1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 3 : Power Parameter Calculations"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Example 3.1,Page 109"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"ramp current is 450.0 kAt/s\n",
"current at 5 micro sec is 2.25 A\n"
]
}
],
"source": [
"#finding ramp current and current at 5 micro sec\n",
"\n",
"#initialisation of variable\n",
"from math import pi,tan,sqrt,sin,cos,acos,atan\n",
"Ip=3.0;\n",
"f=150000.0;\n",
"t=5.0e-6;\n",
"\n",
"#calculation\n",
"T=1/f;\n",
"It=Ip/T;\n",
"I5=It*t;\n",
"\n",
"#result\n",
"print \"ramp current is\",round(It/1000,3), \"kAt/s\"\n",
"print \"current at 5 micro sec is\",round(I5,3), \"A\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Example 3.2,Page 110"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"current in time 0<=t<800ns is 3.575 A\n",
"current in time 800ns<=t<2 microsec is 0.0 A\n",
"current in time 400ns is 1.85 A\n",
"current in time 1 microsec is 0.0 A\n"
]
}
],
"source": [
"#finding current at different time\n",
"\n",
"#initialisation of variable\n",
"from math import pi,tan,sqrt,sin,cos,acos,atan\n",
"Ip=2.0;\n",
"f=500000.0;\n",
"Ir=.3;\n",
"Cd=.4#duty cycle\n",
"t1=4.0e-7;\n",
"t2=1.0e-6;\n",
"I1=0;\n",
"\n",
"#calculation\n",
"T=1/f;\n",
"Im=Ip-Ir;\n",
"I4=(Ip-Im)*t1/(Cd*T)+Im;\n",
"It=(Ip-Im)*t/(Cd*T)+Im;\n",
"It1=0\n",
"\n",
"#resilt\n",
"print \"current in time 0<=t<800ns is\",round(It,3),\"A\"\n",
"print \"current in time 800ns<=t<2 microsec is\",round(It1,2), \"A\"\n",
"print \"current in time 400ns is\",round(I4,2), \"A\"\n",
"print \"current in time 1 microsec is\",round(I1,2), \"A\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Example 3.3,Page 115"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"average voltage is 54.02 V\n"
]
}
],
"source": [
"#finding average voltage\n",
"\n",
"#initialisation of variable\n",
"from math import pi,tan,sqrt,sin,cos,acos,atan\n",
"Vr=120;\n",
"\n",
"#calculation\n",
"V=(Vr*2**.5)/pi;\n",
"\n",
"#result\n",
"print \"average voltage is\",round(V,2), \"V\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Example 3.4,Page 119"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"average current is 0.98 A\n"
]
}
],
"source": [
"#finding average current\n",
"\n",
"#initialisation of variable\n",
"from math import pi,tan,sqrt,sin,cos,acos,atan\n",
"f=100000.0;\n",
"Cd=.35#duty cycle\n",
"Ip=3.0;\n",
"Ir=.4;\n",
"\n",
"#calculation\n",
"Im=Ip-Ir;\n",
"T=1/f;\n",
"I=Cd*((Ip-Im)/2+Im)\n",
"\n",
"#result\n",
"print \"average current is\",round(I,2), \"A\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Example 3.5,Page 124"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"rms voltage is 8.87 V\n"
]
}
],
"source": [
"#finding rms voltage\n",
"\n",
"#initialisation of variable\n",
"from math import pi,tan,sqrt,sin,cos,acos,atan\n",
"Vp=15.0;\n",
"Cd=.35;\n",
"f=100000.0;\n",
"\n",
"#calculation\n",
"V=Vp*Cd**.5;\n",
"\n",
"#result\n",
"print \"rms voltage is\",round(V,2), \"V\"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Example 3.6,Page 127"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"rms current is 1.73 A\n"
]
}
],
"source": [
"#finding rms current\n",
