market Prices","Basic Prices"),cex = 0.85,col=c("red","blue"),lty=1)
```


Comparing GSVA (Basic Prices) and GSDP (Market Prices)

Analysis

We are going to analyse that how these 3 sectors are interrelated to each other. In this cor(), is termed as the correlation function which is used to find the relation between two variables.

```
summary(GDDP)
```

##			SECTOR	Х
##	Railways		: 1	1 : 1
##	Storage		: 1	1.1 : 1
##	Agriculture, Forest	try & Fishing	: 1	1.2 : 1
##	Air Transport		: 1	1.3 : 1
##	Communication & Ser	rvices related to 1	broadcasting: 1	1.4 : 1
##	Construction		: 1	10 : 1
##	(Other)		:27	(Other):27
##	X2011.12	X2012.13	X2013.14	X2014.15
##	Min. : 546	Min. : 597	Min. : 541	Min. : 574
##	1st Qu.: 202513	1st Qu.: 207226	1st Qu.: 251706	1st Qu.: 274041
##	Median : 772879	Median : 746562	Median : 1015528	Median : 971255
##	Mean : 3273488	Mean : 4778074	Mean : 5401581	Mean : 5985288
##	3rd Qu.: 3806351	3rd Qu.: 4534332	3rd Qu.: 5170922	3rd Qu.: 5597141
##	Max. :30320163	Max. :39123843	Max. :44378279	Max. :49242422
##				
##	X2015.16	X2016.17		
##	Min. : 607	Min. : 639		
##	1st Qu.: 307520	1st Qu.: 336670		

```
## Median : 1176605 Median : 1309075
                             : 7532931
         : 6687357 Mean
## Mean
## 3rd Qu.: 6047627
                       3rd Qu.: 6357232
## Max.
           :55196341
                      Max.
                              :62238464
##
#Net primary revenue from 2011 to 2016
a1=c(1058350,1003608,1271412,1214345,1423370,1575064)
#Net secondary revenue from 2011 to 2016
a2=c(3968117,4849828,5426347,5769350,6923445,8064896)
#Net tertiary revenue from 2011 to 2016
a3=c(25293696,28390396,31877623,36039554,39736762,44698016)
#Correlation between Primary and Secondary sector
cor(a1,a2)
## [1] 0.948038
#Correlation between Tertiary and Secondary sector
cor(a2,a3)
## [1] 0.9887236
#Correlation between Primary and Tertiary sector
cor(a1,a3)
## [1] 0.9415312
data=GDDP[1:33,3:8]
#pairs(data)
cor(data)
##
            X2011.12 X2012.13 X2013.14 X2014.15 X2015.16 X2016.17
## X2011.12 1.0000000 0.7744305 0.7717676 0.7754447 0.7724135 0.7722075
## X2012.13 0.7744305 1.0000000 0.9999318 0.9997004 0.9994658 0.9987887
## X2013.14 0.7717676 0.9999318 1.0000000 0.9997766 0.9995933 0.9989742
## X2014.15 0.7754447 0.9997004 0.9997766 1.0000000 0.9998572 0.9994750
## X2015.16 0.7724135 0.9994658 0.9995933 0.9998572 1.0000000 0.9998506
## X2016.17 0.7722075 0.9987887 0.9989742 0.9994750 0.9998506 1.0000000
```

Here from the correlation data, the years which are consecutive to each other have values closer to 1. We can judge that the growth in these sectors are interrelated to each other.

Summary

From the above report we can see that the 3 sectors as follows:

- Primary Sector
- Secondary Sector
- Tertiary Sector

All are dependent on each other very closely. Without the increment in the revenue of one sector other sectors can not developed.

So, in order to increase the GSDP of Delhi, the government should equally work on all 3 sectors

2. Employment and Earnings

Delhi is the capital city of India and is regarded as the heart of India. The city is popular for its enriched culture, heritage and sky touching buildings whereas on the outskirts of Delhi lies the villages and refuges of Bangladesh where lies the most of the poverty.

Unemployment is also major factor of poverty because of the lack of skill-sets. All this results in the growing path towards the crime.

This report is based on 3 parameters of **Delhi**:

- Number of Below Poverty Line Households
- Unemployment
- Crime rate

Table

Here is the tabulation data:

1. Table for Poverty line (In Lakhs) where we can see the data of Rural and Urban people corresponding to their percentage below poverty line with their respective year:

```
pl=read.csv("Poverty_Line(Statistics).csv")
pl
```

```
##
            Year Rural Urban Combined
## 1
       1993-1994 0.19 15.32
                                 15.51
                  1.90 16.03
                                 14.69
## 2
      Percentage
       1999-2000
                  0.07 11.42
                                 11.49
## 3
## 4
     Percentage
                  0.40 9.42
                                  8.23
## 5
       2004-2005
                 1.40 18.90
                                 20.40
## 6
     Percentage 15.60 12.90
                                 13.10
## 7
       2009-2010
                  0.30 22.90
                                 23.30
## 8
     Percentage
                  7.70 14.40
                                 14.20
       2011-2012 0.50 16.50
## 9
                                 17.00
## 10 Percentage 12.90 9.80
                                  9.90
```

2. Table for Poverty line (per Ca-pita per Month) which gives the data of average money earned by both Rural and Urban people per month in a particular year:

```
plc=read.csv("Poverty_Line_Capita(Statistics).csv")
plc
```

Year Rural Urban 1973-1974 67.95 ## 1 49.95 ## 2 1977-1978 59.37 80.17 ## 3 1983-1985 88.57 123.29 ## 4 1987-1988 122.90 176.91 ## 5 1993-1994 233.79 309.48 ## 6 1996-1997 289.31 404.96 ## 7 1999-2000 362.68 454.11 ## 8 2004-2005 541.00 642.00 ## 9 2009-2010 748.00 1040.00 ## 10 2011-2012 1145.00 1134.00

3. Table for Employment and Unemployment Data (from June,2011-July,2012) with the corresponding data of how many are working in labor force and how many are out of labor force:

emp=read.csv("Unemployment_and_Emploment(Statistics).csv")
emp

##		Sector	Employment	Unemployment	Labour.Force	Out.of.Labour.Force
##	1	Male(Rural)	70421	8216	78637	132436
##	2	Female(Rural)	11901	293	12194	168319
##	3	Male(Urban)	5095753	204690	5300443	3617228
##	4	Female(Urban)	528042	53227	581269	7198275

4. Table for Crime Rates:

```
crime=read.csv("Crime(Statistics).csv")
crime
```

##		Description	X2013	X2014	X2015	X2016
##	1	Murder	517	586	570	528
##	2	Dacoity	33	82	75	46
##	3	Robbery	1245	6464	7407	4761
##	4	Burglary	2835	10309	12848	14307
##	5	Theft	30124	78753	104432	130928
##	6	Attempt to Murder	585	770	770	646
##	7	Arson	97	190	224	183
##	8	Crime under local laws	6616	9908	8599	7401
##	9	Miscellaneous I.P.C. Cases.	38537	50498	55871	50720
##	10	Rape	1636	2166	2199	2155
##	11	Dowry Death	144	153	122	162
##	12	Eve Teasing	916	1361	1492	918
##	13	Molestation of Women	3515	4322	5367	4165

Visualization

From the given graphs we can see that there is sudden increment in Growth Per Capita income from 2009 to 2012.

Growth in per Capita income can be shown as follows:

```
par(mfrow=c(1,2))
H <- c(plc$Rural)
M <- c("1973-74","1977-78","1983-85","1987-88","1993-94","1996-97","1999-00","2004-05","2009-10",
"2011-12")
barplot(H,names.arg = M,ylab = "Wages",col="blue",main="GrowthPerCapitaIncome(Rural)",las=2)
P <- c(plc$Urban)
Q <- c("1973-74","1977-78","1983-85","1987-88","1993-94","1996-97","1999-00","2004-05","2009-10",
"2011-12")
barplot(P,names.arg = Q,ylab = "Wages",col="red",main="GrowthPerCapitaIncome(Urban)",las=2)</pre>
```

GrowthPerCapitaIncome(Rural)

GrowthPerCapitaIncome(Urban)

Employment and Unemployment Rate in Delhi:

We can see from the below pie-charts that:

- In rural sector employment is 90.63 % and unemployment is 9.37 %.
- In urban sector employment is 95.61 % and unemployment is 4.39 %. So, there is high employment rates in Delhi district.

a1= Employment vs unemployment in rural sector including male and female community

a2= Employment vs unemployment in urban sector including male and female community

```
library(plotrix)
```

```
a1=c(70421+11901,8216+293)
piepercent<- round(100*a1/sum(a1),2)
lbls1=paste(piepercent,"%",sep="")
pie3D(a1,labels=lbls1,explode=0.1,main="Rural",col=rainbow(length(a1)))
legend("topright", c("Employed","Unemployed"), cex = 0.8,fill = rainbow(length(piepercent)))</pre>
```



```
a2=c(5095753+528042,204690+53227)
piepercent2<- round(100*a2/sum(a2),2)
lbls2=paste(piepercent2,"%",sep="")
pie3D(a2,labels=lbls2,explode=0.1,main="Urban",col=rainbow(length(a2)))
legend("topright", c("Employed","Unemployed"), cex = 0.8,fill = rainbow(length(piepercent2)))</pre>
```


Rates of crime activities in Delhi:

Crime rates were at peak in 2015 but decreased in the consecutive year as the employments rates were increasing.

R= Recorded crimes against women

Molestation of women in recent years

Analysis

We are going to analyse that how poverty line, employment and crime varies over the past years.

Poverty line analysis

pl = Poverty Line; plc = Poverty Line Capita

summary(pl)

Year Rural Urban Combined : 0.070 Min. ## 1993-1994 :1 Min. : 9.42 Min. : 8.23 ## 1999-2000 :1 1st Qu.: 0.325 1st Qu.:11.79 1st Qu.:11.89 ## 2004-2005 :1 Median : 0.950 Median :14.86 Median :14.45 2009-2010 :1 : 4.096 :14.76 :14.78 ## Mean Mean Mean 2011-2012 :1 3rd Qu.: 6.250 ## 3rd Qu.:16.38 3rd Qu.:16.63 Percentage:5 :15.600 :22.90 :23.30 ## Max. Max. Max. summary(plc) ## Year Rural Urban 1973-1974:1 : 49.95 : 67.95 ## Min. Min. 1st Qu.: 97.15 ## 1977-1978:1 1st Qu.: 136.69 ## 1983-1985:1 Median : 261.55 Median : 357.22 1987-1988:1 : 364.06 : 443.29 ## Mean Mean ## 1993-1994:1 3rd Qu.: 496.42 3rd Qu.: 595.03 :1145.00 ## 1996-1997:1 Max. Max. :1134.00

