1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
|
{
"metadata": {
"name": "",
"signature": "sha256:e126fa636efa72af4b20cd3702da45f085d125811e3d4b6de05ba5fde96d2c77"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 2:Light propagation in optical ber"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.1 , Page no:30"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"from __future__ import division\n",
"\n",
"#initialisation of variables\n",
"ncore=1.46; #refractive index of core\n",
"nclad=1; #refractive index of cladding\n",
"c=3e5; #velocity of light in Km/s\n",
"L=1; #length of path in Km\n",
"\n",
"#CALCULATIONS\n",
"NA=math.sqrt(ncore**2-nclad**2); #Numerical aperture\n",
"delt_tau_by_L=(NA**2)/(2*c*ncore); #multipath pulse broadening in s/Km\n",
"delt_tau=delt_tau_by_L*L; #bandwidth distance product Hz\n",
"BL=(1/delt_tau)*L; #bandwidth distance product Hz\n",
"#case-2\n",
"ncore1=1.465; #refractive index of core\n",
"nclad1=1.45; #refractive index of cladding\n",
"NA1=math.sqrt(ncore1**2-nclad1**2); #Numerical aperture\n",
"delt_tau_by_L1=(NA1**2)/(2*c*ncore1); #multipath pulse broadening in s/m\n",
"BL1=(1/delt_tau_by_L1)*L; #bandwidth distance product Hz\n",
"\n",
"#RESULTS\n",
"print\"Numerical aperture=\",round(NA,5); #The answers vary due to round off error\n",
"print\"\\nMultipath pulse broadening=\",round(delt_tau_by_L*1e9,5),\"ns/Km\"; #The answer provided in the textbook is wrong//multiplication by 1e9 to convert s/Km to ns/Km \n",
"print\"\\nBandwidth distance product=\",round(BL*1e-6,5),\"GHz \"; #The answer provided in the textbook is wrong//multiplication by 1e-6 to convert Hz to MHz\n",
"print\"\\n\\nNumerical aperture=\",round(NA1,5);\n",
"print\"\\nMultipath pulse broadening=\",round(delt_tau_by_L1*1e9,5),\"ns/Km\"; #The answer provided in the textbook is wrong//multiplication by 1e9 to convert s/Km to ns/Km \n",
"print\"\\nBandwidth distance product=\",round(BL1*1e-9,5),\"GHz \"; #The answer provided in the textbook is wrong//multiplication by 1e-6 to convert Hz to GHz"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Numerical aperture= 1.06377\n",
"\n",
"Multipath pulse broadening= 1291.78082 ns/Km\n",
"\n",
"Bandwidth distance product= 0.77413 GHz \n",
"\n",
"\n",
"Numerical aperture= 0.20911\n",
"\n",
"Multipath pulse broadening= 49.74403 ns/Km\n",
"\n",
"Bandwidth distance product= 0.0201 GHz \n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.2 , Page no:30"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"from __future__ import division\n",
"\n",
"#initialisation of variables\n",
"lamda1=0.7; #wavelength in um\n",
"lamda2=1.3; #wavelength in um\n",
"lamda3=2; #wavelength in um\n",
"\n",
"#CALCULATIONS\n",
"f_lambda1=(303.33*(lamda1**-1)-233.33); #equation for lambda1\n",
"f_lambda2=(303.33*(lamda2**-1)-233.33); #equation for lambda2\n",
"f_lambda3=(303.33*(lamda3**-1)-233.33); #equation for lambda3\n",
"\n",
"#RESULTS\n",
"print\"Material dispersion at Lambda 0.7um=\",round(f_lambda1,5);\n",
"print\"\\nMaterial dispersion at Lambda 1.3um=\",round(f_lambda2,5); #The answers vary due to round off error\n",
"print\"\\nMaterial dispersion at Lambda 2um=\",round(f_lambda3,5); #The answers vary due to round off error\n",
"print\"\\nIts is a standard silica fiber\";"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Material dispersion at Lambda 0.7um= 199.99857\n",
"\n",
"Material dispersion at Lambda 1.3um= 0.00077\n",
"\n",
"Material dispersion at Lambda 2um= -81.665\n",
"\n",
"Its is a standard silica fiber\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.3 , Page no:32"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"from __future__ import division\n",
"\n",
"#initialisation of variables\n",
"ncore=1.505; #refractive index of core\n",
"nclad=1.502; #refractive index of cladding\n",
"V=2.4; #v no. for single mode \n",
"lambda1=1300e-9; #operating wavelength in m\n",
"\n",
"#CALCULATIONS\n",
"NA=math.sqrt(ncore**2-nclad**2); #numerical aperture\n",
"a=V*(lambda1)/(2*3.14*NA); #dimension of fiber core in m\n",
"\n",
"#RESULTS\n",
"print\"The numarical aperture =\",round(NA,5);\n",
"print\"\\n Dimension of fiber core =\",round(a*1e6,5),\"um\"; #multiplication by 1e6 to convert unit from m to um"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The numarical aperture = 0.09498\n",
"\n",
" Dimension of fiber core = 5.23079 um\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.4 , Page no:33"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"from __future__ import division\n",
"\n",
"#initialisation of variables\n",
"V=2; #v no. for single mode \n",
"a=4; #radius of fiber in um\n",
"\n",
"#CALCULATIONS\n",
"w=a*(0.65+1.619*V**(-3/2)+2.87*V**-6); #effective mode radius in um\n",
"\n",
"#RESULTS\n",
"print\"Effective mode radius =\",round(w,5),\"um\";"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Effective mode radius = 5.06899 um\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.6 , Page no:34"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"from __future__ import division\n",
"\n",
"#initialisation of variables\n",
"m=0; #for dominant mode\n",
