1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
|
{
"metadata": {
"name": "",
"signature": "sha256:8949f832de7d3f263ae07355a00ea5a20f907aff9cf98c80b9a9488be44e93f7"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 2: Special Theory of Relativity"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.2, Page 34"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import *\n",
"\n",
"#Variable declaration\n",
"ly = 9.46e+015; # Distance travelled by light in an year, m\n",
"c = 3e+008; # Speed of light, m/s\n",
"L = 4.30*ly; # Distance of Alpha Centauri from earth, m\n",
"T0 = 16*365.25*24*60*60; # Proper time in system K_prime, s\n",
"\n",
"#Calculations\n",
"# As time measured on earth, T = 2*L/v = T0_prime/sqrt(1-(v/c)^2), solving for v\n",
"v = sqrt(4*L**2/(T0**2+4*L**2/c**2)); # Speed of the aircraft, m/s\n",
"gama = 1/sqrt(1-(v/c)**2); # Relativistic factor\n",
"T = gama*T0/(365.25*24*60*60); # Time interval as measured on Earth, y\n",
"\n",
"#Results\n",
"print \"The speed of the aircraft = %4.2e m/s\" %v\n",
"print \"The time interval as measured on earth = %4.1f y\"%T\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The speed of the aircraft = 1.42e+08 m/s\n",
"The time interval as measured on earth = 18.2 y\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.3, Page 38"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import *\n",
"\n",
"#Variable declaration\n",
"L0 = 4.30; # Distance of Alpha Centauri from earth, ly\n",
"c = 3e+008; # Speed of light, m/s\n",
"T = 8; # Proper time in system K_prime, y\n",
"\n",
"#Calculations\n",
"# As v/c = L0*sqrt(1-(v/c)^2)/(c*T) or bita = L0*sqrt(1-bita^2)/(c*T), solving for bita\n",
"bita = sqrt(L0**2/(T**2 + L0**2)); # Boost parameter\n",
"v = L0*sqrt(1-bita**2)/T; # Speed of the aircraft, c units\n",
"\n",
"#Results\n",
"print \"The boost parameter = %5.3f\"%bita\n",
"print \"The speed of the aircraft = %5.3fc units\"%v"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The boost parameter = 0.473\n",
"The speed of the aircraft = 0.473c units\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.4, Page 40"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import *\n",
"\n",
"#Variable declaration\n",
"c = 1; # For simplicity assume speed of light to be unity, m/s\n",
"bita = 0.600; # Boost parameter\n",
"gama = 1/sqrt(1-bita**2); # Relativistic factor\n",
"u_x_prime = 0; # Speed of the protons in spaceship frame along x-axis, m/s\n",
"u_y_prime = 0.99*c; # Speed of the protons in spaceship frame along y-axis, m/s\n",
"u_z_prime = 0; # Speed of the protons in spaceship frame along z-axis, m/s\n",
"v = 0.60*c; # Speed of the spaceship w.r.t. space station, m/s\n",
"\n",
"#Calculations\n",
"u_x = (u_x_prime + v)/(1 + v/c**2*u_x_prime); # Speed of protons in space station frame along x-axis, m/s\n",
"u_y = u_y_prime/(gama*(1 + v/c**2*u_x_prime)); # Speed of protons in space station frame along y-axis, m/s\n",
"u_z = u_z_prime/(gama*(1 + v/c**2*u_x_prime)); # Speed of protons in space station frame along y-axis, m/s\n",
"u = sqrt(u_x**2 + u_y**2 + u_z**2); # The speed of the protons measured by an observer in the space station, m/s\n",
"\n",
"#Result\n",
"print \"The speed of the protons measured by an observer in the space station = %5.3fc units\"%u"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The speed of the protons measured by an observer in the space station = 0.994c units\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.5, Page 45"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import *\n",
"\n",
"#Variable declaration\n",
"c = 2.998e+008; # Speed of light in free space, m/s\n",
"v = 7712; # Speed of the space shuttle, m/s\n",
"bita = v/c; # Boost parameter\n",
"T_loss = 295.02; # Total measured loss in time, ps/sec\n",
"Add_T_loss = 35.0; # Additional time loss for moving clock from general relativity prediction, ps/s\n",
"\n",
"#Calculations\n",
"# From time dilation relation, T0_prime = T*sqrt(1 - bita^2), solving for (T - T0_prime)/T\n",
"Calc_T_loss = bita**2/2*1e+012; # Expected time lost per sec by the moving clock, ps/sec\n",
"Measured_T_loss = T_loss + Add_T_loss; # Total measured loss in time per sec as per special relativity, ps/s\n",