```
##
    (Other) :4
data=pl[1:10,2:4]
data1=plc[1:10,2:3]
# Correlation between Rural and Urban
cor(data)
##
                 Rural
                             Urban
                                     Combined
## Rural
             1.0000000 -0.3946116 -0.3516308
## Urban
            -0.3946116 1.0000000
                                    0.9874945
## Combined -0.3516308
                         0.9874945
                                    1.0000000
cor(data1)
##
             Rural
                        Urban
## Rural 1.0000000 0.9769177
## Urban 0.9769177 1.0000000
Employment analysis
emp= Employment-Unemployment Data
summary(emp)
##
              Sector
                         Employment
                                           Unemployment
                                                            Labour.Force
##
    Female(Rural):1
                              : 11901
                                         Min.
                                                 :
                                                     293
                                                           Min.
                                                                   : 12194
                      Min.
    Female(Urban):1
                       1st Qu.:
                                 55791
                                          1st Qu.:
                                                    6235
                                                           1st Qu.:
##
                                                                      62026
   Male(Rural) :1
##
                      Median : 299232
                                         Median : 30722
                                                           Median : 329953
##
   Male(Urban) :1
                      Mean
                              :1426529
                                          Mean
                                                : 66606
                                                           Mean
                                                                   :1493136
##
                                          3rd Qu.: 91093
                       3rd Qu.:1669970
                                                           3rd Qu.:1761062
                              :5095753
                                                 :204690
                                                                   :5300443
##
                       Max.
                                          Max.
                                                           Max.
##
   Out.of.Labour.Force
##
  Min.
           : 132436
   1st Qu.: 159348
##
##
  Median :1892774
##
  Mean
           :2779064
##
    3rd Qu.:4512490
## Max.
           :7198275
data3=emp[1:4,2:5]
# Correlation between employment, unemployment, labour force and out of labour force
cor(data3)
##
                        Employment Unemployment Labour.Force Out.of.Labour.Force
## Employment
                         1.0000000
                                      0.9881570
                                                    0.9999837
                                                                         0.2571965
## Unemployment
                         0.9881570
                                      1.0000000
                                                    0.9890174
                                                                         0.4003685
## Labour.Force
                         0.9999837
                                      0.9890174
                                                    1.0000000
                                                                         0.2626355
## Out.of.Labour.Force
                        0.2571965
                                      0.4003685
                                                    0.2626355
                                                                         1.0000000
Crime analysis
  • Here from the summary below we can conclude that the mean of number of crime rates are increasing
    every year and this point can be made stronger by using the correlation function.
```

• In correlation function, we see that every year the number of crime rates closely depends on the previous year rates.

summary(crime)

##		Description	2	K2013		X20)14		X20)15	
##	Arson	:1	Min.	:	33	Min.	:	82	Min.	:	75

```
##
    Attempt to Murder
                                  1st Qu.: 517
                                                   1st Qu.: 586
                                                                    1st Qu.:
                                                                                570
                           :1
                                                   Median : 2166
##
    Burglary
                                  Median : 1245
                                                                    Median :
                                                                              2199
                           :1
    Crime under local laws:1
##
                                  Mean
                                         : 6677
                                                   Mean
                                                          :12736
                                                                    Mean
                                                                            : 15383
##
    Dacoity
                           :1
                                  3rd Qu.: 3515
                                                   3rd Qu.: 9908
                                                                             8599
                                                                    3rd Qu.:
##
    Dowry Death
                           :1
                                  Max.
                                         :38537
                                                   Max.
                                                          :78753
                                                                    Max.
                                                                            :104432
    (Other)
##
                           :7
        X2016
##
##
    Min.
           :
                 46
   1st Qu.:
##
                528
##
    Median :
              2155
##
   Mean
           : 16686
##
    3rd Qu.:
              7401
##
    Max.
           :130928
##
data4=crime[1:13,2:5]
# Correlation between crime rate over years
cor(data4)
##
             X2013
                        X2014
                                   X2015
                                             X2016
## X2013 1.0000000 0.9246138 0.8875990 0.8215656
```

X2013 1.0000000 0.9246138 0.8875990 0.8215656
X2014 0.9246138 1.0000000 0.9957088 0.9751882
X2015 0.8875990 0.9957088 1.0000000 0.9911230
X2016 0.8215656 0.9751882 0.9911230 1.000000

Summary

From the above report we can summarize that:

• For Poverty line report:

- 1. Most of people from urban sector are present in Poverty line in Delhi.
- 2. So, the government should work in the urban sector more to reduce these numbers.
- 3. While talking about Growth in per Capita income in urban and rural sector they both running hand in hand of each other.

• For Employment and Unemployment report:

- 1. Female employment in both urban and rural are very less as compared to the Male employment.
- 2. This is extremely good that in both sectors we have employment of more than 90 %.

• For Crime report:

- 1. Crime rates are increasing like in burglary rates from 2013 were 2,835 rises to 14,307 in 2016.
- 2. From the correlation plot, we can analyse that any crime, one or the other way they are interrelated to each other.
- 3. So, the government need to take measures to stop causality the society is taking.

3. Fair Price Shops

Fair Price Shops - Major commodities distributed include staple food grains, such as wheat, rice, pulses, sugar, and kerosene, through a network of fair price shops (also known as ration shops) established in several states across the country by the distribution (i.e. medium) of **ration cards**.[2]

This report is based on 2 parameters of **Delhi**:

- Availability and the number of fair price shops
- Number of people with ration cards

Table

Here is the tabulation data for the number of ration card holders and number of fair price distribution in a particular year:

```
FPS=read.csv("Fair_Price_Shops(Statistics).csv")
FPS
```

##		Year	$Ration_Cards$	Fair_Price_Shops
##	1	2011-12	3339	2498
##	2	2012-13	3455	2479
##	3	2013-14	1779	2396
##	4	2014-15	1700	2310
##	5	2015-16	1957	2281
##	6	2016-17	1940	2254

Visualization

Ration Cards distribution across years:

There is a significant decline in the number of **ration cards** from 3,455 in year 2012-13 to 1,779 in year 2013-2014.

RC = Number of ration cards

Fair Price Shops Distribution:

The number of fair of price shops are gradually declining from 2011 to 2016.

P = Number of fair price shops
P <- c(FPS\$Fair_Price_Shops)
Q <- c("2011-12","2012-13","2013-14","2014-15","2015-16","2016-17")
barplot(P,names.arg = M,xlab = "Year",ylim=c(0,2500),ylab = "Number of fair price shops",col="red",mains</pre>

Analysis

We are going to analyse that how ration cards and fair price shops varies over the past years. In what way they are inter-related to each other.

Fair price shops analysis:

From the summary we can find out that the mean of number of ration cards is about 2,362 and mean of number of fair price shop is about 2,370.

summary(FPS)

```
##
         Year
                 Ration_Cards Fair_Price_Shops
##
   2011-12:1
                Min.
                        :1700
                                Min.
                                       :2254
##
    2012-13:1
                1st Qu.:1819
                                1st Qu.:2288
                                Median :2353
##
    2013-14:1
                Median :1948
##
    2014-15:1
                Mean
                        :2362
                                Mean
                                        :2370
##
    2015-16:1
                3rd Qu.:2994
                                3rd Qu.:2458
    2016-17:1
                                        :2498
##
                Max.
                        :3455
                                Max.
#plot(FPS)
data=FPS[1:6,2:3]
# Correlation between Ration Cards and Fair Price Shops
cor(data)
                    Ration_Cards Fair_Price_Shops
##
```

```
## Ration_Cards 1.0000000 0.8425556
```

Fair_Price_Shops 0.8425556 1.000000

Summary

From the above report we can summarize that:

- Average number of ration cards and fair price shops in the community are 2362 and 2370 respectively.
- Maximum number of fair price shops were 2498 with 3455 ration card holders in year 2012-2013 and 2011-2012 respectively.
- The ration cards distribution and the number of fair price shops are both dependent on each other.
- In recent years, we can see there is a decline in the number of ration cards and fair price shops.

4. Courts

There are in total 5 district courts in Delhi. There names are as follows:

- Tis Hazari
- Karkardooma
- Patiala House
- Rohini
- Dwarka

This report is based on 2 parameters of **Delhi**:

- Number of judges in district courts
- Number of cases open in district courts

Table

The following data has been taken from the link [3]

Here is the tabulation data:

Number of Judges in District courts:

```
judges=read.csv("Judges(Statistics).csv")
judges
```

##		Court	Number.of.Judges
##	1	Tis Hazari\xa0	120
##	2	Karkardooma	61
##	3	Patiala House	41
##	4	Rohini	44
##	5	Dwarka\xa0	35

Number of cases pending in District courts:

```
cases=read.csv("Cases(Statistics).csv")
cases
```

ig.cases
101016
50104
44323
44178
76480

Visualization

```
library(plotrix)
```

Pending cases distribution

Judges distribution in 5 different courts

Analysis

We are analyzing that one judge is with what number of pending cases in each district court. ## [1] "We can see that number of cases with each judge in Tis Hazari: 841.800000" ## [1] "We can see that number of cases with each judge in Karkardooma: 821.380000" ## [1] "We can see that number of cases with each judge in Patiala House: 1081.050000" ## [1] "We can see that number of cases with each judge in Rohini: 1004.050000" ## [1] "We can see that number of cases with each judge in Dwarka: 2185.140000"

Summary

From the above report we can summarize that:

- Most of the pending cases are in Tiz Hazari court i.e. 1,01,016 (more than one lakh cases).
- We should recruit more judges in every district court in order to decrease the number of case to judge ratio.
- Dwarka court is under most pressure as each judge is having approximately 2,185 cases pending.

5. Electricity

The **Delhi Vidyut Board (DVB)** was formed by the Government of Delhi in 1997 for the purpose of generation and distribution of power to the entire area of NCT of Delhi except the areas falling within the jurisdiction of New Delhi Municipal Council and Delhi Cantonment Board. On 1 July 2002, The Delhi Vidyut Board was unbundled into six successor companies:[4]

- Delhi Power Company Limited (DPCL) Holding Company
- Indraprastha Power Generation Company Limited (IPGCL) GENCO
- Delhi Transco Limited (DTL) TRANSCO
- BSES Rajdhani Power Limited (BRPL) DISCOM for South & West Delhi
- BSES Yamuna Power Limited (BYPL) DISCOM for Central & East Delhi
- North Delhi Power Limited (NDPL) DISCOM for North Delhi

This report is based on 2 parameters of **Delhi**:

- Electricity Generated and Purchased from other states
- Electricity Consumed

Table

Here is the tabulation data:

1. Table for amount of **Electricity generated and purchased from other state** for Delhi:

Items

```
EGP=read.csv("Elec_Gen_Purchased(Statistics).csv")
EGP
## X2013 X2014 X2015 X2016 X2017
```

1 4970 4723 4763 5941 4013.52 Locally Generated
2 28472 30006 21044 24618 24892.74 Purchased from other state
3 33442 34729 25807 30559 28906.26 Total

2. Table for amount of **Electricity consumed** in Delhi:

```
EC=read.csv("Elec_Consumed(Statistics).csv")
EC
```

X2013 X2014 X2015 X2016 X2017 Items ## 1 10796 11609 12386 12560 14059.68 Domestic purposes ## 2 5569 6786 6814 6053 7257.06 Commercial purposes 3068 ## 3 2979 3064 3135 3088.37 Industrial purposes ## 4 870 838 1007 1027 1097.65 Public Water Work and Street Lighting ## 5 1147 1484 1202 1262 1362.39 Others ## 6 21361 23781 24477 24037 26865.15 Total

Visualization

Electricity generated and purchased:

From the below graph we can see that our capacity to generate electricity locally is extremely low as comparing it to purchasing it from other states. We need to improve on our generation of electricity locally to control electric cut-off and overload problems. By generating locally we also increase our economy by stop buying electricity from other states.

