1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
|
{
"metadata": {
"name": "",
"signature": "sha256:2fe50082340642dd8429d3545371d7b4c451ffac9b445487719541932115a705"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chpater 5:Cavity Resonators"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.1, Page number 174"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"import math\n",
"\n",
"#Variable declaration\n",
"a = 3 #radius of circular waveguide(cm)\n",
"fo = 10*10**9 #frequency for TM011 mode(Hz)\n",
"P01 = 2.405\n",
"c = 3*10**10 #velocity of proapagation(m/s)\n",
"\n",
"#Calculation\n",
"d = math.sqrt((math.pi**2)/(((4*math.pi**2)/9)-((P01/a)**2)))\n",
"\n",
"#Result\n",
"print \"The minimum distance between two plates is\",round(d,2),\"cms\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The minimum distance between two plates is 1.62 cms\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.2, Page number 174"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"a = 2.\n",
"b = 1.\n",
"d = 3.\n",
"#For dominant mode TE101,\n",
"m = 1.\n",
"n = 0\n",
"p = 1.\n",
"\n",
"c = 3*10**10 #velocity of propagation(m/s)\n",
"\n",
"#Calculation\n",
"fo = (c/2)*(((m/a)**2+(n/b)**2+(p/d)**2))**0.5\n",
"\n",
"#Result\n",
"print \"The lowest resonating frequency of a rectangular cavity resonator is\",round((fo/1E+9),2),\"Ghz\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The lowest resonating frequency of a rectangular cavity resonator is 9.01 Ghz\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.3, Page number 175"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"import math\n",
"\n",
"#Variable declaration\n",
"D = 12.5 #diameter of resonator(cm)\n",
"d = 5 #length of resonator(cm)\n",
"P01 = 2.405 #dominant mode TM01\n",
"c = 3*10**10 #velocity of propagation(m/s)\n",
"\n",
"#For TM012 mode,\n",
"m = 1\n",
"n = 0\n",
"p = 2\n",
"\n",
"#Calculation\n",
"a = D/2\n",
"fo = (c/(2*math.pi))*((P01/a)**2+((p*math.pi)/d)**2)**0.5\n",
"\n",
"#Result\n",
"print \"The resonanat frequency of a circular resonator is\",round((fo/1E+9),2),\"GHz\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The resonanat frequency of a circular resonator is 6.27 GHz\n"
]
}
],
"prompt_number": 14
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.4, Page number 175"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"a = 3.\n",
"b = 2.\n",
"d = 4.\n",
"#For dominant mode TE101,\n",
"m = 1.\n",
"n = 0\n",
"p = 1.\n",
"\n",
"c = 3*10**10 #velocity of propagation(m/s)\n",
"\n",
"#Calculation\n",
"fo = (c/2)*(((m/a)**2+(n/b)**2+(p/d)**2))**0.5\n",
"\n",
"#Result\n",
"print \"The lowest resonating frequency of a circular resonator is\",round((fo/1E+9),2),\"Ghz\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The lowest resonating frequency of a circular resonator is 6.25 Ghz\n"
]
}
],
"prompt_number": 15
}
],
"metadata": {}
}
]
}
|