1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 4 Radian Measure"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exa 4.1 page.no:96"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Radian measure is 0.314159 rad\n",
"(or)\n",
"Radian measure is (pi/10)rad\n"
]
}
],
"source": [
"#To convert a degree measure to radians\n",
"from math import pi\n",
"\n",
"deg=18 # degree measure\n",
"radian=deg*(pi/180) # radian measure\n",
"print \"Radian measure is %f rad\\n(or)\"%radian\n",
"print \"Radian measure is (pi/%.0f)rad\"%(1/(radian/pi))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exa 4.2 page.no:96"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Degree measure is 20 degree\n"
]
}
],
"source": [
"#To convert a radian meeasure to degree\n",
"from math import pi\n",
"\n",
"radian=pi/9 # radian measure\n",
"deg=radian/(pi/180) # degree measure\n",
"print \"Degree measure is %.0f degree\"%deg"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exa 4.3 page.no:99"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Length of arc intercepted =2.4 cm\n"
]
}
],
"source": [
"#To determine length of the intercepted arc\n",
"r=2. #radius of circle\n",
"theta=1.2 # central angle in radian\n",
"s=r*theta # length of arc\n",
"print \"Length of arc intercepted =%.1f cm\"%s"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exa 4.4 page.no:99"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Length of arc intercepted = 7.16 ft \n"
]
}
],
"source": [
"#To determine length of the arc intercepted\n",
"from math import pi\n",
"\n",
"r=10 #radius of circle\n",
"theta=41*(pi/180) # central angle in radian\n",
"s=r*theta # length of arc\n",
"print \"Length of arc intercepted = %.2f ft \"%s"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exa 4.5 page.no:100"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Measure of central angle = 0.40 rad\n",
" \n",
"Measure of central angle =22.92 degree\n"
]
}
],
"source": [
"#To determine angle in radians and degrees\n",
"from math import pi\n",
"\n",
"r=5. #radius of circle\n",
"s=2. #length of arc\n",
"theta = s/r #central angle in radian\n",
"print \"Measure of central angle = %.2f rad\\n \"%theta\n",
"print \"Measure of central angle =%.2f degree\"%(theta*(180/pi))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exa 4.6 page.no:100"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Length of the rope =13.4 ft\n"
]
}
],
"source": [
"#To determine the length of the rope\n",
"from math import sqrt,pi,atan,acos\n",
"\n",
"d=8. #distance between places in feet\n",
"r=2. #radius of cylinder in feet\n",
"#from the figure\n",
"DA=d/2\n",
"BE=r\n",
"DE=3 #distance from centre of container to wall\n",
"AE=sqrt(DE**2 + DA**2) # pythagoras theorem\n",
"AB=sqrt(AE**2 - BE**2) # pythagoras theorem\n",
"#all angles below are in radians\n",
"angle_AED = atan((d/2)/DE)\n",
"angle_AEB = acos(BE/AE)\n",
"angle_BEC = pi - (angle_AED + angle_AEB)\n",
"arc_BC = BE*angle_BEC #length of arc BC\n",
"L = 2*(AB + arc_BC) #length of rope\n",
"print \"Length of the rope =%.1f ft\"%L"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exa 4.7 page.no:101"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Length of belt around pulley = 71.4 cm\n"
]
}
],
"source": [
"#To determine the length of the belt around the pulleys\n",
"from math import pi,sqrt,asin\n",
"\n",
"AE= 5. #radius of first pulley in cm\n",
"BF= 8. #radius of second pulley in cm\n",
"AB=15. #distance between centre of pulleys in cm\n",
"#from the figure\n",
"CF=AE #parallel side of rectangle ACFE\n",