"percent_T_loss = (Calc_T_loss - Measured_T_loss)/Calc_T_loss*100; # Percentage deviation of measured and the calculated time loss per sec\n",
"T = 6.05e+05; # Total time of the seven-day mission, s\n",
"delta_T = Calc_T_loss*1e-012*T; # The total time difference between the moving and stationary clocks during the entire shuttle flight, s\n",
"\n",
"#Results\n",
"print \"The expected time lost per second for the moving clock = %6.2f ps\"%Calc_T_loss\n",
"print \"The percentage deviation of measured and the calculated time loss per sec for moving clock = %3.1f percent\"%percent_T_loss #answer differs due to rounding errors\n",
"print \"The total time difference between the moving and stationary clocks during the entire shuttle flight = %3.1f ms\"%(delta_T/1e-003)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The expected time lost per second for the moving clock = 330.86 ps\n",
"The percentage deviation of measured and the calculated time loss per sec for moving clock = 0.3 percent\n",
"The total time difference between the moving and stationary clocks during the entire shuttle flight = 0.2 ms\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.8, Page 57"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import *\n",
"\n",
"#Variable declaration\n",
"f0 = 1; # For simplicity assume frequency of the signals sent by Frank, Hz\n",
"# Outbound trip\n",
"bita = -0.8; # Boost parameter for receding frames\n",
"\n",
"#Calculations&Results\n",
"f = sqrt(1+bita)/sqrt(1-bita)*f0; # The frequency of the signals received by Mary in outbound trip, Hz\n",
"print \"The frequency of the signals received by Mary in outbound trip = f0/%d\", ceil(f*9)\n",
"# Return trip\n",
"bita = +0.8; # Boost parameter for approaching frames\n",
"f = sqrt(1+bita)/sqrt(1-bita)*f0; # The frequency of the signals received by Mary in return trip, Hz\n",
"print \"The frequency of the signals received by Mary in return trip = %df0\"%f"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The frequency of the signals received by Mary in outbound trip = f0/%d 3.0\n",
"The frequency of the signals received by Mary in return trip = 3f0\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.11, Page 64"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import *\n",
"\n",
"#Variable declaration\n",
"q = 1.6e-019; # Charge on an electron, C\n",
"V = 25e+003; # Accelerating potential, volt\n",
"K = q*V; # Kinetic energy of electrons, J\n",
"m = 9.11e-031; # Rest mass of an electron, kg\n",
"c = 3.00e+08; # Speed of light, m/s\n",
"\n",
"#Calculations\n",
"# From relativistic kinetic energy formula, K = (gama - 1)*m*C^2, solving for gama\n",
"gama = 1 + K/(m*c**2); # Relativistic factor\n",
"bita = sqrt((gama**2-1)/gama**2); # Boost parameter\n",
"u = bita*c; # Speed of the electrons, m/s\n",
"# From non-relativistic expression, K = 1/2*m*u^2, solving for u\n",
"u_classical = sqrt(2*K/m); # Non-relativistic speed of the electrons, m/s\n",
"u_error = (u_classical - u)/u_classical*100; # Percentage error in speed of electrons, m/s\n",
"\n",
"#Results\n",
"print \"The relativistic speed of the accelerated electrons = %4.2e m/s\"%u\n",
"print \"The classical speed is about %d percent greater than the relativistic speed\"%ceil(u_error)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The relativistic speed of the accelerated electrons = 9.04e+07 m/s\n",
"The classical speed is about 4 percent greater than the relativistic speed\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.13, Page 69"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import *\n",
"\n",
"#Variable declaration\n",
"c = 1; # For simplicity assume peed of light to be unity, m/s\n",
"K = 2.00; # Kinetic energy of protons, GeV\n",
"E0 = 0.938; # Rest mass of a proton, GeV\n",
"E = K + E0; # Total energy of the proton, GeV\n",
"\n",
"#Calculations\n",
"# From relativistic mass energy relation, E^2 = (p*c)^2+E0^2, solving for p\n",
"p = sqrt(E**2 - E0**2)/c; # Momentum of the protons, GeV/c\n",
"# As E = gama*E0, solving for gama\n",
"gama = E/E0; # Relativistic factor\n",
"bita = sqrt((gama**2-1)/gama**2); # Boost parameter\n",