"\n",
"#initialisation of variable\n",
"from math import pi,tan,sqrt,sin,cos,acos,atan\n",
"Ip=3.0;\n",
"f=100000.0;\n",
"\n",
"#calculation\n",
"I=Ip/3**.5;\n",
"\n",
"#result\n",
"print \"rms current is\",round(I,2), \"A\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Example 3.7,Page 133"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"rms voltage is 85.0 V\n"
]
}
],
"source": [
"#finding rms voltage\n",
"\n",
"#initialisation of variable\n",
"from math import pi,tan,sqrt,sin,cos,acos,atan\n",
"Vp=170.0;\n",
"f=60.0;\n",
"\n",
"#calculation\n",
"Vr=Vp/2;\n",
"\n",
"#result\n",
"print \"rms voltage is\",round(Vr,2), \"V\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Example 3.8,Page 140"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"power required is 2.42 hp\n",
"Pick a 5HP motor\n",
"current required is 18.84 amp\n"
]
}
],
"source": [
"#finding current and power\n",
"\n",
"#initialisation of variable\n",
"from math import pi,tan,sqrt,sin,cos,acos,atan\n",
"M=1000.0;\n",
"H=40.0;\n",
"T=30.0;\n",
"E1=.9;\n",
"E2=.5;\n",
"V=220.0;\n",
"P1=5.0;\n",
"\n",
"#calculation\n",
"W=M*H;\n",
"P=(W)/(T*550);\n",
"Pe=P1/E1;\n",
"I=(Pe*746)/V;\n",
"\n",
"#result\n",
"print \"power required is\",round(P,2), \"hp\"\n",
"print('Pick a 5HP motor')\n",
"print \"current required is\",round(I,2), \"amp\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Example 3.9,Page 145"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"power delivered to the load is 6.36 Watt\n",
"power provided by each supply is 7.23 Watt\n"
]
}
],
"source": [
"#finding power\n",
"\n",
"#initialisation of variable\n",
"from math import pi,tan,sqrt,sin,cos,acos,atan\n",
"Vin=1.0;\n",
"Ri=1100.0;\n",
"Rf=10000.0;\n",
"Rl=8.0;\n",
"Vs=18.0;\n",
"\n",
"#calculation\n",
"Ir=Vin/Ri;\n",
"Vl=Ir*(Ri+Rf);\n",
"Ip=Vl/Rl;\n",
"Pl=(Vl*Ip)/2;\n",
"Ps=(Vs*Ip)/pi;\n",
"\n",
"#result\n",
"print \"power delivered to the load is\",round(Pl,2),\"Watt\"\n",
"print \"power provided by each supply is\",round(Ps,2), \"Watt\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Example 3.10,Page 149"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"power delivered is 141.67 Watt\n"
]
}
],
"source": [
"#finding power\n",
"\n",
"#initialisation of variable\n",
"from math import pi,tan,sqrt,sin,cos,acos,atan\n",
"V=170.0;\n",
"R=51.0;\n",
"\n",
"#calculation\n",
"I=V/R;\n",
"P=(V*I)/4;\n",
"\n",
"#result\n",
"print \"power delivered is\",round(P,2), \"Watt\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Example 3.11,Page 151"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"power dissipated is 7.05 watt\n",
"power dissipated when transistor resistance is 0.2 hm is 0.35 watt\n"
]
}
],
"source": [
"#finding power\n",
"\n",
"#initialisation of variable\n",
"from math import pi,tan,sqrt,sin,cos,acos,atan\n",
"V=7.2;\n",
"Rq=.2;\n",
"Rl=4;\n",
"D=.6;\n",
"\n",
"#calculation\n",
"Ip=V/(Rq+Rl);\n",
"Vl=Ip*Rl;\n",
"P=D*Vl*Ip;\n",
"Vq=Ip*Rq;\n",
"Pq=D*Vq*Ip;\n",
"\n",
"#result\n",
"print \"power dissipated is\",round(P,2), \"watt\"\n",
"print \"power dissipated when transistor resistance is 0.2 hm is\",round(Pq,2), \"watt\""
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|