"BC= BF- CF\n",
"AC = sqrt(AB**2 - BC**2) #by pythagoras theorem\n",
"EF=AC# parallel side of rectangle ACFE 14\n",
"angle_EAC = pi/2\n",
"angle_BAC = asin(BC/AB)\n",
"angle_DAE = pi - angle_EAC - angle_BAC\n",
"angle_ABC = angle_DAE #AE and BF are parallel\n",
"angle_GBF= pi - angle_ABC\n",
"arc_DE=AE*angle_ABC # length of arc DE\n",
"arc_FG=BF*angle_GBF # length of arc FG\n",
"L=2*(arc_DE + EF + arc_FG) #length of belt\n",
"print \"Length of belt around pulley = %.1f cm\"%L"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exa 4.8 page.no:103"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Area of sector = 1.6∗pi cmˆ2\n",
"(or)\n",
"Area of sector = 5.026548 cmˆ2\n"
]
}
],
"source": [
"#To find the area of sector of circle\n",
"from math import pi\n",
"\n",
"theta= pi/5 # angle in radian\n",
"r=4. #radius in cm\n",
"A=r*r*theta/2 #Area of sector\n",
"print \"Area of sector = %.1f∗pi cmˆ2\\n(or)\"%(A/pi)\n",
"print \"Area of sector = %f cmˆ2\"%A"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exa 4.9 page.no:103"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Area of sector =12.51 mˆ2\n"
]
}
],
"source": [
"#To determine area of sector of a circle\n",
"from math import pi\n",
"\n",
"theta= 117*(pi/180) # angle in radian\n",
"r=3.5 #radius in m\n",
"A=r*r*theta/2 #Area of sector\n",
"print \"Area of sector =%.2f mˆ2\"%A"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exa 4.10 page.no:104"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Area of sector =27 cmˆ2\n",
"\n",
"Note: Angle subtended by arc = 0.666667 rad\n"
]
}
],
"source": [
"#To determine area of sector of circle\n",
"\n",
"s=6. #arc length in cm\n",
"r=9. #radius in cm\n",
"A=r*s/2 #Area of sector\n",
"print \"Area of sector =%.0f cmˆ2\\n\"%A\n",
"print \"Note: Angle subtended by arc = %f rad\"%(s/r)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exa 4.11 page.no:104"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Area enclosed by belt pulley system = 338.71 cmˆ2 \n"
]
}
],
"source": [
"#To determine area insude belt pulley system\n",
"from math import pi,sqrt,asin\n",
"\n",
"AE= 5. #radius of first pulley\n",
"BF= 8. #radius of second pulley\n",
"AB=15. #distance between centre of pulleys\n",
"#from the figure\n",
"CF=AE\n",
"BC= BF- CF\n",
"AC = sqrt(AB**2 - BC**2)\n",
"#from the figure\n",
"angle_EAC = pi/2\n",
"angle_BAC = asin(BC/AB)\n",
"angle_DAE = pi - angle_EAC - angle_BAC\n",
"angle_ABC = angle_DAE #AE and BF are parallel\n",
"angle_GBF= pi - angle_ABC\n",
"area_DAE = AE**2*angle_DAE/2 #area of sector DAE\n",
"area_GBF = BF**2*angle_GBF/2 #area of sector GBF\n",
"area_AEFC = AE*AC #area of rectangle AEFC\n",
"area_ABC = AC*BC/2 #area of triangle ABC\n",
"area_K =2*( area_DAE + area_AEFC + area_ABC +area_GBF)\n",
"print \"Area enclosed by belt pulley system = %.2f cmˆ2 \"%area_K\n",
"#Note: answer differs from book due to approximations by them "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exa 4.12 page.no:105"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Required area of segment = 1.408 square units\n"
]
}
],
"source": [
"#To determine area of segment formed by a chord in circle\n",
"from math import acos,sin\n",
"\n",
"radius = 2.\n",
"chord = 3.\n",
"#Use law of cosines\n",
"cos_theta = (radius**2+radius**2-chord**2)/(2*radius*radius)\n",
"theta=acos(cos_theta) #subtended central angle in radians\n",
"area_K=radius**2*(theta-sin(theta))/2\n",