```
data=structure(list(A=c(4970,28472),B= c(4723,30006),C= c(4763,21044),
D= c(5941,24618),E=c(4013.52,24892.74)),
```

```
.Names = c("2013", "2014", "2015", "2016", "2017"),
class = "data.frame",row.names = c(NA, 2))
attach(data)
print(data)
##
      2013
            2014
                  2015
                        2016
                                 2017
## 1 4970 4723 4763 5941 4013.52
## 2 28472 30006 21044 24618 24892.74
colours <- c("orange","green")</pre>
barplot(as.matrix(data), main="Electricity Generated and Purchased",
xlab="Years",ylab = "Number of Electricity Units",ylim=c(0,34000),
cex.lab = 0.8, cex.main = 1.1, beside=TRUE, col=colours)
legend("topright", c("Locally Generated", "Purchased from Outside"), cex=0.95, bty="n", fill=colours)
```


Electricity Generated and Purchased

Electricity consumed:

In this visualization, we can see that consumption of electricity is increasing from year 2013 to 2017 data in all domains such as domestic purposes, commercial purposes, industrial purposes, public water work and street lighting and other purposes.

```
EC = Electricity Consumed
```

```
library(plotrix)
#par(mfrow=c(1,2))
a1=c(EC$X2013[1],EC$X2014[1],EC$X2015[1],EC$X2016[1],EC$X2017[1])
piepercent<- round(100*a1/sum(a1),2)</pre>
```

```
18.9%
20.17%
20.45%
```

Domestic purposes

```
lbls1=paste(piepercent,"%",sep="")
pie3D(a1,labels=lbls1,explode=0.1,main="Domestic purposes",col=rainbow(length(a1)))
legend("topright", c("2013","2014","2015","2016","2017"), cex = 0.7,fill = rainbow(length(piepercent)))
```

```
a1=c(EC$X2013[2],EC$X2014[2],EC$X2015[2],EC$X2016[2],EC$X2017[2])
piepercent<- round(100*a1/sum(a1),2)
lbls1=paste(piepercent,"%",sep="")
pie3D(a1,labels=lbls1,explode=0.1,main="Commercial purposes",col=rainbow(length(a1)))
legend("topright", c("2013","2014","2015","2016","2017"), cex = 0.7,fill = rainbow(length(piepercent)))</pre>
```

Commercial purposes


```
#par(mfrow=c(1,2))
a1=c(EC$X2013[3],EC$X2014[3],EC$X2015[3],EC$X2016[3],EC$X2017[3])
piepercent<- round(100*a1/sum(a1),2)
lbls1=paste(piepercent,"%",sep="")
pie3D(a1,labels=lbls1,explode=0.1,main="Industrial purposes",col=rainbow(length(a1)))
legend("topright", c("2013","2014","2015","2016","2017"), cex = 0.7,fill = rainbow(length(piepercent)))</pre>
```

Industrial purposes


```
a1=c(EC$X2013[4],EC$X2014[4],EC$X2015[4],EC$X2016[4],EC$X2017[4])
piepercent<- round(100*a1/sum(a1),2)
lbls1=paste(piepercent,"%",sep="")
pie3D(a1,labels=lbls1,explode=0.1,main="Public Water Work and Street Lighting",col=rainbow(length(a1)))
legend("topright", c("2013","2014","2015","2016","2017"), cex = 0.7,fill = rainbow(length(piepercent)))</pre>
```

Public Water Work and Street Lighting


```
a1=c(EC$X2013[5],EC$X2014[5],EC$X2015[5],EC$X2016[5],EC$X2017[5])
piepercent<- round(100*a1/sum(a1),2)
lbls1=paste(piepercent,"%",sep="")
pie3D(a1,labels=lbls1,explode=0.1,main="Other purposes",col=rainbow(length(a1)))
legend("topright", c("2013","2014","2015","2016","2017"), cex = 0.7,fill = rainbow(length(piepercent)))</pre>
```

Other purposes

Analysis

We are analyzing that how the energy locally generated vs purchased from other state over the past years can be viewed by this scatter-plot.

EGP = Electricity Generated and Produced

```
# scatter plot
scatter.smooth(x=c(EGP$X2013[1],EGP$X2014[1],EGP$X2015[1],EGP$X2016[1],EGP$X2017[1]), y=c(EGP$X2013[2],
EGP$X2014[2],T
xlab="Locally generated",ylab="Purchased from other State",
main="Electricity production (In Million Units)")
```


Electricity production (In Million Units)

We are analyzing that how the energy is consumed over the past years and can be understood with this summary. We got that there is the minimal consumption of energy in the public and street lighting sector and highest energy consumption for the domestic usage. The median energy consumption is for the commercial sector in Delhi.

summary(EC)

##	X2013	X2014	X2015	X2016
##	Min. : 870	Min. : 838	Min. : 1007	Min. : 1027
##	1st Qu.: 1605	1st Qu.: 1879	1st Qu.: 1668	1st Qu.: 1730
##	Median : 4274	Median : 4925	Median : 4941	Median : 4594
##	Mean : 7120	Mean : 7927	Mean : 8159	Mean : 8012
##	3rd Qu.: 9489	3rd Qu.:10403	3rd Qu.:10993	3rd Qu.:10933
##	Max. :21361	Max. :23781	Max. :24477	Max. :24037
##	X2017			Items
##	Min. : 1098	Commercial purpo	oses	:1
##	1st Qu.: 1794	Domestic purpose	es	:1
##	Median : 5173	Industrial purpo	oses	:1
##	Mean : 8955	Others		:1
##	3rd Qu.:12359	Public Water Wor	ck and Street Lig	ghting:1
##	Max. :26865	Total		:1
plot	(EC)			

data=EC[1:5,1:5]
Correlation between consumption of electricity for different purposes over the past years
cor(data)

 ##
 X2013
 X2014
 X2015
 X2016
 X2017

 ##
 X2013
 1.000000
 0.9963209
 0.9984241
 0.9991035
 0.9982000

 ##
 X2014
 0.9963209
 1.000000
 0.9988088
 0.9933019
 0.9968004

 ##
 X2015
 0.9984241
 0.9988088
 1.0000000
 0.9968436
 0.9990863

 ##
 X2016
 0.9991035
 0.9933019
 0.9968436
 1.0000000
 0.9983843

 ##
 X2017
 0.9982000
 0.9968004
 0.9990863
 0.9983843
 1.0000000

Summary

From the above report we can summarize that:

- 1. We need to do tremendous work in order to generate your own electricity, to be self dependent.
- 2. We also need to keep in mind that with increasing technology, there is a continuous demand of electricity.
- 3. From the correlation plot we can judge that electricity consumption by domestic purposes, commercial purposes and industrial purposes are all interrelated to each other.

6. Healthcare

Health care or healthcare is the maintenance or improvement of health via the prevention, diagnosis, and treatment of disease, illness, injury, and other physical and mental impairments in people. Health care is delivered by health professionals (providers or practitioners) in allied health fields. Physicians and physician associates are a part of these health professionals. Dentistry, midwifery, nursing, medicine, optometry, audiology, pharmacy, psychology, occupational therapy, physical therapy and other health professions are all part of health care. It includes work done in providing primary care, secondary care, and tertiary care, as well as in public health.[5]

This report is based on 2 parameters of **Delhi**:

- Number of MBBS doctors
- Prevalent diseases in Delhi

Table

Here is the tabulation data:

Number of MBBS Doctors in Delhi which are of two categories i.e. Allopathic Doctors and Dental Surgeons:

The following data has been taken from the link [6]

```
doctors=read.csv("Doctors(Statistics).csv")
doctors
```

##			Year	Allopathic.Doctors	Dental.Surgons
##	1	Upto	2008	5050	5720
##	2		2009	793	6280
##	3		2010	905	6280
##	4		2011	1006	6280
##	5		2012	946	6280
##	6		2013	1073	7642
##	7		2014	1159	7642

Prevalent diseases in Delhi:

The following data has been taken from the link [7]

- M-Malaria
- ADD-Acute Diarrhoeal Diseases
- ARI-Acute Respiratory Infection
- VD-Viral Hepatitis

```
diseases=read.csv("Diseases(Statistics).csv")
diseases
```

##		Year (Cases.M.	Deaths.M.	Cases.ADD.	Deaths.ADD.	Cases.ARI.	Deaths.ARI.
##	1	2008	253	0	117766	86	370816	140
##	2	2009	169	0	145171	107	200631	76
##	3	2010	251	0	115478	89	249463	182
##	4	2011	413	0	102983	62	198541	102
##	5	2012	382	0	136567	98	290841	232
##	6	2013	353	0	129367	62	390170	175
##	7	2014	98	0	120618	77	369406	106
##	8	2015	54	0	148734	82	307597	108
##		Cases	.VH. Deat	ths.VH.				
##	1	(6342	62				
##	2	7657	40					
----	---	------	-----					
##	3	6510	61					
##	4	8347	68					
##	5	8184	66					
##	6	8290	131					
##	7	6965	98					
##	8	8362	76					

Visualization

From these we can analyse that till 2009 number of dental surgeons (i.e. 6,280) were more than allopathic doctors but after that the number of allopathic doctors increased dramatically over the years. According to the data, final number of allopathic doctors are pretty more than dental surgeons.

Types of Doctors details:

```
data=structure(list(A=c(5050,5720),B= c(5843,6280),C= c(6748,6280),
D= c(7754,6280),E=c(8700,6280),F=c(9773,7642),G=c(10932,7642)),
.Names = c("Till 2008", "Till 2009", "Till 2010","Till 2011",
"Till 2012","Till 2013","Till 2014"),class = "data.frame",row.names = c(NA, 2))
attach(data)
#print(data)
colours <- c("red","green")
barplot(as.matrix(data), main="Doctors in Delhi",
ylab = "Number of Doctors",ylim=c(0,11000),
cex.lab = 0.8, cex.main = 1.1, beside=TRUE, col=colours,las=2)
legend("topleft", c("Allopathic Doctors","Dental Surgeons"), cex=0.95, bty="n", fill=colours)
```


Doctors in Delhi

Analysis

We are analyzing the number of doctors and which disease is dominant in Delhi over the past years. summary(doctors)

