1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
|
{
"metadata": {
"name": "Chapter_7"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": "Chapter 2 - Optical sources 2: the light-emitting diode\n"
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example 7.1, page 401"
},
{
"cell_type": "code",
"collapsed": false,
"input": "import math\n\n#Variable declaration\ntr=60*10**-9 #radiative ecombination lifetime\ntnr=100*10**-9 #nonradiative ecombination lifetime\nh=6.626*10**-34 #plancks const\nc=2.998*10**8 #speed of light\ni=40*10**-3 #drive current\ne=1.602*10**-19 #1 electron volt\nh1=0.87*10**-6 #wavelength\n\n#Calculation\nt=(tr*tnr)/(tr+tnr) #total carrier recombination lifetime\nn=t/tr #quantum efficiency \npin=n*h*c*i/(e*h1) #internal power generated\n\n#Result\nprint'Total carrier recombination lifetime = %.1f ns'%(t*10**9)\nprint'Power internally generated = %.1f mW'%(pin*10**3)",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "Total carrier recombination lifetime = 37.5 ns\nPower internally generated = 35.6 mW\n"
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example 7.2, page 402"
},
{
"cell_type": "code",
"collapsed": false,
"input": "import math\n\n#Variable declaration\nF=0.68 #crystal\u2013air interface\nn=1 #refractive index of air\nnx=3.6 #refractive index of Ga\n\n\n#Calculation\npe=(F*n**2)/(4*nx**2) #Optical power emitted\nn1=pe*100/2 #External power efficiency\n\n#Result\nprint'Optical power emitted = %.3f *Pint'%(pe)\nprint'External power efficiency = %.2f percent'%n1",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "Optical power emitted = 0.013 *Pint\nExternal power efficiency = 0.66 percent\n"
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example 7.3, page 404"
},
{
"cell_type": "code",
"collapsed": false,
"input": "import math\n\n#Variable declaration\nNA=0.2 #numerical aperture\npe=0.013 #optical power emitted\n\n#Calculation\nnc=NA**2 #coupling efficiency\nLoss=-10*math.log10(nc) #optical loss\npc=nc*pe #coupling power\nLoss1=-10*math.log10(pc) #internal power relative loss\n\n#Result\nprint'Coupling efficiency = %.2f'%nc\nprint'Optical loss = %.1f dB'%Loss\nprint'Loss due internal optical power = %.1f dB'%Loss1",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "Coupling efficiency = 0.04\nOptical loss = 14.0 dB\nLoss due internal optical power = 32.8 dB\n"
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example 7.4, page 409"
},
{
"cell_type": "code",
"collapsed": false,
"input": "import math\n\n#Variable declaration\nr=0.01 #fresnel reflection coefficient \nRd=30 #radiance\nNA=0.15 #numerical aperture\na=25*10**-4 \n\n#Calculation\nA=math.pi*a**2 #emission area\npc=math.pi*(1-r)*A*Rd*NA**2 #optical power\n\n#Result\nprint'Optical power = %.1f uW'%(pc*10**6)",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "Optical power = 41.2 uW\n"
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example 7.5, page 421"
},
{
"cell_type": "code",
"collapsed": false,
"input": "import math\n\n#Variable declaration\npc=190*10**-6 #optical power\np=25*10**-3 #forward current\nv=1.5 #voltage\n\n\n#Calculation\nn=(pc/(p*v))*100 #power efficiency\n\n#Result\nprint'Overall power efficiency = %.1f percent'%n",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "Overall power efficiency = 0.5 percent\n"
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example 7.7, page 430"
},
{
"cell_type": "code",
"collapsed": false,
"input": "import math\n\n#Variable declaration\npdc=300*10**-6 #optical output power\nf=20*10**6 #frequency in hertz\nti=5*10**-9 #minority carrier recombination lifetime\nf2=100*10**6 #frequency in hertz\nt=10**-8\nw=math.sqrt(3)\n\n#Calculation\npe1=pdc/math.sqrt(1+(2*math.pi*f*ti)**2) #Optical output power (f=20 MHz)\npe2=pdc/math.sqrt(1+(2*math.pi*f2*ti)**2) #Optical output power (f=100 MHz)\nf=w/(math.pi*t)\nB=f/math.sqrt(2)\n\n#Result\nprint'(a) Optical output power (f=20 MHz) = %.2f uW'%(pe1*10**6)\nprint'(b) Optical output power (f=100 MHz) = %.2f uW'%(pe2*10**6)\nprint'Electrical bandwidth = %.1f MHz'%(B*10**-6)",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "(a) Optical output power (f=20 MHz) = 254.02 uW\n(b) Optical output power (f=100 MHz) = 90.99 uW\nElectrical bandwidth = 39.0 MHz\n"
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example 7.8, page 435"
},
{
"cell_type": "code",
"collapsed": false,
"input": "import math\n\n#Variable declaration\nbo=1.84*10**7 #proportionality constant\ne=-1.602*10**-19 #charge of electron\nk=1.38*10**-23 #boltzman constant\nt1=290 #tempreture in kelvin\nexp=0.67\n\n\n\n#Calculation\nbt=bo*math.exp(e/(k*t1)) #degradation rate\nt=-math.log(exp)/bt #operating lifetime\n\n#Result\nprint'CW operating lifetime = %.1f x 10^9 h'%(t*10**-9)",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "CW operating lifetime = 5.3 x 10^9 h\n"
}
],
"prompt_number": 7
}
],
"metadata": {}
}
]
}
|