"print \"Required area of segment = %.3f square units\"%area_K"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exa 4.13 page.no:106"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Area of intersection of 2 circles =7.66 cm ˆ2 \n"
]
}
],
"source": [
"#To determine area of intersection of 2 circles\n",
"from math import acos\n",
"\n",
"d=7. #distance between centres in cm\n",
"r1= 5. #radius of first circle in cm\n",
"r2= 4. #radius of second circle in cm\n",
"#use law of cosines\n",
"cos_alpha=(d**2+ r1**2 - r2**2 ) /(2*d*r1)\n",
"cos_beeta=(d**2+ r2**2 - r1**2 ) /(2*d*r2)\n",
"#from the geometry of the figure\n",
"#all the angles below are in radians\n",
"alpha= acos(cos_alpha)\n",
"beeta= acos(cos_beeta)\n",
"angle_BAC = alpha\n",
"angle_ABC = beeta\n",
"angle_CAD =2* angle_BAC\n",
"angle_CBD =2* angle_ABC\n",
"#required area = area at segment CD in circle at A and at B\n",
"area_K = r1**2*(angle_CAD-sin(angle_CAD))/2 + r2 **2*(angle_CBD-sin(angle_CBD))/2\n",
"print \"Area of intersection of 2 circles =%.2f cm ˆ2 \"%area_K"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exa 4.14 page.no:109"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Angular speed= 2.094395 radian/sec\n",
"\n",
"Linear speed=6.283185m/sec\n",
"\n",
"(or)\n",
"\n",
"Angular speed= 0.666667∗pi radian/sec\n",
" \n",
"Linear speed = 2.000000∗pi m/sec \n"
]
}
],
"source": [
"#To find linear and angular speed of a moving object\n",
"from math import pi\n",
"t=0.5 #time in second\n",
"r= 3 #radius in m of the circle\n",
"theta = pi/3 # central angle in radian\n",
"w = theta/t #angular speed in rad /sec\n",
"v=w*r#linear speed in m/sec\n",
"print \"Angular speed= %f radian/sec\\n\"%w\n",
"print \"Linear speed=%fm/sec\"%v\n",
"print \"\\n(or)\\n\\nAngular speed= %f∗pi radian/sec\\n \"%(w/pi)\n",
"print \"Linear speed = %f∗pi m/sec \"%(v/pi)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exa 4.15 page.no:109"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Linear speed = 12.96 ft/sec\n",
"\n",
"Angular speed= 6.48 radian/sec\n"
]
}
],
"source": [
"#To find linear and angular speed of a moving object\n",
"\n",
"t=2.7 #time in second\n",
"r= 2. #radius in ft of the circle\n",
"s=35. #distance in feet\n",
"v=s/t #linear speed in ft/sec\n",
"w=v/r #angular speed in rad /sec\n",
"print \"Linear speed = %.2f ft/sec\\n\"%v\n",
"print \"Angular speed= %.2f radian/sec\"%w"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exa 4.16 page.no:109"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"central angle swept = 7.75 radian \n"
]
}
],
"source": [
"#To find the central angle swept by a moving object\n",
"t=3.1 #time in second\n",
"v= 10 #linear speed in m/sec\n",
"r= 4 #radius in m of the circle\n",
"s=v*t # distance in m\n",
"theta = s/r #central angle swept\n",
"print \"central angle swept = %.2f radian \"%theta"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exa 4.17 page.no:110"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Angular speed of larger gear=20 rpm \n"
]
}
],
"source": [
"#To find the angular speed of larger gear interlocked with smaller gear\n",
"r1=5 #radius of larger gear\n",
"r2=4 #radius smaller gear\n",
"w2=25 #angular speed of smaller gear\n",
"# Imagine a particle on outer radii of each gear\n",
"#At any time , for every rotation , circular displacement of each particle is same\n",
"# (or) s1=s2 implies v1∗t=v2∗t\n",
"#v1= v2 implies w1∗r1=w2∗r2\n",
"w1=(w2*r2)/r1 #angular speed of larger gear\n",
"print \"Angular speed of larger gear=%.0f rpm \"%w1"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.10"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|