summaryrefslogtreecommitdiff
path: root/Fundamentals_Of_Engineering_Heat_And_Mass_Transfer/ch5.ipynb
blob: e575c46c2f9e5e8314026c312cba43e020fd18f2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
{
 "metadata": {
  "name": "",
  "signature": "sha256:61a219887cda63633e57a8123bccc97a816d976e2f7d7f9c9b9bf006f781c953"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 5 : Transient Heat Conduction"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.1  Page No : 159"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\n",
      "\n",
      "# Variables\n",
      "t = 0.5;\t\t\t#Thickness of slab in m\n",
      "A = 5;\t\t\t#Area of slab in m**2\n",
      "k = 1.2;\t\t\t#Thermal conductivity in W/m.K\n",
      "a = 0.00177;\t\t\t#Thermal diffusivity in m**2/h\n",
      "\n",
      "# Calculations\n",
      "x = 0;\n",
      "y = -50+(24*x)+(60*x**2)-(60*x**3);\t\t\t#Temperature when x = 0\n",
      "Qo = (-k*A*y);\t\t\t#Heat entering the slab in W \n",
      "x = 0.5;\n",
      "y = -50+(24*x)+(60*x**2)-(60*x**3);\t\t\t#Temperature when x = 0.5\n",
      "QL = (-k*A*y);\t\t\t#Heat leaving the slab in W\n",
      "R = (Qo-QL);\t\t\t#Rate of heat storage in W\n",
      "x = 0;\n",
      "z1 = 24+(120*x)-(180*x**2);\t\t\t#T' when x = 0\n",
      "p1 = (a*z1);\t\t\t#Rate of temperature change at one side of slab in degree C/h\n",
      "x = 0.5;\n",
      "z2 = 24+(120*x)-(180*x**2);\t\t\t#T' when x = 0.5\n",
      "p2 = (a*z2);\t\t\t#Rate of temperature change at one side of slab in degree C/h\n",
      "\t\t\t#For the rate of heating or cooling to be maximum, T''' = 0\n",
      "x = (120./360);\n",
      "\n",
      "# Results\n",
      "print 'a)\\n \\\n",
      "i)Heat entering the slab is %i W \\n \\\n",
      "ii)Heat leaving the slab is %i W \\n\\n\\\n",
      "b)Rate of heat storage is %i Wc \\n \\\n",
      "i)Rate of temperature change at one side of slab is %3.4f degree C/h \\n \\\n",
      "ii)Rate of temperature change at other side of slab is %3.4f degree C/h \\\n",
      "\\n\\nd)For the rate of heating or cooling to be maximum x = %3.2f'%(Qo,QL,R,p1,p2,x)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "a)\n",
        " i)Heat entering the slab is 300 W \n",
        " ii)Heat leaving the slab is 183 W \n",
        "\n",
        "b)Rate of heat storage is 117 Wc \n",
        " i)Rate of temperature change at one side of slab is 0.0425 degree C/h \n",
        " ii)Rate of temperature change at other side of slab is 0.0690 degree C/h \n",
        "\n",
        "d)For the rate of heating or cooling to be maximum x = 0.33\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.2  Page No : 164"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "# Variables\n",
      "A = (0.4*0.4);\t\t\t#Area of copper slab in m**2\n",
      "t = 0.005;\t\t\t#Thickness of copper slab in m\n",
      "T = 250.;\t\t\t#Uniform teperature  in degree c\n",
      "Ts = 30.;\t\t\t#Surface temperature in degree C\n",
      "Tsl = 90.;\t\t\t#Slab temperature in degree C\n",
      "p = 9000.;\t\t\t#Density in kg/m**3\n",
      "c = 380.;\t\t\t#Specific heat in J/kg.K\n",
