1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
|
{
"metadata": {
"name": "",
"signature": "sha256:f6cde23ce2afec7e011f20ed56b14deeef046db9ca1319efd802d439a18d5a2d"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter10:MICROWAVE CROSSED-FIELD TUBES(M TYPE)"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Eg10.1.1:pg-448"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#(a) Calculate the cyclotron angular frequency\n",
"em=1.759*(10**11) #em=e/m is the charge is to mass ratio of electron\n",
"B0=0.336 #Magnetic flux density in Wb/m**2\n",
"wc=(em)*B0 \n",
"print\"The cyclotron angular frequency(in rad)is =\",\"{:.2e}\".format(wc),\"rad\" \n",
"\n",
"#(b) Calculate the cutoff voltage for a fixed B0\n",
"a=5*(10**-2) #radius of cathode cylinder in meter\n",
"b=10*(10**-2) #radius of vane edge to center in meter\n",
"Voc=(em*(B0**2)*(b**2)*((1-((a/b)**2))**2))/8 \n",
"Voc=Voc/(10**5) #converting Voc in KV\n",
"print\"The cutoff voltage for a fixed B0(in KV)is =\",round(Voc,2),\"KV\" #calculation mistake in book\n",
"\n",
"#(c) Calculate the cutoff magnetic flux density for a fixed V0\n",
"V0=26*(10**3) #Anode voltage in volt\n",
"Boc=sqrt((8*V0)/em)/(b*(1-((a/b)**2))) \n",
"Boc=Boc*1000 #converting Boc in mWb/m**2\n",
"print\"The cutoff magnetic flux density for a fixed V0(in mWb/m**2)is =\",round(Boc,3),\"mWb/m2\" "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The cyclotron angular frequency(in rad)is = 5.91e+10 rad\n",
"The cutoff voltage for a fixed B0(in KV)is = 139.63 KV\n",
"The cutoff magnetic flux density for a fixed V0(in mWb/m**2)is = 14.499 mWb/m2\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Eg10.1.1A:pg-452"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#(a) Calculate the angular resonant frequency\n",
"f=9*(10**9) #Operating frequency in Hertz\n",
"wr=2*math.pi*f #angular frequency\n",
"print\"The angular resonant frequency(in rad)is =\",\"{:.3e}\".format(wr),\"rad\" \n",
"\n",
"#(b) Calculate the unloaded quality factor\n",
"C=2.5*(10**-12) #vane capacitance in Farad\n",
"Gr=2*(10**-4) #Resonator conductance in mho\n",
"Qun=wr*C/Gr \n",
"print\"The unloaded quality factor is=\",int(round(Qun))\n",
"\n",
"#(c) Calculate the loaded quality factor\n",
"C=2.5*(10**-12) #vane capacitance in Farad\n",
"Gr=2*(10**-4) #Resonator conductance in mho\n",
"Gl=2.5*(10**-5) #loaded conductance in mho\n",
"Ql=wr*C/(Gl+Gr) \n",
"print\"The loaded quality factor is=\",int(Ql)\n",
"\n",
"#(d) Calculate the external quality factor\n",
"C=2.5*(10**-12) #vane capacitance in Farad\n",
"Gl=2.5*(10**-5) #loaded conductance in mho\n",
"Qex=wr*C/Gl \n",
"print\"The external quality factor is=\",int(round(Qex)) \n",
"\n",
"#(e) Calculate the circuit efficiency\n",
"n=(1/(1+(Qex/Qun))) \n",
"n=n*100 \n",
"print\"The circuit efficiency(in %) is=\",round(n,2),\"%\"\n",
"\n",
"#(f) Calculate the electronic efficiency\n",
"V0=5.5*(10**3) #Anode Voltage in volt\n",
"I0=4.5 #Beam current in Ampere\n",
"Plost=18.5*(10**3) #power loss in Watt\n",
"ne=((V0*I0)-(Plost))/(V0*I0) \n",
"ne=ne*100 \n",
"print\"The electronic efficiency(in %) is=\",round(ne,2),\"%\" "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The angular resonant frequency(in rad)is = 5.655e+10 rad\n",