```
##
            Year
                   Allopathic.Doctors Dental.Surgons
##
    2009
              :1
                   Min.
                           : 793.0
                                        Min.
                                                :5720
    2010
                   1st Qu.: 925.5
                                        1st Qu.:6280
##
              :1
##
    2011
              :1
                   Median :1006.0
                                        Median :6280
    2012
                                                :6589
##
              :1
                   Mean
                           :1561.7
                                        Mean
##
    2013
              :1
                   3rd Qu.:1116.0
                                        3rd Qu.:6961
##
    2014
              :1
                   Max.
                           :5050.0
                                        Max.
                                                :7642
##
    Upto 2008:1
summary(diseases)
##
                        Cases.M.
                                        Deaths.M.
                                                      Cases.ADD.
                                                                       Deaths.ADD.
         Year
##
    Min.
            :2008
                    Min.
                            : 54.0
                                      Min.
                                              :0
                                                   Min.
                                                           :102983
                                                                      Min.
                                                                              : 62.00
##
    1st Qu.:2010
                     1st Qu.:151.2
                                      1st Qu.:0
                                                   1st Qu.:117194
                                                                      1st Qu.: 73.25
    Median :2012
                     Median :252.0
                                      Median :0
                                                   Median :124992
                                                                      Median : 84.00
##
##
    Mean
            :2012
                    Mean
                            :246.6
                                      Mean
                                              :0
                                                   Mean
                                                           :127086
                                                                      Mean
                                                                              : 82.88
##
    3rd Qu.:2013
                     3rd Qu.:360.2
                                      3rd Qu.:0
                                                   3rd Qu.:138718
                                                                      3rd Qu.: 91.25
            :2015
##
                            :413.0
                                                           :148734
                                                                      Max.
                                                                              :107.00
    Max.
                     Max.
                                      Max.
                                              :0
                                                   Max.
##
      Cases.ARI.
                        Deaths.ARI.
                                          Cases.VH.
                                                           Deaths.VH
##
    Min.
            :198541
                      Min.
                              : 76.0
                                        Min.
                                                :6342
                                                         Min.
                                                                : 40.00
```

##	1st Qu.	:237255	1st Qu.	:105.0	1st Qu.	:6851	1st Qu.	:	61.75
##	Median	:299219	Median	:124.0	Median	:7920	Median	:	67.00
##	Mean	:297183	Mean	:140.1	Mean	:7582	Mean	:	75.25
##	3rd Qu.	:369758	3rd Qu.	:176.8	3rd Qu.	:8304	3rd Qu.	:	81.50
##	Max.	:390170	Max.	:232.0	Max.	:8362	Max.	:1	31.00

Summary

From the above report we can summarize that:

- There are in total 10,932 MBBS doctors.
- Acute diarrhoeal diseases and acute respiratory infection are prevalent diseases in Delhi as it contains the most number of causes and death tolls.

7. Tourism

Delhi Tourism, a government undertaking facilitating tourism since 1975 will take you to a guided tour of the Delhi through this website which explores the wonders of this city be it its heritage, the art and crafts, the diverse cuisine and culture.

A symbol of the country's rich past and thriving present, Delhi is a city where ancient and modern blend seamlessly together. It is a place that not only touches your pulse but even fastens it to a frenetic speed. Home to millions of dreams, the city takes on unprecedented responsibilities of realizing dreams bringing people closer and inspiring their thoughts.[8]

This report is based on 3 parameters of **Delhi**:

- Tourist destinations number of attractions
- Number of tourists in a year
- Total revenue from tourism in a year

Table

Here is the tabulation data:

Popular Tourist destinations:

TD=read.csv("Tourist_Destination(Statistics).csv")
TD

##		S.No	Tourist Destinations	Type of Destination
##	1	1	Ahimsa Sthal	Pilgrimage
##	2	2	Air Force Museum	Museum
##	2	2	Akshardam Mandir	Pilgrimage
##	4	4	Buddha Memorial	Memorial
##	-т Б	5	Chhatarnur Temple	Pilgrimage
##	6	6	Craft Museum	
##	7	7	Delhi Zoo	700
##	2 Q	, Q	Dilli Haat - INA	Handicraft Markot
## ##	a	0 Q	Dilli Haat - Ditampura	Handicraft Market
##	10	10	Candhi Smriti	Memorial
##	11	11	Curuduara Bangla Shahib	Pilgrimage
## ##	10	10	Guruduara Baligia Shahibi Guruduara Bakab Cani	Pilgrimage
## ##	12	12	Curuduara Sig Cani	Pilgrimage
## ##	1/	1/	Hogrot Nigom-ud-din Shrino	Pilgrimage
## ##	14	14	Haziat Nizam-uu-uin Shiine	Filgrimage
## ##	10	15	Humayun Tomb	Monument
## ##	17	10	India Gate	Monument
## ##	10	10	Indira Ganani Smilli Sharkaria International Dalla Museum	Mellorial
## ##	10	10	Shankar's International Dolls Museum	Museum Dil maine ne
## ##	19	19		Pilgrimage
## 	20	20	Jama Masjid	Pilgrimage
## 	21	21	Jantar Mantar	Monument
##	22	22	Kotla Feroz Snan	Monument
##	23	23	Laxmi Narain lemple (Birla Mandir)	Pilgrimage
##	24	24	Lodhi Tomb	Monument
##	25	25	Mugnal Garden	Garden
##	26	26	National Gallery of Modern Art	Museum
##	27	27	National Museum	Museum
##	28	28	National Museum of Natural History	Museum
##	29	29	National Rail Museum	Museum

##	30	30	National Science Centre Museum	Museum
##	31	31	Nehru Museum	Museum
##	32	32	Nehru Planetarium	Planetarium
##	33	33	Palika Bazaar	Underground Market
##	34	34	Pragati Maidan	Exhibition Ground
##	35	35	Purana Qila & Old Fort Museum	Monument
##	36	36	Qutab Minar	Monument
##	37	37	Rahim-Khane-Khanam Tomb	Monument
##	38	38	Raj Ghat	Memorial
##	39	39	Red Fort	Monument
##	40	40	Safdarjung Tomb	Monument
##	41	41	Sanskriti Museum	Museum
##	42	42	Sultan Ghari's Tomb	Monument
##	43	43	The Bahai Temple (Lotus Temple)	Monument
##	44	44	The Garden of Five Senses	Garden
##	45	45	Tughluqabad Fort & GhiyassuddinTuglag Tomb	Monument
##	46	46	Yog Maya Mandir	Pilgrimage

Number of tourists in a year:

TT=read.csv("Total_Tourist(Statistics).csv") TT

##		Month	Total.Domestic.Tourists	Total.Foreign.Tourists
##	1	July\x9209	1261854	44350
##	2	August\x9209	1165403	44068
##	3	September $x9209$	1298121	46592
##	4	October\x9209	1201617	119352
##	5	November\x9209	1119356	110998
##	6	December\x9209	1175783	104327
##	7	January\x9210	1142638	66877
##	8	February\x9210	747344	60924
##	9	March\x9210	761639	58546
##	10	April\x9210	1049967	86882
##	11	May\x9210	1087991	80558
##	12	June\x9210	1144971	36482
##	13	Total	13156684	859956

Total revenue from tourism in various years:

```
TR=read.csv("Tourism_Revenue(Statistics).csv")
TR
```

Month X2012 X2013 X2014 X2015 X2016 ## 1 Jan 8623 10785 11664 12100 13671 ## 2 Feb 8502 10255 11510 11642 13661 ## 3 Mar 7843 9545 10479 11133 12985 ## 4 Apr 6745 7226 9179 10091 11495 ## 5 May 5562 6627 7936 9505 10260 ## 6 Jun 6485 7149 8366 9564 10677 ## 7 Jul 8389 8620 10284 11982 14285 Aug 7260 ## 8 8351 10385 11411 12553 ## 9 Sep 6652 7811 9057 10415 11642 ## 10 Oct 8154 8645 10041 10549 12100 ## 11 Nov 9723 10663 11431 12649 14259 ## 12 Dec 10549 11994 12988 14152 16558 ## 13 Total 94487 107671 123320 135193 154146

Visualization

TD= Tourist destinations; TT= Total number of tourist in a year; TR= Total revenue from tourism in a year

```
v=TT$Total.Domestic.Tourists[1:12]
t=TT$Total.Foreign.Tourists[1:12]
plot(v,type = "o", col="red",xlab ="Month",ylab="Tourist",ylim = c(36000,1300000),main="Number of touri
lines(t,type = "o", col="blue")
legend("topright", c("Domestic","Foreign"),cex = 0.65,col=c("red","blue"),lty=1)
```


Number of tourists in year 2009–2010

Comparing revenue generated in 2015 and 2016

Analysis

We are analyzing on Number of local vs foreign tourists, Tourist destination and relation between Total revenue earned over the past years.

```
summary(TT)
```

##	Month		Total.Do	mestic.T	ourists	Total.Fo	oreign.Tour:	ists
##	April\x9210	:1	Min. :	747344		Min.	: 36482	
##	August\x920	9:1	1st Qu.:	1087991		1st Qu.:	: 46592	
##	December\x9	209:1	Median :	1144971		Median	: 66877	
##	February\x9	210:1	Mean :	2024105	5	Mean	:132301	
##	January\x92	10 :1	3rd Qu.:	1201617		3rd Qu.:	:104327	
##	July\x9209	:1	Max. :	13156684		Max.	:859956	
##	(Other)	:7						
sum	mary(TR)							
##	Month	X 2	112	X20	13	X	0014	X2015
##	Apr :1	Min.	: 5562	Min.	: 6627	Min.	: 7936	Min. : 9505
##	Aug :1	1st Qu	.: 6745	1st Qu.	: 7811	1st Qi	1.: 9179	1st Qu.: 10415
##	Dec :1	Median	: 8154	Median	: 8645	Mediar	n : 10385	Median : 11411
##	Feb :1	Mean	:14536	Mean	: 16565	Mean	: 18972	Mean : 20799
##	Jan :1	3rd Qu	.: 8623	3rd Qu.	: 10663	3rd Qu	1.: 11510	3rd Qu.: 12100
##	Jul :1	Max.	:94487	Max.	:107671	Max.	:123320	Max. :135193
##	(Other):7							

```
##
        X2016
##
           : 10260
   Min.
##
   1st Qu.: 11642
   Median : 12985
##
##
   Mean
           : 23715
   3rd Qu.: 14259
##
##
   Max.
           :154146
##
data=TR[1:11,2:6]
# Correlation between Total revenue earned over the past years
cor(data)
##
             X2012
                       X2013
                                 X2014
                                            X2015
                                                      X2016
## X2012 1.0000000 0.9139915 0.9150278 0.9123328 0.9245829
## X2013 0.9139915 1.0000000 0.9632958 0.8875763 0.8716369
## X2014 0.9150278 0.9632958 1.0000000 0.9245612 0.9161341
## X2015 0.9123328 0.8875763 0.9245612 1.0000000 0.9721120
```

X2016 0.9245829 0.8716369 0.9161341 0.9721120 1.0000000

Summary

From the above report we can summarize that:

- Tourist destinations number of attractions:
- 1. There are in total 46 places approved by Delhi government for the domestic as well as foreign tourists to visit.
- Number of tourists in year 2009-2010:
- 1. The number of tourists are increasing yearly.
- 2. We can see that the number of tourists increased significantly in winter session.
- 3. There were in total 1,31,56,684 (more than 131 lakhs) domestic tourist and 8,59,956 (more than 8 lakhs) international tourist in Delhi.

• Total revenue from tourism in a year:

- 1. The revenue earned is increasing year-wise.
- 2. As from cor plot, The revenue earned also depends strongly on the previous year earned revenue and the number of tourists visited.

8. Population and Education Data

Private schools in Delhi—which use either English or Hindi as the language of instruction—are affiliated to one of three administering bodies, the Council for the Indian School Certificate Examinations (CISCE), the Central Board for Secondary Education (CBSE) or the National Institute of Open Schooling (NIOS). In 2004–05, approximately 15.29 lakh (1.529 million) students were enrolled in primary schools, 8.22 lakh (0.822 million) in middle schools and 6.69 lakh (0.669 million) in secondary schools across Delhi. Female students represented 49 % of the total enrollment. The same year, the Delhi government spent between 1.58 % and 1.95 % of its gross state domestic product on education.[9]

This report is based on 2 parameters of **Delhi**:

- Population of Delhi
- Literate persons in Delhi

Table

Here is the tabulation data:

Population of Delhi:

In this table we can see that how much males and females, according to their age groups live in rural and urban part of Delhi.

ppl=read.csv("Population_Statistics.csv", stringsAsFactors = FALSE)
ppl

##		AgeGroup	Male_R	Female_R	Male_U	Female_U
##	1	0-4	21481	17644	712855	629220
##	2	005-009	23698	18896	805789	687589
##	3	10-14	25479	20404	869967	732297
##	4	15-19	24916	19451	900202	722806
##	5	20-24	23805	20602	927606	792047
##	6	25-29	20584	18666	857612	771464
##	7	30-34	17431	16402	740024	660842
##	8	35-39	16738	14910	681717	605879
##	9	40-44	14180	11782	576678	494557
##	10	45-49	10981	8695	484246	407291
##	11	50-54	7917	6430	368305	304817
##	12	55-59	5372	4927	263813	234780
##	13	60-64	5700	5924	232403	227992
##	14	65-69	3125	2998	136273	130056
##	15	70-74	2171	2147	92776	92156
##	16	75-79	980	1067	49466	49180
##	17	80+	1482	1540	52379	57630

Literate persons in Delhi:

In this table we can see that how much literate males and females, live in different sub-divisions of Delhi.

