1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 15 : Fibre Optics Sensors And Instrumentation"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example15_1,pg 470"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# find increamental phase\n",
"\n",
"import math\n",
"#variable declaration\n",
"n1=1.48 #refractive index of fibre\n",
"mu=0.2 #poisson's ratio\n",
"p=2.2*10**2 #pressure applied\n",
"lam=690.0*10**-9 #laser beam wavelength\n",
"Y=2.2*10**11 #young's modulus\n",
"\n",
"#Calcaulation\n",
"delphi=((4*math.pi*n1*mu*p)/(lam*Y))\n",
"\n",
"#Result\n",
"print(\"increamental phase:\")\n",
"print(\"delphi = %.6f rad\"%delphi)\n",
"#Answer is slightly different"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"increamental phase:\n",
"delphi = 0.005391 rad\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example15_2,pg 474"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# find additional length travelled\n",
"\n",
"import math\n",
"#Variable declartion\n",
"r= 9 #radius of fibre loop\n",
"a=math.pi*((r/2)**2) #area of fibre loop\n",
"Q=1.0 #linear velocity(cm/s)\n",
"Co=3*10**8 #velocity of light(cm/s)\n",
"\n",
"#Calculations\n",
"delL=((4*a*Q)/(Co)) #additional length travelled\n",
"\n",
"#Results\n",
"print(\"additional length travelled:\")\n",
"print(\"delL = %.1f * 10^-8 cm\"%(delL*10**8))\n",
"#Answer is not matching with book"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"additional length travelled:\n",
"delL = 67.0 * 10^-8 cm\n"
]
}
],
"prompt_number": 15
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example15_3,pg 512\n"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# find interacting length\n",
"\n",
"import math\n",
"#Variable declaration\n",
"#(Po1/Po2)=1/2 and Po1+Po2=3Po2=Pi\n",
"Po2byPi=1.0/3.0 #(Po2/Pi)\n",
"\n",
"#Calculations\n",
"kL=math.acos(math.sqrt(Po2byPi)) #k->coupling coefficient\n",
"L=kL #L=kL/k L->interacting length\n",
"\n",
"#Result\n",
"print(\"interacting length:\")\n",
"print(\"L = %.4f/k\"%L)\n",
"# answer is slightly different than book"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"interacting length:\n",
"L = 0.9553/k\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example15_4,pg 512\n"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# wavelength suitable for laser light\n",
"\n",
"import math\n",
"#Variable declaration\n",
"We=7.6*10**-5 #speed od gyro\n",
"L=490.0 #length\n",
"c=3*10**8 #speed of light \n",
"delphi=7.69*10**-5 #phase shift\n",
"d=0.094 \n",
"\n",
"#Calculations\n",
"lam=((2*math.pi*L*d*We)/(c*delphi)) #wavelength of laser light\n",
"\n",
"#Result\n",
"print(\"wavelength of laser light:\")\n",
"print(\"lam = %.f *10^-9 m\"%(lam*10**9))\n",
"#Answer isslightly different than book"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"wavelength of laser light:\n",
"lam = 953 *10^-9 m\n"
]
}
],
"prompt_number": 30
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example15_5,pg 513"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# find rate of change of RI wrt T\n",
"\n",
"import math\n",
"#Variable declaration\n",
"#(delphi/delT)=(2pi/lam)(n*(delL/delT)+L*(deln/delT))=(deln/delT)\n",
"lam=635.0*10**-9 #wavelength of light beam\n",
"delphi=139.0 #phase angle\n",
"delL=0.49*10**-6 #change in length\n",
"n=1.48 #R.I of fibre\n",
"\n",
"#Calculations\n",
"k=((lam*delphi)/(2*math.pi))-(delL*n) #//k=(deln/delT), rate of change of R.I w.r.t T\n",
"\n",
"#Result\n",
"print(\"rate of change of R.I w.r.t T:\")\n",
"print(\"k = %.2f * 10^-6/\u00b0C\"%(k*10**6))\n",
"# Answer is nnot matching to book"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"rate of change of R.I w.r.t T:\n",
"k = 13.32 * 10^-6/\u00b0C\n"
]
}
],
"prompt_number": 32
}
],
"metadata": {}
}
]
}
|