      "k = 370.;\t\t\t#Thermal conductivity in W/m.K\n",
      "h = 90.;\t\t\t#Heat transfer coefficient in W/m**2.K\n",
      "\n",
      "# Calculations\n",
      "A1 = (2*A);\t\t\t#Area of two sides in m**2\n",
      "V = (A*t);\t\t\t#Volume of the slab in m**3\n",
      "Lc = (V/A1);\t\t\t#Corrected length in m\n",
      "Bi = ((h*Lc)/k);\t\t\t#Biot number\n",
      "t = -math.log((Tsl-Ts)/(T-Ts))/((h*A1)/(p*c*V));\t\t\t#Time at which slab temperature becomes 90 degree C in s\n",
      "y = (h*A1)/(p*c*V);\n",
      "\n",
      "# Results\n",
      "print 'Time at which slab temperature becomes 90 degree C is %3.2f s'%(t)\n",
      "\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Time at which slab temperature becomes 90 degree C is 123.43 s\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.3  Page No : 164"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "# Variables\n",
      "D = 0.01;\t\t\t#Outer diameter of the rod in m\n",
      "T = 320.;\t\t\t#Original temperature in degree C\n",
      "Tl = 120.;\t\t\t#Temperature of liquid in degree C\n",
      "h = 100.;\t\t\t#Heat transfer coefficient in W/m**2.K\n",
      "Tf = 200.;\t\t\t#Final temperature of rod in degree C\n",
      "k = 40.;\t\t\t#Thermal conductivity in W/m.K\n",
      "c = 460.;\t\t\t#Specific heat in J/kg.K\n",
      "p = 7800.;\t\t\t#Density in kg/m**3\n",
      "\n",
      "# Calculations\n",
      "V = (3.14*D**2*1)/4;\t\t#Volume of rod in m**3 taking 1m length\n",
      "A = (3.14*D*1);\t\t    \t#Surface area of rod in m**2 taking 1m length\n",
      "Lc = (D/4);\t\t\t        #Corrected length in m\n",
      "Bi = ((h*Lc)/k);\t\t\t#Biot number\n",
      "t = -math.log((Tf-Tl)/(T-Tl))/((h*4)/(p*c*D));\t\t\t#Time at which rod temperature becomes 200 degree C in s\n",
      "\n",
      "# Results\n",
      "print 'Time at which rod temperature becomes 200 degree C is %3.2f s'%(t)\n",
      "\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Time at which rod temperature becomes 200 degree C is 82.19 s\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.4  Page No : 165"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "# Variables\n",
      "w = 5.5;\t\t\t#Weight of the sphere in kg\n",
      "Ti = 290.;\t\t\t#Initial temperature in degree C\n",
      "Tl = 15.;\t\t\t#Temperature of liquid in degree C\n",
      "h = 58.;\t\t\t#Heat transfer coefficient in W/m**2.K\n",
      "Tf = 95.;\t\t\t#Final temperature in degree C\n",
      "k = 205.;\t\t\t#Thermal conductivity in W/m.K\n",
      "c = 900.;\t\t\t#Specific heat in J/kg.K\n",
      "p = 2700.;\t\t\t#Density in kg/m**3\n",
      "\n",
      "# Calculations\n",
      "V = (w/p);\t\t\t#Volume of the sphere in m**3\n",
      "R = ((3*V)/(4*3.14))**(1./3);\t\t\t#Radius of sphere in m\n",
      "Lc = (R/3.);\t\t\t#Corrected length in m\n",
      "t = -math.log((Tf-Tl)/(Ti-Tl))/((h*3)/(p*c*R));\t\t\t#Time at which rod temperature becomes 95 degree C in s\n",
      "\n",
      "# Results\n",
      "print 'Time at which rod temperature becomes 95 degree C is %3.0f s'%(t)\n",
      "\n",
      "\n",
      "# note : answer is slightly different because of rouding off error."