```
lit=read.csv("Literate(Statistics).csv")
lit
```

##		Place	Literate.Male.	Literate.Female.
##	1	NCT of Delhi	7194856	5542911
##	2	North West	1541952	1165903
##	3	North	381615	299902

##	4	North East	912481	699107
##	5	East	748382	604616
##	6	New Delhi	65678	48501
##	7	Central	240518	201842
##	8	West	109399	867246
##	9	South West	1025261	762428
##	10	South	1185036	893366

Visualization

Distribution of Population in Delhi:

From the below pie chart we can analyse the following things:

- Most of the Delhi population lives in urban part which combines to 97.51~% of the total population.
- Whereas the rural part comprises of only 2.49 % of the total Delhi population.

```
a1=c(sum(ppl$Male_R),sum(ppl$Female_R),sum(ppl$Male_U),sum(ppl$Female_U))
piepercent<- round(100*a1/sum(a1),2)
lbls1=paste(piepercent,"%",sep="")
pie3D(a1,labels=lbls1,explode=0.1,main="Population distribution",
col=rainbow(length(a1)))
legend("topright", c("Male Rural", "Female Rural",
"Male Urban", "Female Urban"),cex = 0.7,fill = rainbow(length(piepercent)))</pre>
```

Population distribution

Literate persons in Delhi:

The graph shows that how in 10 different parts of Delhi the distribution of literate males and females in the society.

```
M=lit$Literate.Male.
F=lit$Literate.Female.
plot(M,type = "o", col = "red", xlab = "Portion of Delhi",
ylab = "Population",ylim=c(0,720000),main = "Literate Population Distribution")
lines(F, type = "o", col = "blue")
legend("topright", c("Literate Male","Literate Female"),cex = 0.85,col=c("red","blue"),lty=1)
```


Literate Population Distribution

Analysis

We are analyzing the number of literate persons(Male-Female), population(Female Rural-Female Urban) of the district by using the linear regression. Linear regression is used to compare the two variables together that how their graph is plotted, their slope (+ve or -ve) or the intercept on the axis.

```
#summary(ppl)
# Scatter plot of population of literate
#plot(ppl)
#summary(lit)
lm(lit$Literate.Male. ~ lit$Literate.Female.)
##
## Call:
## lm(formula = lit$Literate.Male. ~ lit$Literate.Female.)
##
```

```
## Coefficients:
##
            (Intercept)
                         lit$Literate.Female.
             -111430.05
##
                                          1.31
lm(ppl$Female_R ~ ppl$Female_U)
##
## Call:
## lm(formula = ppl$Female_R ~ ppl$Female_U)
##
## Coefficients:
##
   (Intercept) ppl$Female_U
##
     -699.99319
                      0.02689
```

Summary

From the above report we can summarize that:

- Most of the literate population lives in NCT region of Delhi i.e. Male 71,94,856 (more than 71 lakhs) and Female 55,42,911 (more than 55 lakhs).
- Most of the population lives in urban region of Delhi (i.e. 97.51 % of total population of Delhi).
- Literate male and female are dependent on each other in increasing graph pattern.
- Form the above linear regression, female urban is very less dependent on female rural.

9. Industries

An **industry** is a place where there is production of goods or related services within an economy. The major source of revenue of a group or company is the indicator of its relevant industry. When a large group has multiple sources of revenue generation, it is considered to be working in different industries. Manufacturing industry became a key sector of production and labor in European and North American countries during the Industrial Revolution, upsetting previous mercantile and feudal economies. This came through many successive rapid advances in technology, such as the production of steel and coal.[10]

This report is based on 2 parameters of **Delhi**:

- Number of Industries
- Type of industries: According to Labour, Raw materials and Ownership

Table

Here is the tabulation data for the years 2014 - 2016:

Number and types of factories:

```
nf=read.csv("Number_Factories(Statistics).csv")
```

nf

##			Types.of.Factories X2014 X2015	X2016
##	1		Food Products 330 333	340
##	2		Beverages, Tobacco 46 44	44
##	3		Textiles products 2033 2012	2013
##	4		Wood products 265 266	269
##	5		Paper & Paper products 765 771	776
##	6		Leather 298 298	300
##	7	F	Rubber, Plastic, Petroleum 666 666	662
##	8		Chemical products 295 291	290
##	9	Non-	-metallic Mineral products 82 82	82
##	10	Bas	sic Metal & Alloy Industry 525 523	519
##	11		Metal products 1913 1890	1890
##	12	Electric	city, Gas and Stream Water 104 104	109
##	13		Wholesale Trade 73 95	91
##	14	Public Administra	ation and Defence Services 9 9	9
##	15		Sanitary Services 17 17	18
##	16		Repair Services 540 550	556
##	17		Miscellaneous group 1007 1003	1000

Number of workers in each type of factory:

```
workers=read.csv("Workers(Statistics).csv")
workers
```

##		Types.of.Factories	X2014	X2015	X2016
##	1	Food Products	20316	20500	21316
##	2	Beverages, Tobacco	3214	3074	3134
##	3	Textiles products	141263	139803	140408
##	4	Wood products	10317	10356	10541
##	5	Paper & Paper products	29816	30050	29997
##	6	Leather	12872	12872	13054
##	7	Rubber, Plastic, Petroleum	15365	15365	14952
##	8	Chemical products	11793	11633	11548
##	9	Non-metallic Mineral products	2426	2426	2426

##	10		Basic Me	etal	& Alloy	Industry	8614	8581	8373
##	11				Metal	products	76427	75508	75215
##	12		Electricity,	Gas	and Stre	eam Water	5935	5935	6065
##	13				Wholesa	ale Trade	657	855	650
##	14	Public	${\tt Administration}$	and	Defence	Services	7655	7655	7655
##	15			5	Sanitary	Services	391	391	102
##	16				Repair	Services	30502	31067	31431
##	17			Mis	scellane	ous group	39364	39207	39966

Visualization

```
data=structure(list(A=c(330,333,340),B= c(46,44,44),C= c(2033,2012,2013),
D= c(265,266,269),E=c(765,771,776),F=c(298,298,300),G=c(666,666,662),H=c(295,291,290)
,I=c(82,82,82),J=c(525,523,519),K=c(1913,1890,1890),L=c(104,104,109)
,M=c(73,95,91),N=c(9,9,9),O=c(17,17,18),P=c(540,550,556)
,Q=c(1007,1003,1000)),
.Names = c("Food", "Beverages", "Textiles",
"Wood", "Paper", "Leather", "Plastic", "Chemical"
,"Non-metal","Basic Alloy","Metal","Electricity",
"Wholesale", "Defense", "Sanitary", "Repair",
"Others"), las=1, class = "data.frame", row.names = c(NA, 3))
attach(data)
#print(data)
colours <- c("red","green", "orange")</pre>
barplot(as.matrix(data), main="Factories distribution for types of products",ylab = "Number of Factorie
cex.lab = 0.8, cex.main = 1.1, beside=TRUE, col=colours,las=2)
legend("topright", c("2014","2015","2016"), cex=1.1, bty="n", fill=colours)
```


Factories distribution for types of products

Analysis

We are analyzing the amount of factories available and the workers working in each factories. summary(nf)

```
X2014
                                                                         X2015
##
                              Types.of.Factories
##
    Basic Metal & Alloy Industry
                                        : 1
                                                  Min.
                                                          :
                                                              9.0
                                                                    Min.
                                                                            :
                                                                                9.0
    Beverages, Tobacco
                                        : 1
                                                             82.0
                                                                               95.0
##
                                                  1st Qu.:
                                                                    1st Qu.:
##
    Chemical products
                                       : 1
                                                  Median : 298.0
                                                                    Median : 298.0
                                                          : 527.5
                                                                            : 526.7
##
    Electricity, Gas and Stream Water: 1
                                                  Mean
                                                                    Mean
##
    Food Products
                                        : 1
                                                  3rd Qu.: 666.0
                                                                    3rd Qu.: 666.0
##
    Leather
                                        : 1
                                                  Max.
                                                          :2033.0
                                                                    Max.
                                                                            :2012.0
    (Other)
##
                                       :11
##
        X2016
##
                9.0
    Min.
           :
##
    1st Qu.: 91.0
    Median : 300.0
##
##
           : 527.5
    Mean
    3rd Qu.: 662.0
##
##
    Max.
            :2013.0
##
summary(workers)
                                                      X2014
```

##	Basic Metal & Alloy Industry	: 1	Min.	:	391	Min.	:	391
##	Beverages, Tobacco	: 1	1st Qu	.:	5935	1st Qu	ı.:	5935
##	Chemical products	: 1	Median	:	11793	Mediar	ı :	11633
##	Electricity, Gas and Stream Wat	ter: 1	Mean	:	24525	Mean	:	24428
##	Food Products	: 1	3rd Qu	.:	29816	3rd Qu	ı.:	30050
##	Leather	: 1	Max.	:1	L41263	Max.	:	139803
##	(Other)	:11						
##	X2016							
##	Min. : 102							
##	1st Qu.: 6065							
##	Median : 11548							
##	Mean : 24520							
##	3rd Qu.: 29997							
##	Max. :140408							
##								

Summary

From the above report we can summarize that:

- Highest number of factories in Delhi are for textiles products and have decreased over the years from 2033 in year 2014 to 2013 in year 2016.
- There are very few Public Administration and Defense Services factories (i.e. 9 only) in Delhi and these are not being developed i.e stagnant over the years.
- There is a majority a workers working in factories to manufacture Textiles products i.e. 1,40,408 (more than one lakh forty thousand) in year 2016.
- There is a significant decrements in the number of workers in Sanitary services over the years.
- The second most place for the workers in Delhi is the Metal products factory.

10. Education

Education is the process of facilitating learning, or the acquisition of knowledge, skills, values, beliefs, and habits. Educational methods include storytelling, discussion, teaching, training, and directed research. Education frequently takes place under the guidance of educators, however learners may also educate themselves. Education can take place in formal or informal settings and any experience that has a formative effect on the way one thinks, feels, or acts may be considered educational. The methodology of teaching is called pedagogy.

Formal education is commonly divided formally into such stages as preschool or kindergarten, primary school, secondary school and then college, university, or apprenticeship.

This report is based on 4 parameters of **Delhi**:

- Number of: Schools, Colleges and Higher education institutes, Universities
- Students studying (Male/Female)
- Teachers
- Number of Agriculture universities/colleges

Table

Here is the tabulation data:

Number of Schools:

```
sch=read.csv("Schools(Statistics).csv")
sch
```

##		Insti	tutions	X2011.2012	X2012.2013	X2013.2014	X2014.2015	X2015.2016
##	1	Sr. Secondary	School	1427	1504	1627	1674	1684
##	2	Secondary	School	463	458	389	385	393
##	3	Middle	Schools	600	564	728	933	940
##	4	Primary	Schools	2581	2580	2657	2766	2742
##	5	Pre Primary	Schools	51	49	52	40	37
##		X2016.2017						

 ##
 1
 1704

 ##
 2
 400

 ##
 3
 933

 ##
 4
 2700

 ##
 5
 35

Number of School Students:

B-Boys; G-Girls

```
ss=read.csv("Students_School(Statistics).csv")
ss
```

##			Class	X2013.2014	X2014.2015	X2015.2016	X2016.2017
##	1	Pre Primary	School(B)	99379	108775	114960	118208
##	2	Pre Primary	School(G)	91722	99247	100715	103889
##	3	Primary	School(B)	980954	1002103	1007287	990510
##	4	Primary	School(G)	850725	873419	879687	870612
##	5	Middle	School(B)	600410	596407	595565	602052
##	6	Middle	School(G)	516570	519146	524471	525327
##	7	Secondary	School(B)	350331	350191	370533	391554
##	8	Secondary	School(G)	294300	301952	321148	349377
##	9	Sr. Secondary	School(B)	317184	294802	267448	252761

10 Sr. Secondary School(G)

249022

239044

Number of School teacher:

M-Male; F-Female

```
d=read.csv("Teachers_School(Statistics).csv")
d
```

	-	ł	
c		ı	
	-		

##			Class	X2013.2014	X2014.2015	X2015.2016	X2016.2017
##	1	Pre Primary	School(M)	0	0	0	0
##	2	Pre Primary	School(F)	187	162	131	116
##	3	Primary	School(M)	7330	7284	7573	7567
##	4	Primary	School(F)	20982	22262	21873	21400
##	5	Middle	School(M)	1471	1733	1719	1765
##	6	Middle	School(F)	7845	10008	10596	11026
##	7	Secondary	School(M)	2744	2389	2615	2465
##	8	Secondary	School(F)	7038	6981	7677	7144
##	9	Sr. Secondary	School(M)	26140	25120	26635	26626
##	10	Sr. Secondary	School(F)	63835	63541	67274	71062

284119

Number of College Students and Teachers:

B-Boys; MT-Man Teacher

G-Girls; WT-Woman Teacher

```
c=read.csv("Students_Teacher_College(Statistics).csv")
```

```
С
```

```
##
                                       Institutions X2013.2014 X2014.2015
## 1 Universities Colleges & Other Institutions(B)
                                                        558195
                                                                   580963
## 2 Universities Colleges & Other Institutions(G)
                                                        515391
                                                                   536148
## 3 Universities Colleges & Other Institutions(MT)
                                                          2474
                                                                     1895
## 4 Universities Colleges & Other Institutions(WT)
                                                          1156
                                                                      985
    X2015.2016 X2016.2017
##
## 1
        848810
                   727817
## 2
        758769
                    646141
## 3
           3546
                      3548
## 4
           1701
                      1752
```

Number of Universities:

B-Boys; G-Girls; Co-Education

```
e=read.csv("University(Statistics).csv")
```

```
е
```

##		Institutions	X2013.2014	X2014.2015
##	1	Universities(B)	0	0
##	2	Universities(G)	1	1
##	3	Universities(Co-Edn.)	10	10
##	4	Institutions deemed as Universities(B)	0	0
##	5	Institutions deemed as Universities(G)	0	0
##	6	Institutions deemed as Universities(Co-Edn.)	12	12
##	7	Institutions of National Importance (B)	0	0
##	8	Institutions of National Importance (G)	0	0
##	9	Institutions of National Importance (Co-Edn.)	3	3
##	10	Colleges for General Education(B)	0	0
##	11	Colleges for General Education(G)	24	24

##	12	Colle	eges for Gen	neral Education(Co-Edn.)	61	61
##	13	Coll	Leges for Pr	rofessional Education(B)	0	0
##	14	Coll	Leges for Pr	rofessional Education(G)	2	2
##	15	Colleges	for Profess	sional Education(Co-Edn)	95	95
##		X2015.2016	X2016.2017			
##	1	0	0			
##	2	1	1			
##	3	11	11			
##	4	0	0			
##	5	0	0			
##	6	12	11			
##	7	0	0			
##	8	0	0			
##	9	3	4			
##	10	0	0			
##	11	24	24			
##	12	60	60			
##	13	0	0			
##	14	2	8			
##	15	98	94			

Visualization

Schools distribution in Delhi:

51

49

```
data=structure(list(A=c(1427,463,600,2581,51),B= c(1504,458,564,2580,49),C= c(1627,389,728,2657,52),
                    D = c(1674, 385, 933, 2766, 40),
                    E=c(1684,393,940,2742,37)),
.Names = c("2011-2012", "2012-2013", "2013-2014", "2014-2015",
"2015-2016"),class = "data.frame",row.names = c(NA, 5))
attach(data)
print(data)
     2011-2012 2012-2013 2013-2014 2014-2015 2015-2016
##
## 1
          1427
                    1504
                               1627
                                         1674
                                                   1684
## 2
           463
                     458
                                389
                                          385
                                                    393
## 3
           600
                     564
                                728
                                          933
                                                    940
                    2580
                               2657
## 4
          2581
                                         2766
                                                    2742
```

37

```
## 5
                                 52
colours <- c("red","green", "orange","yellow","blue")</pre>
barplot(as.matrix(data), main=" Educational Institutions in Delhi",
xlab="Years",ylab = "Number of Students",ylim=c(0,3800),
 cex.lab = 0.8, cex.main = 1.1, beside=TRUE, col=colours)
legend("topleft", c("Sr. Secondary", "Secondary", "Middle", "Primary", "Pre Primary"), cex=0.75,
       bty="n", fill=colours)
```

40

Educational Institutions in Delhi

Analysis

We are analyzing strength of students in schools and universities and the amount of students available to one teacher.

summary(ss)

##	Cl	ass	X2013.2014	X2014.2015	X2015.2016
##	Middle School(B)	:1	Min. : 917	22 Min. : 99247	Min. : 100715
##	Middle School(G)	:1	1st Qu.:2866	54 1st Qu.: 273932	1st Qu.: 253628
##	Pre Primary School(E):1	Median :3337	58 Median : 326072	Median : 345840
##	Pre Primary School(G):1	Mean :4385	39 Mean : 441302	Mean : 443084
##	Primary School(B)	:1	3rd Qu.:5794	50 3rd Qu.: 577092	3rd Qu.: 577792
##	Primary School(G)	:1	Max. :9809	54 Max. :1002103	Max. :1007287
##	(Other)	:4			
##	X2016.2017				
##	Min. :103889				
##	1st Qu.:242473				
##	Median :370466				
##	Mean :444333				
##	3rd Qu.:582871				
##	Max. :990510				
##					
plot	t(ss)				

Summary

From the above report we can summarize that:

- Pre primary schools decreased form 51 in year 2011 to 35 in year 2016.
- Most of our students are in Primary Schools approx. more than 2500 in every considering year.
- Ratio of College Student to Professor is very high. This ratio should be reduced.
- Colleges for Professional Education(Co-Edn) are maximum in Delhi i.e. 94 in year 2016.

11. Green Coverage

A forest is a large area dominated by trees. Hundreds of more precise definitions of forest are used throughout the world, incorporating factors such as tree density, tree height, land use, legal standing and ecological function. According to the widely used Food and Agriculture Organization definition, forests covered 4 billion hectares $(9.9 \times 109 \text{ acres})$ (15 million square miles) or approximately 30 percent of the world's land area in 2006.

Forests are the dominant terrestrial ecosystem of Earth, and are distributed around the globe. Forests account for 75% of the gross primary production of the Earth's biosphere, and contain 80% of the Earth's plant biomass. Net primary production is estimated at 21.9 gigatonnes carbon per year for tropical forests, 8.1 for temperate forests, and 2.6 for boreal forests.

Forests at different latitudes and elevations form distinctly different ecozones: boreal forests around the poles, tropical forests around the Equator, and temperate forests at the middle latitudes. Higher elevation areas tend to support forests similar to those at higher latitudes, and amount of precipitation also affects forest composition.

Human society and forests influence each other in both positive and negative ways.[8] Forests provide ecosystem services to humans and serve as tourist attractions. Forests can also affect people's health. Human activities, including harvesting forest resources, can negatively affect forest ecosystems.[11]

This report is based on 3 parameters of **Delhi**:

- Forest cover
- Average temperature
- Pollution parameters

Table

Here is the tabulation data:

Reserved forest in Delhi:

The following data has been taken from the link [12]

forest=read.csv("Forest(Statistics).csv")
forest

##			Ridge	.Forest	Area	Proportion
##	1	Northern	Ridge	Forest	87	1.13
##	2	Central	Ridge	Forest	864	11.10
##	3	South-Central	Ridge	Forest	626	8.05
##	4	Southern	Ridge	Forest	6200	79.72

Temperature PERIOD: 1981-2010:

The following data has been taken from the link [13]

temp=read.csv("Temperature(Statistics).csv")
temp

##		Month	Daily.Min.	Daily.Max
##	1	Jan	7.3	20.4
##	2	Feb	10.2	24.1
##	3	Mar	15.1	29.9
##	4	Apr	21.4	37.1
##	5	May	23.0	40.3
##	6	Jun	27.7	39.9

##	7	Jul	27.0	35.9
##	8	Aug	26.2	34.4
##	9	Sep	24.7	34.7
##	10	Oct	19.5	33.4
##	11	Nov	13.6	28.5
##	12	Dec	8.8	22.8

Pollution parameter:

The following data has been taken from the link [14]

pollution=read.csv("Pollution(Statistics).csv")
pollution

##		Particles.ug.m.3.	X2014	X2015	X2016	X2017
##	1	SO2(Min)	4	4	4	4
##	2	SO2(Max)	4	8	39	30
##	3	SO2(Avg)	4	4	5	7
##	4	NO2(Min)	20	29	28	21
##	5	NO2(Max)	57	207	155	143
##	6	NO2(Avg)	39	106	52	53
##	7	PM<=10(Min)	105	50	152	39
##	8	PM<=10(Max)	615	595	772	814
##	9	PM<=10(Avg)	209	189	319	252
##	10	PM<=2.5(Min)	29	27	13	19
##	11	PM<=2.5(Max)	189	236	286	232
##	12	PM<=2.5(Avg)	84	89	102	103

Visualization

Here is the image of Forest Cover of Delhi [15]:


```
Forest Distribution:
```

```
library(plotrix)
```

```
a1=c(forest$Area)
piepercent<- round(100*a1/sum(a1),2)
lbls1=paste(piepercent,"%",sep="")
pie3D(a1,labels=lbls1,explode=0.1,labelcex=0.9,main="Forest area distribution",col=rainbow(length(a1)))
legend("topright", c("Northern Rigid Forest","Central Rigid Forest","South-Central Rigid Forest",
"Southern Ridge Forest"), cex = 0.63,fill = rainbow(length(piepercent)))</pre>
```

Forest area distribution

Temperature variation over past years:

Temperature variation PERIOD: 1981–2010

Month (Jan-Dec)