"v=0; #for dominant mode\n",
"n1=1.5; #refractive index of core\n",
"delta=0.01; #core clad index difference\n",
"a=5; #fiber radius in um\n",
"lambda1=1.3; #wavelength of operation in um\n",
"\n",
"#CALCULATIONS\n",
"k0=(2*3.14/lambda1); #constant in /m\n",
"beta=math.sqrt((k0**2)*(n1**2)-(2*k0*n1*math.sqrt(2*delta)/a)); #propagation constant in rad/um\n",
"\n",
"#RESULTS\n",
"print\"Propagation constant=\",round(beta,5),\"rad/um\"; #The answers vary due to round off error"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Propagation constant= 7.21781 rad/um\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.8 , Page no:34"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"from __future__ import division\n",
"\n",
"#initialisation of variables\n",
"M=1000; #modes supported\n",
"lambda1=1.3; #operating wavelength in um\n",
"n1=1.5; #refractive index of core\n",
"n2=1.48; #refractive index of cladding\n",
"\n",
"#CALCULATIONS\n",
"V=math.sqrt(2*M); #normalised frequency V no.\n",
"NA=math.sqrt(n1**2-n2**2); #numerical apperture\n",
"R=lambda1*V/(2*3.14*NA); #radius of fiber in um\n",
"\n",
"#RESULTS\n",
"print\"Core Radius=\",round(R,5),\"um\"; #The answer provided in the textbook is wrong"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Core Radius= 37.92063 um\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.9 , Page no:35"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"from __future__ import division\n",
"\n",
"#initialisation of variables\n",
"lambda1=1.3; #wavelength of operation in um\n",
"n1=1.5; #refractive index of core\n",
"n2=1.48; #refractive index of cladding\n",
"k0=2*3.14/lambda1; #constant in /m\n",
"\n",
"#CALCULATIONS\n",
"#case-1\n",
"b=0.5; #normalized propagation constant\n",
"k0=2*3.14/lambda1; #constant\n",
"beta=k0*math.sqrt(n2**2+b*(n1**2-n2**2)); #propagation constant\n",
"\n",
"#case-2\n",
"#given \n",
"lambda1=1.3; #wavelength of operation in um\n",
"n1=1.5; #refractive index of core\n",
"n2=1.48; #refractive index of cladding\n",
"k0=2*3.14/lambda1; #constant in /m\n",
"b=0.5; #normalized propagation constant\n",
"k0=2*3.14/lambda1; #constant\n",
"b1=(((n1+n2)/2)**2-n2**2)/(n1**2-n2**2); #normalized propagation constant\n",
"\n",
"#case-3\n",
"#given \n",
"lambda1=1.3; #wavelength of operation in um\n",
"n1=1.5; #refractive index of core\n",
"n21=1.0; #refractive index of cladding\n",
"k0=2*3.14/lambda1; #constant in /m\n",
"b=0.5; #normalized propagation constant\n",
"k0=2*3.14/lambda1; #constant\n",
"beta1=k0*math.sqrt(n21**2+b*(n1**2-n21**2)); #propagation constant\n",
"\n",
"#RESULTS\n",
"print\"Propagation constant=\",round(beta,5),\"rad/um\"; #The answers vary due to round off error\n",
"print\"\\nPropagation constant=\",round(b1,5); #The answers vary due to round off error\n",
"print\"\\nPropagation constant=\",round(beta1,5),\"rad/um\"; #The answers vary due to round off error"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Propagation constant= 7.19801 rad/um\n",
"\n",
"Propagation constant= 0.49832\n",
"\n",
"Propagation constant= 6.15805 rad/um\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.10 , Page no:35"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"from __future__ import division\n",
"\n",
"#initialisation of variables\n",
"#case-1\n",
"n1=1.49; #refractive index of core\n",
"n2=1.46; #refractive index of cladding\n",
"c=3*10**5; #speed of light in Km/s\n",
"t1=n1/c; #time delay for one traveling along axis in s/Km\n",
"t2=(n1**2/n2)/c; #time delay for one traveling along path that is totally reflecting at the first interface in s/km\n",
"\n",
"#case-2\n",
"n11=1.47; #refractive index of core\n",
"n21=1.46; #refractive index of cladding\n",
"c1=3*10**5; #speed of light in Km/s\n",
"t11=n11/c1; #time delay for one traveling along axis in\n",
"t22=(n11**2/n21)/c1; #time delay for one traveling along path that is totally reflecting at the first interface\n",
"\n",
"\n",
"print\"time delay for traveling along axis =\",round(t1*1e6,5),\"us/Km\"; #multiplication by 1e6 to convert the unit from s/Km to us/Km\n",
"print\"\\ntime delay for traveling along path that is totally reflecting at the first interface =\",round(t2*1e6,5),\"us/Km\"; #multiplication by 1e6 to convert the unit from s/Km to us/Km\n",
"print\"\\ntime delay for traveling along axis =\",round(t11*1e6,5),\"us/Km\"; #multiplication by 1e6 to convert the unit from s/Km to us/Km\n",
"print\"\\ntime delay for traveling along path that is totally reflecting at the first interface =\",round(t22*1e6,5),\"us/Km\"; #multiplication by 1e6 to convert the unit from s/Km to us/Km\n",
"#The answer provided in the textbook is wrong it has got wrong unit"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"time delay for traveling along axis = 4.96667 us/Km\n",
"\n",
"time delay for traveling along path that is totally reflecting at the first interface = 5.06872 us/Km\n",
"\n",
"time delay for traveling along axis = 4.9 us/Km\n",
"\n",
"time delay for traveling along path that is totally reflecting at the first interface = 4.93356 us/Km\n"
]
}
],
"prompt_number": 8
}
],
"metadata": {}
}
]
}
|