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Time at which rod temperature becomes 95 degree C is 1356 s\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.5  Page No : 166"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "# Variables\n",
      "Ti = 100.;\t\t\t#Temperature of air in degree C\n",
      "t = 0.03;\t\t\t#Thickness of slab in m\n",
      "To = 210.;\t\t\t#Initial temperature of the plate in degree C\n",
      "t = 300.;\t\t\t#Time for attaining temperature in s\n",
      "T = 170.;\t\t\t#Temperature decreased in degree C\n",
      "c = 380.;\t\t\t#Specific heat in J/kg.K\n",
      "p = 9000.;\t\t\t#Density in kg/m**3\n",
      "\n",
      "# Calculations\n",
      "Lc = (t/2);\t\t\t#Corrected length in m\n",
      "h = -math.log((T-Ti)/(To-Ti))/((t*10**4)/(p*c*Lc));\t\t\t#Heat transfer coefficient in W/m**2.K\n",
      "\n",
      "# Results\n",
      "print 'Heat transfer coefficient is %3.2f W/m**2.K'%(h)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Heat transfer coefficient is 77.29 W/m**2.K\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.6  Page No : 167"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "# Variables\n",
      "D = 0.00071;\t\t\t#Diameter of thermocouple in m\n",
      "h = 600.;\t\t\t#Heat transfer coefficient in W/m**2.K\n",
      "c = 420.;\t\t\t#Specific heat in J/kg.K\n",
      "p = 8600.;\t\t\t#Density in kg/m**3\n",
      "\n",
      "# Calculations\n",
      "t = (p*c*D)/(4*h);\t\t\t#Time period in s\n",
      "T = math.exp(-1);\t\t\t#Temperture distribution ratio\n",
      "t1 = (4*t);\t\t\t#Total time in s\n",
      "\n",
      "# Results\n",
      "print 'At the end of time period t* = %3.3f s the temperature difference \\\n",
      " between the body and the source would be %3.3f of the initial temperature differnce.\\n\\\n",
      " To get a true reading of gas temperature, it should be recorded after 4t*  =  %i seconds after\\\n",
      " the thermocouple has been \\nintroduced into the stream'%(t,T,t1)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "At the end of time period t* = 1.069 s the temperature difference  between the body and the source would be 0.368 of the initial temperature differnce.\n",
        " To get a true reading of gas temperature, it should be recorded after 4t*  =  4 seconds after the thermocouple has been \n",
        "introduced into the stream\n"
       ]
      }
     ],
     "prompt_number": 14
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.8  Page No : 177"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "# Variables\n",
      "x = 0.2;\t\t\t#Distance of plane from the wall in m\n",
      "t = 10;\t\t\t#Time for heat flow in h\n",
      "T = [25,800];\t\t\t#Initial and final tempertaure in degree C\n",
      "k = 0.8;\t\t\t#Thermal conductivity in W/m.K\n",
      "a = 0.003;\t\t\t#Thermal diffusivity in m**2/h\n",
      "\n",
      "# Calculations\n",
      "X = (x*(2*math.sqrt(a*t)));\t\t\t#Calculation of X for erf function\n",
      "Y = 0.585                           #erf(X) from table 5.1\n",
      "Ti = T[1]-((T[1]-T[0]))*Y;\t\t\t#Temperarture of the plane in degree C\n",
      "Qi = ((-k*(T[0]-T[1])*math.exp(-x**2/(4*a*t)))/(math.sqrt(3.14*a*t)));\t\t\t#Instanteneous heat flow rate per unit area in W/m**2\n",
      "Q = ((2*k*(T[1]-T[0])*3600)/(math.sqrt((3.14*a)/t)))/10**8;\t\t\t            #Total heat energy taken up by the wall in 10 hours in J/m**2\n",
      "print \n",
      "# Results\n",
      "print 'Temperarture of the plane is %3.2f degree C\\nInstanteneous heat flow rate per \\\n",
      " unit area is %i W/m**2 \\nTotal heat energy taken up by the wall in 10 hours is %3.3f*10**8 J/m**2'%(Ti,Qi,Q)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Temperarture of the plane is 346.62 degree C\n",
        "Instanteneous heat flow rate per  unit area is 1447 W/m**2 \n",
        "Total heat energy taken up by the wall in 10 hours is 1.454*10**8 J/m**2\n"