```
#par(mfrow=c(2,2))
p=pollution$X2014[1:3]
q=pollution$X2015[1:3]
r=pollution$X2016[1:3]
s=pollution$X2017[1:3]
plot(p,type="o",xlab="S02 (Min-Max-Avg)",ylab="Particles(ug/m^3)",main="S02 Analysis",pch=8,
ylim=c(0,40),col="darkgreen", cex=1.5)
points(q, pch = 2, cex=1.5, lwd=2)
points(r,pch=20,col="red")
points(s,pch=25,col="blue")
legend("topright", legend = c("2014","2015","2016","2017"), bty = "n",lwd = 2, cex = 1.2,
col = c("darkgreen","black","red","blue"),pch = c(8,2,20,25))
```


col = c("darkgreen", "black", "red", "blue"), pch = c(8,2,20,25))

PM<=10 Analysis

##Analysis

We are analyzing relation between temperature, amount of forest cover left and pollutants level. Linear regression is used to compare the two variables together that how their graph is plotted, their slope (+ve or -ve) or the intercept on the axis.

summary(temp)

```
##
        Month
                   Daily.Min.
                                     Daily.Max
##
    Apr
                         : 7.30
                                  Min.
                                          :20.40
            :1
                 Min.
                 1st Qu.:12.75
##
    Aug
            :1
                                  1st Qu.:27.40
                 Median :20.45
                                  Median :33.90
##
    Dec
            :1
##
    Feb
            :1
                 Mean
                         :18.71
                                  Mean
                                          :31.78
##
    Jan
            :1
                 3rd Qu.:25.07
                                   3rd Qu.:36.20
    Jul
                         :27.70
                                          :40.30
##
            :1
                 Max.
                                  Max.
##
    (Other):6
lm(temp$Daily.Min.~temp$Daily.Max)
##
## Call:
## lm(formula = temp$Daily.Min. ~ temp$Daily.Max)
##
##
   Coefficients:
##
       (Intercept)
                    temp$Daily.Max
##
           -14.314
                              1.039
summary(pollution)
```

```
X2015
                                                          X2016
##
     Particles.ug.m.3. X2014
## NO2(Avg) :1
                      Min. : 4.0 Min. : 4.00 Min. : 4.00
## NO2(Max) :1
                      1st Qu.: 16.0 1st Qu.: 22.25 1st Qu.: 24.25
## NO2(Min) :1
                      Median : 48.0 Median : 69.50 Median : 77.00
## PM<=10(Avg):1
                      Mean :113.2 Mean :128.67 Mean :160.58
## PM<=10(Max):1
                      3rd Qu.:126.0 3rd Qu.:193.50 3rd Qu.:187.75
## PM<=10(Min):1
                      Max. :615.0 Max. :595.00 Max. :772.00
## (Other)
             :6
##
       X2017
         : 4.0
## Min.
## 1st Qu.: 20.5
## Median : 46.0
## Mean
         :143.1
## 3rd Qu.:165.2
## Max. :814.0
##
lm(pollution$X2014~pollution$X2017)
##
## Call:
## lm(formula = pollution$X2014 ~ pollution$X2017)
##
## Coefficients:
##
      (Intercept) pollution$X2017
           6.3827
                           0.7469
##
lm(pollution$X2015~pollution$X2017)
##
## Call:
## lm(formula = pollution$X2015 ~ pollution$X2017)
##
## Coefficients:
      (Intercept) pollution$X2017
##
##
          25.1159
                           0.7237
lm(pollution$X2016~pollution$X2017)
##
## Call:
## lm(formula = pollution$X2016 ~ pollution$X2017)
##
## Coefficients:
##
      (Intercept) pollution$X2017
                             0.95
##
            24.65
data=pollution[1:12,2:5]
cor(data)
            X2014
                     X2015
                               X2016
##
                                         X2017
## X2014 1.0000000 0.9529790 0.9900017 0.9860146
## X2015 0.9529790 1.0000000 0.9672201 0.9779060
## X2016 0.9900017 0.9672201 1.0000000 0.9837749
## X2017 0.9860146 0.9779060 0.9837749 1.0000000
```

Summary

From the above report we can summarize that:

- The maximum covered forest plot is of Southern Ridge Forest which amount of 79.72 % of the total land available in Delhi.
- The amount of forest left in Northern Rigid Forest is very alarming, it is only 1.12~% of the total land available in Delhi.
- Average temperature of Delhi is increasing every year due to deforestation and other climatic changes such as global warming.
- As we can see from the correlation data there is increment in the pollutant particles, as these particles quantity depends very strongly on the previous year production.

12. Krishi Vigyan Kendra

A Krishi Vigyan Kendra (KVK) is an agricultural extension center in India. The name means "farm science center". Usually associated with a local agricultural university, these centers serve as the ultimate link between the Indian Council of Agricultural Research and farmers, and aim to apply agricultural research in a practical, localized setting. All KVKs fall under the jurisdiction of one of the 11 Agricultural Technology Application Research Institutes (ATARIs) throughout India.

On-Farm Testing: Each KVK operates a small farm to test new technologies, such as seed varieties or innovative farming methods, developed by ICAR institutes. This allows new technologies to be tested at the local level before being transferred to farmers.

Front-line Demonstration: Due to the KVK's farm and its proximity to nearby villages, it organizes programs to show the efficacy of new technologies on farmer fields.

Capacity Building: In addition to demonstrating new technologies, the KVK also hosts capacity building exercises and workshops to discuss modern farming techniques with groups of farmers.

Multi-sector Support: Offer support to various private and public initiatives through its local network and expertise. It is very common for government research institutes to leverage the network of KVKs when performing surveys with a wide range of farmers.

Advisory Services: Due to the growing use of ICT, KVKs have implemented technologies to provide farmers information, such as weather advisories or market pricing, through radio and mobile phones.

In each of these activities, the KVK focuses on crops and methods specific to the local climate and industry. Some factors which may impact this decision are: soil type, crops grown, water availability, seasonal temperatures, and allied sectors such as dairy and aquaculture. In addition to addressing local factors, KVKs are also mandated to increase adoption of practices that align with remunerative agriculture, climate smart agriculture, and dietary diversification. Some KVKs also host social activities to facilitate rapport between the institutions and the local community.[15]

This report is based on 3 parameters of **Delhi**:

- Number of farmers trained
- Different types of training
- Number of farmers covered in each training programs

Table

Here is the tabulation data:

Different types of Training:

```
prog=read.csv("Programmes(Statistics).csv")
prog
```

##		Clientele	Number.of.courses	Male	Female	Total.Participants
##	1	Farmers & farm women	43	533	329	862
##	2	Rural youths	6	91	23	114
##	3	Extension functionaries	1	0	20	20
##	4	Sponsored Training	4	82	18	100

Number of farmers covered in each of it:

```
types=read.csv("Types(Statistics).csv")
types
```

##		Types.of.Training.On.Off.Campus.	Male	Fenale	Total.Trained
##	1	Vegetable Crops	165	0	165
##	2	Fruits	22	0	22
##	3	Soil Health and Fertility Management	181	41	222
##	4	Home Science/Women empowerment	10	279	289
##	5	Plant Protection	155	9	164
##	6	Rural Youths	91	23	114
##	7	Extension Personnel	0	20	20
##	8	Crop production and management	99	21	120

Visualization

Male vs Female in the different types of programs:

```
data=structure(list(A=c(533,329),B= c(91,23),C= c(0,20),D= c(82,18)),
.Names = c("F-Training", "Rural youth", "Extension", "Sponsored"),
class = "data.frame",row.names = c(NA, 2))
attach(data)
print(data)
## F-Training Rural youth Extension Sponsored
## 1 533 91 0 82
```

2 329 23 20 18
colours <- c("green", "orange")
barplot(as.matrix(data), main="Types of Training(On-Off Campus)",
ylab = "Number of farmers trained",
ylim=c(0,550), cex.lab = 0.8, cex.main = 1.1, beside=TRUE, col=colours,las=2)
legend("topright", c("Male", "Female"), cex=1.1, bty="n", fill=colours)</pre>

Types of Training(On–Off Campus)

a1=c(types\$Total.Trained)
piepercent<- round(100*a1/sum(a1),2)
lbls1=paste(piepercent,"%",sep="")
pie3D(a1,labels=lbls1,labelcex=0.9,explode=0.1,main="Proportion of trainee distribution",col=rainbow(left
legend("topright", c("Vegetable Crops","Fruits","Soil Health and Fertility Management",
"Home Science/Women empowerment","Plant Protection","Rural Youths","Extension Personnel","Crop production
</pre>

Proportion of trainee distribution

Analysis

We are analyzing the involvement of farmers in various training programs.

summary(types)

##		Types.of.Trainin	ng.On.Off.Campus.	Male
##	Extension Person	nnel	:1	Min. : 0.00
##	Home Science/Wom	nen empowerment	:1	1st Qu.: 19.00
##	Plant Protection	ı	:1	Median : 95.00
##	Rural Youths		:1	Mean : 90.38
##	Soil Health and	Fertility Management	:1	3rd Qu.:157.50
##	Vegetable Crops		:1	Max. :181.00
##	(Other)		:2	
##	Fenale	Total.Trained		
##	Min. : 0.00	Min. : 20.0		
##	1st Qu.: 6.75	1st Qu.: 91.0		
##	Median : 20.50	Median :142.0		
##	Mean : 49.12	Mean :139.5		
##	3rd Qu.: 27.50	3rd Qu.:179.2		
##	Max. :279.00	Max. :289.0		
##				
Summary

From the above report we can summarize that:

- Women involvement in the training programs is very less.
- Farmers-farm women training program is pretty famous for both male in female in Delhi.
- Extension functionaries is the least favorable program in Krishi Vigyan Kendra. It needs a serious improvement to attract trainee.
- Home Science/Women empowerment has the maximum number of trained trainees i.e. 289.

13. Vehicles

This report is based on number of light and heavy motor vehicles in **Delhi**.

Table

Here is the tabulation data:

```
vehicles=read.csv("Vehicles(Statistics).csv")
vehicles
```

##			Name.of.the.Vehicle	X2012.13	X2013.14	X2014.15	X2015.16	X2016.17
##	1		Cars and Jeeps	2474087	2629343	2790566	2986579	3152710
##	2	Motor	Cycles and Scooters	4962507	5297697	5681265	6104070	6707891
##	3		Auto Rickshaws	86838	91840	81633	198137	174000
##	4		Taxis	70335	78686	79606	91073	148434
##	5		Buses*	39694	40947	32540	43723	38265
##	6		Goods Vehicles etc.	140942	154654	161821	281159	231767
##	7		E-Rickshaws	0	0	0	0	29690

Visualization

```
#Load Package--->plotrix
library(plotrix)
data1=vehicles[1,2:6]
a1=c(data1[1,1],data1[1,2],data1[1,3],data1[1,4],data1[1,5])
piepercent<- round(100*a1/sum(a1),2)
lbls1=paste(piepercent,"%",sep="")
pie3D(a1,labels=lbls1,explode=0.1,main="Car&Jeep distribution",col=rainbow(length(a1)))
legend("topright", c("2012","2013","2014","2015","2016"), cex = 0.65,fill = rainbow(length(piepercent))
```

Car&Jeep distribution


