1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
|
{
"metadata": {
"name": "ch_10"
},
"nbformat": 2,
"worksheets": [
{
"cells": [
{
"cell_type": "markdown",
"source": [
"<h1>Chapter 10: Phase locked loop<h1>"
]
},
{
"cell_type": "markdown",
"source": [
"<h3>Example 10.1, Page No: 429<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"",
"#Variable Declaration:",
"fs=20000.0 #Signal frequency in hertz",
"fr=21000.0 #Free running frquency in hertz",
"VCOf=4000.0 #V/F transfer coefficient of VCO in Khz/V",
"",
"#Calculation:",
"Vcd=(fr-fs)/VCOf #Calculating change in DC control voltage",
"",
"#Result:",
"print('Vcd= %.2f V'%Vcd)"
],
"language": "python",
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Vcd= 0.25 V"
]
}
],
"prompt_number": 1
},
{
"cell_type": "markdown",
"source": [
"<h3>Example No. 10.2, Page No: 430<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"",
"",
"#Part A",
"#Variable Ceclaration:",
"R1=15.0*10**3 #Resistance in ohm",
"R3=15.0*10**3 #Resistance in ohm",
"R2=2.2*10**3 #Resistance in ohm",
"C1=0.001*10**-6 #Capacitance in farad",
"Vcc=12.0 #Voltage in volt",
"",
"#Calculations:",
"Vc=Vcc*(R3/(R2+R3)) #Calculating volatage in Vc",
"fo1=2*(Vcc-Vc)/(C1*R1*Vcc) #Calculating frequency",
"fo1n=fo1/1000.0 #Calculating frequency",
"",
"#Results:",
"print('\\nVc= %.3f V'%Vc)",
"print('\\nFo= %.2f kHz'%fo1n)",
"",
"#Part B",
"#Variable Declaration:",
"Vc1=7.0",
"Vc2=8.0",
"",
"#Calculation:",
"fo2=2*(Vcc-Vc1)/(C1*R1*Vcc) #Calculating frequency",
"fo2n=fo2/1000.0 #Calculating frequency",
"",
"fo3=2*(Vcc-Vc2)/(C1*R1*Vcc) #Calculating frequency",
"fo3n=fo3/1000.0 #Calculating frequency",
"",
"fch=fo2n-fo3n #Calculating chane in output frequency",
" ",
"#Results:",
"print('\\nFo= %.3f kHz'%fo2n)",
"print('\\nFo= %.3f kHz'%fo3n)",
"print('\\nChange in output frequency= %.3f kHz'%fch)"
],
"language": "python",
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"",
"Vc= 10.465 V",
"",
"Fo= 17.05 kHz",
"",
"Fo= 55.556 kHz",
"",
"Fo= 44.444 kHz",
"",
"Change in output frequency= 11.111 kHz"
]
}
],
"prompt_number": 2
},
{
"cell_type": "markdown",
"source": [
"<h3>Example No. 10.3, Page No: 438<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"",
"#Variable Declaration:",
"import math",
"fo=100.0*10**3 #Frequency in hertz",
"C=2.0*10**-6 #Capacitance in farad",
"Vcc=6.0 #Voltage in volt",
"",
"#Calculations:",
"fld=7.8*fo/(2*Vcc) #Calculating lock frequency",
"fldn=fld/1000.0 #Calculating lock frequency",
"LR=2.0*fldn #Calculating lock range",
"",
"fcd=math.sqrt(fld/(C*2*math.pi*3.6*10**3))#Calculating capture frequency ",
"fcdn=fcd/1000.0 #Calculating capture frequency",
"CR=2*fcdn #Calculating capature range ",
"",
"R1=12.0*10**3",
"C1=1.2/(4*R1*fo) #Calculating value of capacitance ",
"C1n=C1*10**12 #Calculating value of capacitance",
"",
"#Results:",
"print('\\nDelta FL= +/- %d kHz'%fldn)",
"print('\\nLock Range= %d kHz'%LR)",
"print('\\nDelta FC= +/- %.3f kHz'%fcdn)",
"print('\\nCapture Range= %.3f kHz'%CR)",
"print('\\nC1= %d pF'%C1n)"
],
"language": "python",
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"",
"Delta FL= +/- 65 kHz",
"",
"Lock Range= 130 kHz",
"",
"Delta FC= +/- 1.199 kHz",
"",
"Capture Range= 2.397 kHz",
"",
"C1= 250 pF"
]
}
],
"prompt_number": 3
},
{
"cell_type": "markdown",
"source": [
"<h3>Example No. 10.4, Page No: 438<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"",
"#Variable Declaration:",
"import math",
"R1=15000.0 #Resistance in ohm",
"C1=0.01*10**-6 #Capacitance in farad",
"C=1*10**-6 #Capacitance in farad",
"V=12.0 #Voltage in volt",
"",