       ]
      }
     ],
     "prompt_number": 28
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.9  Page No : 177"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Variables\n",
      "Tc = 55;\t\t\t#Tempertaure of the concrete in degree C\n",
      "Ts = 35;\t\t\t#Temperature lowered in degree C\n",
      "Tf = 45;\t\t\t#Final temperature in degree C\n",
      "x = 0.05;\t\t\t#Depth of the slab in m\n",
      "k = 1.279;\t\t\t#Thermal conductivity in W/m.K\n",
      "a = 0.00177;\t\t\t#Thermal diffusivity in m**2/h\n",
      "\n",
      "# Calculations\n",
      "T = (Tf-Ts)/(Tc-Ts);\t\t\t#Temperature distribution\n",
      "X = 0.485;\t\t\t#Taking 0.5 = erf(0.482) from table 5.1 on page no. 175\n",
      "t = (x**2)/(4*X**2*a);\t\t\t#Time taken to cool the concrete to 45 degree C in h\n",
      "\n",
      "# Results\n",
      "print 'Time taken to cool the concrete to 45 degree C is %3.2f h'%(t)\n",
      "\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Time taken to cool the concrete to 45 degree C is 1.50 h\n"
       ]
      }
     ],
     "prompt_number": 11
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.10  Page No : 178"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "# Variables\n",
      "q = (0.3*10**6);\t\t\t#Heat flux in W/m**2\n",
      "t = (10./60);\t\t\t#Time taken for heat transfer in s\n",
      "Ti = 30.;\t\t\t#Initial temperature of the slab in degree C\n",
      "x = 0.2;\t\t\t#Distance of the plane from the surface in m\n",
      "k = 386.;\t\t\t#Thermal conductivity in W/m.K\n",
      "a = 0.404;\t\t\t#Thermal diffusivity in m**2/h\n",
      "\n",
      "# Calculations\n",
      "Ts = ((q*math.sqrt(3.14*a*t))/k)+Ti;\t\t\t#Surface temperature in degree C\n",
      "X = (x/(2*math.sqrt(a*t)));\t\t\t#X for calculating erf function\n",
      "Y = 0.4134;\t\t\t#Taking ref(0.385) = 0.4134 from table 5.1 on page no. 175\n",
      "T = Ts-(Y*(Ts-Ti));\t\t\t#Tempertaure at a distance of 20 cm from the surface after 10 min in degree C\n",
      "\n",
      "# Results\n",
      "print 'Tempertaure at a distance of 20 cm from the surface after 10 min is %3.2f degree C'%(T)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Tempertaure at a distance of 20 cm from the surface after 10 min is 239.63 degree C\n"
       ]
      }
     ],
     "prompt_number": 12
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.11  Page No : 178"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "# Variables\n",
      "a = 0.405;\t\t\t#Thermal diffusivity in m**2/h\n",
      "Ti = 100;\t\t\t#Initial temperture in degree C\n",
      "Tf = 0;\t\t\t#Final tempertaure in degree C\n",
      "Tg = (4*100);\t#Temperature gradient in degree C/m\n",
      "t1 = 1;\t\t\t#Time taken in m\n",
      "\n",
      "# Calculations\n",
      "t = (Ti-Tf)**2/(Tg**2*3.14*a);\t\t\t#Time required for the temperature gradient at the surface to reach 4 degree/cm in h\n",
      "x = math.sqrt(2*a*(t1/60.));\t\t\t#The depth at which the rate of cooling is maximum after 1 minute in m\n",
      "\n",
      "# Results\n",
      "print 'Time required for the temperature gradient at the surface to reach 4 degree/cm is %3.3f h \\\n",
      "\\nThe depth at which the rate of cooling is maximum after 1 minute is %3.4f m'%(t,x)\n",
      "\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Time required for the temperature gradient at the surface to reach 4 degree/cm is 0.049 h \n",
        "The depth at which the rate of cooling is maximum after 1 minute is 0.1162 m\n"
       ]
      }
     ],
     "prompt_number": 15
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.12  Page No : 185"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Variables\n",
      "x = 0.1;\t\t\t#Thickness of the slab in m\n",
      "Ti = 500;\t\t\t#Initial temperature in degree C\n",
      "Tl = 100;\t\t\t#Liquid temperature in degree C\n",
      "h = 1200;\t\t\t#Heat transfer coefficient in W/m**2.K\n",