"The unloaded quality factor is= 707\n",
"The loaded quality factor is= 628\n",
"The external quality factor is= 5655\n",
"The circuit efficiency(in %) is= 11.11 %\n",
"The electronic efficiency(in %) is= 25.25 %\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Eg10.1.2:pg-457"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#(a) Calculate the Hull cutoff voltage for fixed Bo\n",
"em=1.759*(10**11) #em=e/m is the charge to mass ratio of electron\n",
"Bo=0.01 #Magnetic flux density in Wb/m**2\n",
"d=5*(10**-2) #Distance between cathode and anode in meter\n",
"Voc=(1.0/2)*(em)*(Bo**2)*(d**2) \n",
"Voc=Voc/1000 #converting Voc in KV\n",
"print\"The Hull cutoff voltage for fixed Bo (in KV)is =\",round(Voc),\"KV\"\n",
"\n",
"#(b) Calculate the Hull cutoff magnetic field density for fixed Vo\n",
"V0=10*(10**3) #Anode voltage in Volt\n",
"Boc=(1.0/d)*sqrt((2*V0)/(em)) \n",
"Boc=Boc*1000 #in mWb/m2\n",
"print\"The Hull cutoff magnetic field density for fixed Vo(in mWb/m**2)is =\",round(Boc,2),\"mWb/m2\" "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The Hull cutoff voltage for fixed Bo (in KV)is = 22.0 KV\n",
"The Hull cutoff magnetic field density for fixed Vo(in mWb/m**2)is = 6.74 mWb/m2\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Eg10.1.2a:pg-459"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#(a) Calculate the electron velocity at the hub surface\n",
"em=1.759*(10**11) #em=e/m is the charge to mass ratio of electron\n",
"Bo=0.015 #Magnetic flux density in Wb/m**2\n",
"d=5*(10**-2) #Distance between cathode and anode in meter\n",
"h=2.77*(10**-2) #hub thickness in meter\n",
"V=em*Bo*h \n",
"print\"The electron velocity at the hub surface(in m/s)is =\",\"{:.1e}\".format(V),\"m/s\" #answer in book is wrong\n",
"\n",
"#(b) Calculate the phase velocity for synchronism\n",
"Vph=V #Vph=W/B and for synchronism Vph=V\n",
"print\"The phase velocity for synchronism is Vph=w/B =\",\"{:.1e}\".format(Vph),\"m/s\" \n",
"\n",
"#(c) Calculate the Hartree anode voltage\n",
"Vph=int(Vph/1000000) #converting the Vph in to the format printed above for easy calculations\n",
"Vph=Vph*1000000\n",
"Voh=((Vph*Bo*d))-((1.0/2)*(1/em)*(Vph**2)) \n",
"Voh=Voh/1000 #in KV\n",
"print\"The Hartree anode voltage (in KV) is =\",round(Voh,2),\"KV\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The electron velocity at the hub surface(in m/s)is = 7.3e+07 m/s\n",
"The phase velocity for synchronism is Vph=w/B = 7.3e+07 m/s\n",
"The Hartree anode voltage (in KV) is = 39.6 KV\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Eg10.1.5:pg-465"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#(a) Calculate the cutoff voltage for fixed Bo\n",
"em=1.759*(10**11) #em=e/m is the charge to mass ratio of electron\n",
"Bo=0.01 #Magnetic flux density Wb/m**2\n",
"a=3*(10**-2) #anode radius in meter\n",
"b=4*(10**-2) #Cathode radius in meter\n",
"Voc=(1.0/8)*(em)*(Bo**2)*(a**2)*((1-((b/a)**2))**2) \n",
"Voc=Voc/1000 # in KV\n",
"print\"The cutoff voltage for fixed Bo(in KV)is =\",round(Voc,2),\"KV\"\n",
"\n",
"#(b) Calculate the cutoff magnetic flux density for fixed Vo\n",
"V0=10*(10**3) #Anode voltage in Volt\n",