```
data2=vehicles[2,2:6]
a2=c(data2[1,1],data2[1,2],data2[1,3],data2[1,4],data2[1,5])
piepercent<- round(100*a2/sum(a2),2)
lbls1=paste(piepercent,"%",sep="")
pie3D(a2,labels=lbls1,explode=0.1,main="Two wheeler distribution",col=rainbow(length(a2)))
legend("topright", c("2012","2013","2014","2015","2016"), cex = 0.65,fill = rainbow(length(piepercent))
```

Two wheeler distribution

main="Taxis distribution", las=2)

Auto Rickshaws distribution

```
data5=vehicles[5,2:6]
H <- c(data5[1,1],data5[1,2],data5[1,3],data5[1,4],data5[1,5])</pre>
M <- c("2012-13","2013-14","2014-15","2015-16","2016-17")
barplot(H,names.arg = M,col="red",main="Buses distribution",las=2)
```

```
data6=vehicles[6,2:6]
H <- c(data6[1,1],data6[1,2],data6[1,3],data6[1,4],data6[1,5])</pre>
M <- c("2012-13","2013-14","2014-15","2015-16","2016-17")</pre>
barplot(H,names.arg = M,col="green",
        main="Goods Vehicles distribution",las=2)
```


Analysis

We are analyzing the number and type of vehicles in Delhi and how they are related to past years. summary(vehicles)

##		Name.of.the.Vehicle	X2012.13	X2013.14			
##	Auto Rickshaws	:1	Min. : 0	Min. : 0			
##	Buses*	:1	1st Qu.: 55014	1st Qu.: 59816			
##	Cars and Jeeps	:1	Median : 86838	Median : 91840			
##	E-Rickshaws	:1	Mean :1110629	Mean :1184738			
##	Goods Vehicles	etc. :1	3rd Qu.:1307514	3rd Qu.:1391998			
##	Motor Cycles an	d Scooters:1	Max. :4962507	Max. :5297697			
##	Taxis	:1					
##	X2014.15	X2015.16	X2016.17				
##	Min. : 0	Min. : 0	Min. : 29690				
##	1st Qu.: 56073	1st Qu.: 67398	1st Qu.: 93350				
##	Median : 81633	Median : 198137	Median : 174000				
##	Mean :1261062	Mean :1386392	Mean :1497537				
##	3rd Qu.:1476194	3rd Qu.:1633869	3rd Qu.:1692238				
## ##	Max. :5681265	Max. :6104070	Max. :6707891				
##							
<pre>#plot(vehicles) data=vehicles[1:7,2:6] # Correlation of how types of vechiles are related to mast years</pre>							

cor(data)

X2012.13 X2013.14 X2014.15 X2015.16 X2016.17
X2012.13 1.000000 0.9999971 0.9999750 0.9997422 0.9995287
X2013.14 0.999971 1.000000 0.9999883 0.9997716 0.9995946
X2014.15 0.9999750 0.9999883 1.0000000 0.9997832 0.9996943
X2015.16 0.9997422 0.9997716 0.9997832 1.0000000 0.9997154
X2016.17 0.9995287 0.9995946 0.9996943 0.9997154 1.000000

Summary

From the above report we can summarize that:

- As from the correlation table, we can analyse that number of vehicles every year depends mainly on the previous year vehicle data. Since the correlated value is very close to one.
- The number of vehicles are increasing every year.
- The number of taxis has been vastly increased from year 2015-16 to 2016-17 (i.e. 1,48,434 taxis available).
- There is also E-Rickshaws available from the year 2016-17.
- The maximum number of vehicles that runs on road in Delhi are of category motor cycles and scooters.

14. Usage of Computing Devices

Telecommunication is the transmission of signs, signals, messages, words, writings, images and sounds or information of any nature by wire, radio, optical or other electromagnetic systems. Telecommunication occurs when the exchange of information between communication participants includes the use of technology. It is transmitted through a transmission media, such as over physical media, for example, over electrical cable, or via electromagnetic radiation through space such as radio or light. Such transmission paths are often divided into communication channels which afford the advantages of multiplexing. Since the Latin term communicatio is considered the social process of information exchange, the term telecommunications is often used in its plural form because it involves many different technologies.[17]

This report is based on 3 parameters of **Delhi**:

- Number of internet connections broadband connections
- Mobile connections

Table

Here is the tabulation data:

Number of internet connections- broadband connections and mobile connections:

```
bc=read.csv("Broadband_Connections(Statistics).csv")
bc
```

##		Year	Total	Wireline	Wireless	Rural	Urban	Public	Private
##	1	2008	18.70	2.42	16.28	0.00	18.70	3.18	15.52
##	2	2009	24.50	2.52	21.98	0.00	24.50	3.59	20.92
##	3	2010	31.01	2.71	28.30	0.34	30.67	3.94	27.07
##	4	2011	41.66	2.84	38.82	1.10	40.56	4.19	37.47
##	5	2012	45.40	2.91	42.49	1.78	43.63	4.45	40.95
##	6	2013	43.39	2.96	40.43	2.13	41.25	4.19	39.20
##	7	2014	45.69	3.10	42.58	2.37	43.32	3.91	41.78
##	8	2015	49.33	3.14	46.19	2.22	47.11	3.96	45.37
##	9	2016	50.42	3.17	47.24	2.26	48.16	3.93	46.48
##	10	2017	56.57	3.22	53.35	2.54	54.03	3.93	52.65

Visualization

Comparing broadband vs mobile network:

```
data=structure(list(A=c(2.96,40.43),B= c(3.10,42.58),C= c(3.14,46.19),D= c(3.17,47.24),E= c(3.22,53.35)
.Names = c("2013", "2014", "2015", "2016","2017"), class = "data.frame",row.names = c(NA, 2))
attach(data)
## The following objects are masked from data (pos = 7):
##
## 2013, 2014, 2015, 2016, 2017
colours <- c("red", "orange")
barplot(as.matrix(data), main="Telecom Subscribers (Millions)",
xlab="Wireline vs Wireless",ylab = "Subscribers",ylim=c(0,60), cex.lab = 0.8, cex.main = 1.1,
beside=TRUE, col=colours)
legend("topleft", c("Wireline","Wireless"), cex=1.1, bty="n", fill=colours)</pre>
```


Telecom Subscribers (Millions)

Wireline vs Wireless

Comparing the rural and urban growth in telecom sector:

```
R=bc$Rural
U=bc$Urban
plot(R,type = "o", col = "red", xlab = "Rural vs Urban", ylab = "Subscribers",ylim=c(0,60),main = "Teled
lines(U, type = "o", col = "blue")
legend("topleft", c("Rural Growth","Urban Growth"),cex = 0.85,col=c("red","blue"),lty=1)
```


Telecom Users (Millions)

Public vs private network usage in 2017:

library(plotrix)

```
a1=c(3.93,52.65)
piepercent<- round(100*a1/sum(a1),2)
lbls1=paste(piepercent,"%",sep="")
pie3D(a1,labels=lbls1,explode=0.1,main="Public vs Private distribution (2017)",cex=1.5,col=rainbow(lengend("topright", c("Public","Private"), cex = 0.7,fill = rainbow(length(piepercent)))</pre>
```

Public vs Private distribution (2017)

Analysis

We are analyzing the linear regression between wired and wireless connection, amount of rural and urban connections and the private and public owned connections. Scatter plot is used here to observe the pattern of all the variables in a single plot.

summary(bc)

##	Year	Total	Wireline	Wireless	Rural		
##	Min. :2008	Min. :18.70	Min. :2.420	Min. :16.28	Min. :0.000		
##	1st Qu.:2010	1st Qu.:33.67	1st Qu.:2.743	1st Qu.:30.93	1st Qu.:0.530		
##	Median :2012	Median :44.40	Median :2.935	Median :41.46	Median :1.955		
##	Mean :2012	Mean :40.67	Mean :2.899	Mean :37.77	Mean :1.474		
##	3rd Qu.:2015	3rd Qu.:48.42	3rd Qu.:3.130	3rd Qu.:45.29	3rd Qu.:2.250		
##	Max. :2017	Max. :56.57	Max. :3.220	Max. :53.35	Max. :2.540		
##	Urban	Public	Private				
##	Min. :18.70	Min. :3.180	Min. :15.52				
##	1st Qu.:33.14	1st Qu.:3.915	1st Qu.:29.67				
##	Median :42.28	Median :3.935	Median :40.08				
##	Mean :39.19	Mean :3.927	Mean :36.74				
##	3rd Qu.:46.24	3rd Qu.:4.133	3rd Qu.:44.47				
##	Max. :54.03	Max. :4.450	Max. :52.65				
plot(bc)							

Linear regression is used to compare the two variables together that how their graph is plotted, their slope (+ve or -ve) or the intercept on the axis.

```
lm(bc$Wireline~bc$Wireless)
```

```
##
## Call:
## lm(formula = bc$Wireline ~ bc$Wireless)
##
## Coefficients:
   (Intercept)
                bc$Wireless
##
       2.03471
                     0.02289
##
lm(bc$Rural~bc$Urban)
##
## Call:
## lm(formula = bc$Rural ~ bc$Urban)
##
## Coefficients:
                    bc$Urban
##
   (Intercept)
                     0.08631
##
      -1.90868
lm(bc$Public~bc$Private)
##
```

```
## Call:
## lm(formula = bc$Public ~ bc$Private)
##
```

```
## Coefficients:
## (Intercept) bc$Private
## 3.21978 0.01925
```

sprintf("Let's see the correlation between Rural and Urban telecom subscribers")

[1] "Let's see the correlation between Rural and Urban telecom subscribers"

data=bc[1:10,5:6]
Correlation data between rural and urban network connections
cor(data)

Rural Urban
Rural 1.0000000 0.9393671
Urban 0.9393671 1.0000000

Summary

From the above report we can summarize that:

- People in Delhi believe more in private network facilities which accounts to 93.05 % of the total telecom users and the remaining 6.95 % are public distributors.
- Progress of wired network subscribers is stagnant over the past years whereas the wireless network has spread like forest fire from 16.28 million in year 2008 to 53.35 million in year 2017.
- From the above correlation data, we can see that rural and urban subscribers are closely related to each other.
- For the telecom subscribers the growth for the rural part is stagnant whereas the urban growth is increasing very fast over the years.

Reference

- 1. GDDP reference->http://economictimes.indiatimes.com/
- 2. Fair Price Shops–>https://www.urbanpro.com/
- 3. Courts data tables->http://delhi.gov.in/
- 4. Electricity in Delhi->https://en.wikipedia.org/
- 5. Healthcare->https://en.wikipedia.org/
- 6. MBBS doctors data->http://www.mospi.gov.in/
- 7. Diseases data->http://www.mospi.gov.in/
- 8. Tourism in Delhi->http://www.delhitourism.gov.in/
- 9. Education in Delhi->https://en.wikipedia.org/
- 10. Industries in Delhi–>https://en.wikipedia.org/
- 11. Green Coverage in Delhi->https://en.wikipedia.org/
- 12. Green coverage data 1->http://www.delhi.gov.in
- 13. Green coverage data 2->http://www.imd.gov.in
- 14. Temperature statistics->http://cpcb.nic.in/
- 15. Forest cover image of Delhi->http://fsi.nic.in/
- 16. Krishi Vigyan Kendra->https://en.wikipedia.org/
- 17. Using of telecom services->https://en.wikipedia.org/