"#Calculations:",
"fo=1.2/(4*R1*C1) #Calculating output frequency ",
"fon=fo*10**-3 #Calculating output frequency",
"LR=7.8*fo/V #Calculating lock range",
"LR1=LR/1000.0 #Calculating lock range",
"fcd=math.sqrt(LR/(C*2*math.pi*3.6*1000)) #Calculating delta for capture frequency",
"",
"#Results:",
"print('\\nCentre frequency of VCO is= %.2f kHz'%fon)",
"print('\\nLock Range = +/- %.1f kHz'%LR1)",
"print('\\nDelta FC= %.2f Hz'%fcd)"
],
"language": "python",
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"",
"Centre frequency of VCO is= 2.00 kHz",
"",
"Lock Range = +/- 1.3 kHz",
"",
"Delta FC= 239.73 Hz"
]
}
],
"prompt_number": 3
},
{
"cell_type": "markdown",
"source": [
"<h3>Example No. 10.5, Page No: 439<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"",
"#Variable Declaration:",
"import math",
"C1=470.0*10**-12 #Capacitance value in farad",
"C=20.0*10**-6 #Capacitance value in farad",
"V=12.0 #Voltage in volt",
"R1=15000.0 #Resistance in ohm",
"",
"#Calculations:",
"fo=1.2/(4*R1*C1) #Calculating centre frequency of the VCO",
"fon=fo/1000.0 #Calculating centre frequency of the VCO",
"",
"LR=7.8*fo/V #Calculating lock range ",
"LR1=LR/1000.0 #Calculating lock range",
"fcd=math.sqrt(LR/(C*2*math.pi*3.6*1000)) #Calculating capture range ",
"",
"#Results:",
"print('\\nCentre frequency of VCO is= %.3f kHz'%fon)",
"print('\\nLock Range = +/- %.2f kHz'%LR1)",
"print('\\nDelta FC= +/- %.2f Hz'%fcd)"
],
"language": "python",
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"",
"Centre frequency of VCO is= 42.553 kHz",
"",
"Lock Range = +/- 27.66 kHz",
"",
"Delta FC= +/- 247.27 Hz"
]
}
],
"prompt_number": 5
},
{
"cell_type": "markdown",
"source": [
"<h3>Example No. 10.6, Page No: 439<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"",
"#Variable Declaration:",
"fr=300.0 #Free running frequency in hertz",
"bw=50.0 #Bandwidth in hertz",
"ip=320.0 #input signal frequency in hertz",
"",
"#Calculations:",
"pdop=fr+ip #Calculating phase detector output",
"difr=ip-fr #Calculating difference frequency",
"",
"#Results:",
"print('\\nPhase detector output= %d kHz'%pdop)",
"print('\\nDifference Frequency= %d kHz'%difr)",
"print('\\nAs Bandwidth is greater than difference frequency,')",
"print('\\nPLL can acquire lock')"
],
"language": "python",
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"",
"Phase detector output= 620 kHz",
"",
"Difference Frequency= 20 kHz",
"",
"As Bandwidth is greater than difference frequency,",
"",
"PLL can acquire lock"
]
}
],
"prompt_number": 4
},
{
"cell_type": "markdown",
"source": [
"<h3>Example no. 10.7, Page No: 440<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"",
"#Variable Declaration:",
"import math",
"C1=0.01*10**-6 #Capacitance value in farad",
"C=0.04*10**-6 #Capacitance value in farad",
"V=12.0 #Voltage in volt",
"R1=10000.0 #Resistance in ohm",
"",
"#Calculations:",
"fo=120/(4*R1*C1) #Calculating centre frequency of the VCO",
"fon=fo/1000.0 #Calculating centre frequency of the VCO",
"",
"fld=7.8*fo/(V) #Calculating Lock range",
"fldn=fld/1000.0 #Calculating Lock range",
" ",
"fcd=math.sqrt(fld/(C*2*math.pi*3.6*10**3)) #Calculating capture range",
"fcdn=fcd/1000.0 #Calculating Capture range",
"",
"#Results:",
"print('\\nCentre frequency of VCO is= %.1f kHz'%fon)",
"print('\\nLock Range= %d kHz'%fldn)",
"print('\\nCapture Range= %.2f kHz'%fcdn)"
],
"language": "python",
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"",
"Centre frequency of VCO is= 300.0 kHz",
"",
"Lock Range= 195 kHz",
"",
"Capture Range= 14.68 kHz"
]
}
],
"prompt_number": 5
}
]
}
]
}
|