"Boc=(-1/(sqrt(em)))*(sqrt(8*V0))/((a)*(1-((b/a)**2))) \n",
"print\"The cutoff magnetic flux density for fixed Vo(in Wb/m**2)is =\",round(Boc,4),\"Wb/m2\" "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The cutoff voltage for fixed Bo(in KV)is = 1.2 KV\n",
"The cutoff magnetic flux density for fixed Vo(in Wb/m**2)is = 0.0289 Wb/m2\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Eg10.1.6:pg-467"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#(a) Calculate the agile excursion\n",
"t=0.2*(10**-6) #pulse duration in seconds\n",
"N=14 #pulse rate on target per scan\n",
"AC=N/t #agile Excursion\n",
"AC=AC/(10**6) #in MHz\n",
"print\"The agile excursion(in MHz)is =\",int(AC),\"MHz\"\n",
"\n",
"#(b) Calculate the pulse-to-pulse frequency separation\n",
"fp=1.0/t \n",
"fp=fp/(10**6) #in MHz\n",
"print\"The pulse-to-pulse frequency separation(in MHz)is =\",int(fp),\"MHz\" \n",
"\n",
"#(c) Calculate the signal frequency\n",
"DC=0.001 #Duty cycle\n",
"f=(DC/t) \n",
"f=f/(10**3) #in KHz\n",
"print\"The signal frequency(in KHz)is =\",int(f),\"KHz\"\n",
"\n",
"#(d) Calculate the time for N pulses\n",
"Time=N/f \n",
"print\"The time for 14 pulses per second (in ms)is =\",Time,\"ms\" \n",
"\n",
"#(e) Calculate the agile rate\n",
"Agile_rate=1/(2*Time*(10**-3)) \n",
"print\"The agile rate(in Hz)is =\",round(Agile_rate,2),\"Hz\" "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The agile excursion(in MHz)is = 70 MHz\n",
"The pulse-to-pulse frequency separation(in MHz)is = 5 MHz\n",
"The signal frequency(in KHz)is = 5 KHz\n",
"The time for 14 pulses per second (in ms)is = 2.8 ms\n",
"The agile rate(in Hz)is = 178.57 Hz\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Eg10.2.1:pg-473"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#(a) Calculate the induced RF power\n",
"Vao=2*(10**3) #Anode dc voltage in Volt\n",
"Iao=1.5 #Anode dc current in ampere\n",
"ne=0.20 #Electronic efficiency\n",
"Pgen=Vao*Iao*ne \n",
"print\"The induced RF power(in W)is =\",int(Pgen),\"W\" \n",
"\n",
"#(b) Calculate the total RF output power\n",
"Pin=80 #RF input power in Watt\n",
"Pout=Pin+(Pgen) \n",
"print\"The total RF output power(in W)is =\",int(Pout),\"W\" \n",
"\n",
"#(c) Calculate the power gain\n",
"g=Pout/Pin \n",
"g=10*log10(g) #in decibels\n",
"print\"The power gain(in dB)is =\",round(g,1),\"dB\" "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The induced RF power(in W)is = 600 W\n",
"The total RF output power(in W)is = 680 W\n",
"The power gain(in dB)is = 9.3 dB\n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Eg10.3.1:pg-478"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#(a) Calculate the dc electron-beam velocity\n",
"V0=15*(10**3) #Anode voltage in Volt\n",
"v0=0.593*(10**6)*sqrt(V0) #v0=sqrt((2*e*V0)/m),where e is the charge on electron and m is the mass of electron \n",
" #sqrt(2*e/m)=0.593*(10**6)\n",
"print\"The dc electron-beam velocity (in m/s)is =\",\"{:.3e}\".format(v0),\"m/s\" #answer in book is wrong\n",
"\n",
"#(b) Calculate the electron-beam phase constant\n",
"f=8*(10**9) #operating frequency in Hertz\n",
"w=2*math.pi*f #angular frequency in Hertz\n",
"v0=int(v0/100000) #converting v0 in to the format printed above for easy calculations\n",