"v = bita*3.00e+08; # Speed of 2 GeV proton, m/s\n",
"\n",
"#Results\n",
"print \"The energy of each initial proton = %5.3f GeV\"%E\n",
"print \"The momentum of each initial proton = %4.2f GeV/c\"%p\n",
"print \"The speed of each initial proton = %3.1e m/s\"%v\n",
"print \"The relativistic factor, gama = %4.2f\"%gama\n",
"print \"The boost parameter, beta = %5.3f\"%bita"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The energy of each initial proton = 2.938 GeV\n",
"The momentum of each initial proton = 2.78 GeV/c\n",
"The speed of each initial proton = 2.8e+08 m/s\n",
"The relativistic factor, gama = 3.13\n",
"The boost parameter, beta = 0.948\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.15, Page 71"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"E_d = 1875.6; # Rest mass energy of the deuterium, MeV\n",
"E_pi = 139.6; # Rest mass energy of the pion, MeV\n",
"E_p = 938.3; # Rest mass energy of the proton, MeV\n",
"\n",
"#Calculation\n",
"K = 1./2*(E_d + E_pi - 2*E_p); # Minimum kinetic energy of the protons, MeV \n",
"\n",
"#Result\n",
"print \"The minimum kinetic energy of the protons = %2d MeV\"%K"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The minimum kinetic energy of the protons = 69 MeV\n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.16, Page 72"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"u = 931.5; # Energy equivalent of 1 amu, MeV\n",
"c = 1; # Speed of light in vacuum, m/s\n",
"\n",
"#Calculations\n",
"m_e = 0.000549*u; # Rest mass of an electron, MeV/c^2\n",
"m_p = 1.007276*u; # Rest mass of a proton, MeV/c^2\n",
"m_n = 1.008665*u; # Rest mass of a neutron, MeV/c^2\n",
"m_He = 4.002603*u; # Rest mass of a helium, MeV/c^2\n",
"M_He = m_He - 2*m_e; # Mass of He nucleus, MeV/c^2\n",
"E_B_He = (2*m_p + 2*m_n - M_He)*c**2; # Binding energy of the He nucleus, MeV\n",
"\n",
"#Result\n",
"print \"The binding energy of the He nucleus = %4.1f MeV\"%E_B_He"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The binding energy of the He nucleus = 28.3 MeV\n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.17, Page 72"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"u = 931.5; # Energy equivalent of 1 amu, MeV/u\n",
"c = 1; # For simplicity assume speed of light in vacuum to be unity, m/s\n",
"E_B = 4.24; # The dissociationenergy of the NaCl molecule, MeV\n",
"\n",
"#Calculations\n",
"M = 58.44*u; # Energy corresponding to molecular mass of NaCl, MeV\n",
"f_r = E_B/M; # The fractional mass increase of the Na and Cl atoms\n",
"\n",
"#Result\n",
"print \"The fractional mass increase of the Na and Cl atoms when they are not bound together in NaCl = %4.1e\"%(f_r/1e+006)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The fractional mass increase of the Na and Cl atoms when they are not bound together in NaCl = 7.8e-11\n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.18, Page 72"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import *\n",
"\n",
"#Variable declaration\n",
"c = 1; # For simplicity assume speed of light in vacuum to be unity, m/s\n",
"E0_n = 940; # Rest energy of a neutron, MeV\n",
"E0_pi = 140; # Rest energy of a pion, MeV\n",
"p_n = 4702; # Momentum of the neutron, MeV/c\n",
"p_pi = 169; # Momentum of the pion, MeV/c\n",
"\n",
"#Calculations\n",
"E_n = sqrt((p_n*c)**2+E0_n**2); # Total energy of the neutron, MeV\n",
"E_pi = sqrt((p_pi*c)**2+E0_pi**2); # Total energy of the pion, MeV\n",
"E = E_n + E_pi; # Total energy of the reaction, MeV\n",
"p_sigma = p_n + p_pi; # Momentum of the sigma particle, MeV/c\n",
"E0_sigma = sqrt(E**2 - (p_sigma*c)**2); # Rest mass energy of the sigma particle, MeV\n",
"m_sigma = E0_sigma/c**2; # Rest mass of sigma particle, MeV/c^2;\n",
"K = E - E0_sigma; # Kinetic energy of sigma particle, MeV\n",
"\n",
"#Results\n",
"print \"The rest mass of sigma particle = %4d MeV/c^2\"%ceil(m_sigma)\n",
"print \"The kinetic energy of sigma particle = %4d MeV\"%ceil(K)\n",
"\n",
"#Answers differ due to rounding errors"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The rest mass of sigma particle = 1192 MeV/c^2\n",
"The kinetic energy of sigma particle = 3824 MeV\n"
]
}
],
"prompt_number": 12
}
],
"metadata": {}
}
]
}
|