1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
|
{
"metadata": {
"name": "CH18"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 18 : Electrical Properties"
]
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 18.1 Page No 682"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Computation of the Room-Temperature Intrinsic Carrier Concentration for Gallium Arsenide\n",
"\n",
"#Given\n",
"sigma=10**-6 # (Ohm-m)**-1 Electrical Conductivity\n",
"e=1.6*10**-19 #Coulomb Charge on electron\n",
"m_e=0.85 # m**2/V-s Mobility of electron\n",
"m_h=0.04 # m**2/V-s Mobility of holes\n",
"\n",
"#Calculation\n",
"#ni is Intrinsic carrier concentration\n",
"ni=sigma/(e*(m_e+m_h))\n",
"\n",
"print\"Intrinsic Carrier Concentration is\",round(ni,-11),\"m**-3\"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Intrinsic Carrier Concentration is 7e+12 m**-3\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 18.2 Page No 689"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Electrical Conductivity Determination for Intrinsic Silicon at 150\u00b0C\n",
"\n",
"#Given\n",
"e=1.6*10**-19 #Coulomb Charge on electron\n",
"ni=4*10**19 #For Si at 423 K (m**-3)\n",
"#Values of m_e and m_h are deduced from graphs at page No.689\n",
"m_e=0.06 #m**2/V-s Mobility of electron\n",
"m_h=0.022 #m**2/V-s Mobility of holes\n",
"\n",
"#calculation\n",
"#sigma is electrical conductivity\n",
"sigma=ni*e*(m_e+m_h)\n",
"\n",
"#result\n",
"print\"Electrical Conductivity is \",round(sigma,2),\"(ohm-m)**-1\"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Electrical Conductivity is 0.52 (ohm-m)**-1\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 18.3 Page No 690"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Room-Temperature for Extrinsic Silicon\n",
"\n",
"#Given (b)\n",
"n=10**23 #m**-3 Carrier Concentration\n",
"e=1.6*10**-19 #Coulomb Charge on electron\n",
"#From graph 18.18 m_e is calculated corresponding to n=10**23\n",
"m_e=0.07 #m**2/V-s Mobility of electron\n",
"\n",
"#Calculation\n",
"#For extrinsic n-type, the formula used is:\n",
"sigma=n*e*m_e\n",
"\n",
"\n",
"#(c)Elevated-Temperature Electrical Conductivity Calculations for Extrinsic Silicon\n",
"#From graph 18.19a m_e2 is calculated corresponding to 373 K\n",
"m_e2=0.04 #m**2/V-s Mobility of electron\n",
"sigma2=n*e*m_e2\n",
"\n",
"#Result\n",
"print\"Conductivity at n=10**23 is \",sigma,\"(Ohm-m)**-1\"\n",
"print\"Conductivity at T=373 K becomes \",sigma2,\"(Ohm-m)**-1\"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Conductivity at n=10**23 is 1120.0 (Ohm-m)**-1\n",
"Conductivity at T=373 K becomes 640.0 (Ohm-m)**-1\n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Design Example 18.1, Page No: 691"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Specify an impurity acceptor type\n",
"\n",
"#Given\n",
"c=50 #ohm**-1, room temprature conductivity\n",
"Na1=10**22 #m**-3, assumed impurity content value\n",
"mu1=0.04 #m**2/Vs, assumed electrical mobility\n",
"e=1.6*10**-19 #Electronic charge\n",
"NA=6.023*10**23 #Avagadro no\n",
"\n",
"#Calculation\n",
"C=Na1*e*mu1 #Conductivity\n",
"#Decreasing an impurity content\n",
"Na2=10**21 #m**-3, \n",
"mu2=0.045 #m**2/Vs,\n",
"C=Na2*e*mu2\n",
"#So we get conductivity = 50 at\n",
"Na=8*10**21 \n",
"#For Silicon\n",
"rho=2.33 # g/cm**3\n",
"Asi=28.09 # g/mole\n",
"Nsi=(NA*rho*10**6)/(Asi)\n",
"Ca=(Na/(Na+Nsi))*100\n",
"\n",
"#Result\n",
"print\"The concentration of acceptor impurities is\",round(Ca,7)\n",
"print\"Thus a Silicon material having conductivity 50 ohm**-1 \\nmust contain\",round(Ca,7),\"% boron,aluminium,Gallium or indium .\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The concentration of acceptor impurities is 1.6e-05\n",
"Thus a Silicon material having conductivity 50 ohm**-1 \n",
"must contain 1.6e-05 % boron,aluminium,Gallium or indium \n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 18.4 Page No 693"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Hall Voltage Computation\n",
"\n",
"#Given\n",
"sigma=3.8*10**7 #(Ohm-m)**-1 Electrical Conductivity\n",
"m_e=0.0012 #m**2/V-s Mobility of electron\n",
"Rh=-m_e/sigma #Hall coefficient\n",
"Ix=25 #Ampere(A) Current\n",
"d=15*10**-3 #m Thickness\n",
"Bz=0.6 #Tesla Magnetic field\n",
"\n",
"#Calculation\n",
"Vh=Rh*Ix*Bz/d\n",
"\n",
"#Result\n",
"print\"Hall coefficient is \",round(Rh,13),\"V-m/A-Tesla\"\n",
"print\"Hall Voltage is \",round(Vh,10),\"V\"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Hall coefficient is -3.16e-11 V-m/A-Tesla\n",
"Hall Voltage is -3.16e-08 V\n"
]
}
],
"prompt_number": 13
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 18.5 Page No 707"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#find the Capacitance \n",
"\n",
"#Given\n",
"A=6.45*10**-4 #m**2, area\n",
"d=2*10**-3 #m. Plate separation\n",
"V=10 #V Potential\n",
"Er=6 #Dielectric constant\n",
"Eo=8.85*10**-12 #F/m Constant dielectric constant\n",
"#Calculation\n",
"E=Er*Eo\n",
"C=E*A/d\n",
"Q=C*V\n",
"D=E*V/d\n",
"P=D-Eo*V/d\n",
"\n",
"#Result\n",
"print\"The Capacitance is\",round(C,13),\"F\"\n",
"print\"The magnitude of charge stored is \",round(Q,12),\"C\"\n",
"print\"The Dielectric displacement is is\",round(D,9),\"C/m**2\"\n",
"print\"The Polarization is\",round(P,9),\"C/m**2\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The Capacitance is 1.71e-11 F\n",
"The magnitude of charge stored is 1.71e-10 C\n",
"The Dielectric displacement is is 2.65e-07 C/m**2\n",
"The Polarization is 2.21e-07 C/m**2\n"
]
}
],
"prompt_number": 15
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": []
}
],
"metadata": {}
}
]
}
|