"v0=v0*100000\n",
"Be=w/v0 \n",
"print\"The electron-beam phase constant(in rad/m)is =\",round(Be,2),\"rad/s\" \n",
"\n",
"#(c) Calculate the cyclotron angular frequency\n",
"em=1.759*(10**11) #em=e/m is the charge to mass ratio of electron\n",
"Bo=0.2 #Magnetic flux density in Wb/m**2\n",
"wc=(em*Bo) \n",
"print\"The cyclotron angular frequency(in rad/s)is =\",\"{:.3e}\".format(wc),\"rad/s\" \n",
"\n",
"#(d) Calculate the cyclotron phase constant\n",
"Bm=wc/v0 \n",
"print\"The cyclotron phase constant(in rad/m)is =\",round(Bm,2),\"rad/s\" \n",
"\n",
"#(e) Calculate the gain parameter\n",
"Z0=50 #characteristic impedance in Ohms\n",
"I0=3.0 #Anode current in ampere\n",
"C=((I0*Z0)/(4*V0))**(1/3.0)\n",
"print\"The gain parameter is =\",round(C,3) "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The dc electron-beam velocity (in m/s)is = 7.263e+07 m/s\n",
"The electron-beam phase constant(in rad/m)is = 692.36 rad/s\n",
"The cyclotron angular frequency(in rad/s)is = 3.518e+10 rad/s\n",
"The cyclotron phase constant(in rad/m)is = 484.57 rad/s\n",
"The gain parameter is = 0.136\n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Eg10.4.1:pg-483"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#(a)Calculate the dc electron velocity\n",
"V0=20*(10**3) #Anode voltage in Volt\n",
"v0=0.593*(10**6)*sqrt(V0) #v0=sqrt((2*e*V0)/m),where e is the charge on electron and m is the mass of electron \n",
" #sqrt(2*e/m)=0.593*(10**6)\n",
"print\"The dc electron velocity (in m/s)is =\",\"{:.3e}\".format(v0),\"m/s\" \n",
"\n",
"#(b) Calculate the electron-beam phase constant\n",
"f=4*(10**9) #operating frequency in Hertz\n",
"w=2*math.pi*f #angular frequency in Hertz\n",
"Be=w/v0 \n",
"print\"The electron-beam phase constant(in rad/m)is =\",int(round(Be)),\"rad/m\" \n",
"\n",
"#(c) Calculate the delta differentials\n",
"b=0.5 #b factor\n",
"print\"The Delta differentials are:\" \n",
"s1=(1j)*((b-sqrt((b**2)+4))/2)\n",
"s1=round(s1.imag,2)\n",
"s1=0+1j*s1\n",
"print\"s1=\",s1 \n",
"s2=(1j)*((b+sqrt((b**2)+4))/2)\n",
"s2=round(s2.imag,2)\n",
"s2=0+1j*s2\n",
"print\"s2=\",s2\n",
"\n",
"#(d)Calculate the propagation constants\n",
"D=0.8 #D factor\n",
"print\"The propagation constants are:\" \n",
"r1=((1j)*(round(Be)+b))+(b*D*s1) \n",
"r1=round(r1.imag,1)\n",
"r1=0+1j*r1\n",
"print\"r1=\",r1\n",
"r2=((1j)*(round(Be)+b))+(b*D*s2) # in book the value of s2 is used with negative sign which is wrong\n",
"r2=round(r2.imag,2)\n",
"r2=0+1j*r2\n",
"print\"r2=\",r2 \n",
"\n",
"#(e)Calculate the oscillation condition\n",
"print\"The oscillation occurs at DN=1.25 for n=1\" \n",
"N=1.25/D \n",
"print\"then N=\",N \n",
"l=(2*math.pi*N)/round(Be) \n",
"l=l*100 #in cm\n",
"print\"and l= 2*pi*N/Be(in cm) =\",round(l,2),\"cm\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The dc electron velocity (in m/s)is = 8.386e+07 m/s\n",
"The electron-beam phase constant(in rad/m)is = 300 rad/m\n",
"The Delta differentials are:\n",
"s1= -0.78j\n",
"s2= 1.28j\n",
"The propagation constants are:\n",
"r1= 300.2j\n",
"r2= 301.01j\n",
"The oscillation occurs at DN=1.25 for n=1\n",
"then N= 1.5625\n",
"and l= 2*pi*N/Be(in cm) = 3.27 cm\n"
]
}
],
"prompt_number": 11
}
],
"metadata": {}
}
]
}
|