      "t = (1*60);\t\t\t#Time for immersion in s\n",
      "k = 215;\t\t\t#Thermal conductivity in W/m.K\n",
      "a = (8.4*10**-5);\t\t\t#Thermal diffusivity in m**2/h\n",
      "c = 900;\t\t\t#Specific heat in J/kg/K\n",
      "p = 2700;\t\t\t#Density in kg/m**3\n",
      "\n",
      "# Calculations\n",
      "X = (a*t)/(x/2)**2;\t\t\t#Calculation for input in Heisler charts\n",
      "B = (k/(h*(x/2)));\t\t\t#Calculation for input in Heisler charts\n",
      "T1 = 0.68;\t\t\t#T value taken from Fig. 5.7 on page no. 183\n",
      "Tc1 = (T1*(Ti-Tl));\t\t\t#Temperature in degree C\n",
      "To = Tc1+Tl;\t\t\t#Temperature in degree C\n",
      "T2 = 0.880;\t\t\t#From Fig 5.8 on page no. 184 at x/L = 1.0 and for k/hL = 3.583, tempertaure in degree C\n",
      "Tc2 = (T2*(To-Tl))+Tl;\t\t\t#Temperature in degree C \n",
      "Y = (h**2*a*t)/(k**2);\t\t\t#Y to calculate the energy losses\n",
      "Bi = (h*(x/2))/k;\t\t\t#Biot number\n",
      "U = 0.32;\t\t\t#U/Uo value from Fig. 5.9 on page no.185 \n",
      "Uo = (p*c*x*(Ti-Tl));\t\t\t#For unit area in J/m**2\n",
      "U1 = (U*Uo)/(10**6);\t\t\t#Heat removed per unit surface area in MJ/m**2\n",
      "\n",
      "# Results\n",
      "print 'Temperature at the centreline and the surface 1 minute after the immersion is %3.2f degree C  \\n \\\n",
      "Heat removed per unit surface area is %3.1f*10**6 J/m**2'%(Tc2,U1)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Temperature at the centreline and the surface 1 minute after the immersion is 339.36 degree C  \n",
        " Heat removed per unit surface area is 31.1*10**6 J/m**2\n"
       ]
      }
     ],
     "prompt_number": 16
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.13  Page No : 186"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Variables\n",
      "D = 0.12;\t\t\t#Diameter of cylinder in m\n",
      "Ti = 20;\t\t\t#Initial temperature in degree C\n",
      "Tf = 820;\t\t\t#Temperature of furnace in degree C\n",
      "h = 140;\t\t\t#Heat transfer coefficient in W/m**2.K\n",
      "Ta = 800;\t\t\t#Axis temperature in degree C\n",
      "r = 0.054;\t\t\t#Radius in m\n",
      "k = 21;\t\t\t#Thermal conductivity in W/m.K\n",
      "a = (6.11*10**-6);\t\t\t#Thermal diffusivity in m**2/h\n",
      "\n",
      "# Calculations\n",
      "Bi = (h*(D/2))/(2*k);\t\t\t#Biot number\n",
      "T = (Ta-Tf)/(Ti-Tf);\t\t\t#Temperature distribution\n",
      "Fo = 5.2;\t\t\t#Umath.sing Fig.5.10, on page no.187 for 1./(2Bi) = 2.5 \n",
      "t = (Fo*(D/2)**2)/a;\t\t\t#Time required for the axis temperature to reach 800 degree C in s\n",
      "r1 = (r/(D/2));\t\t\t#Ratio at a radius of 5.4 cm\n",
      "X = 0.85;\t\t\t#From Fig.5.11 on page no. 188 the temperature at r = 5.4 i sgiven by X\n",
      "T1 = X*(Ta-Tf)+Tf;\t\t\t#Temperature at a radius of 5.4 cm at that tim ein degree C\n",
      "\n",
      "# Results\n",
      "print 'Time required for the axis temperature to reach 800 degree C is %3.0f s \\n \\\n",
      "Temperature at a radius of 5.4 cm at that time is %i degree C'%(t,T1)\n",
      "\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Time required for the axis temperature to reach 800 degree C is 3064 s \n",
        " Temperature at a radius of 5.4 cm at that time is 803 degree C\n"
       ]
      }
     ],
     "prompt_number": 17
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.14  Page No : 189"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "import math\n",
      "# Variables\n",
      "r = 0.01;\t\t\t#Radius of the mettalic sphere in m\n",
      "Ti = 400.;\t\t\t#Initial temperature in degree C\n",
      "h1 = 10.;\t\t\t#Heat transfer coefficient in W/m**2.K\n",
      "Ta = 20.;\t\t\t#Temperature of air in degree C\n",
      "Tc = 335.;\t\t\t#Central temperature in degree C\n",
      "Tw = 20.;\t\t\t#Temperature of water bath in degree C\n",
      "h2 = 6000.;\t\t\t#Heat transfer coefficient in W/m**2.K\n",
      "Tf = 50.;\t\t\t#Final temperature of the sphere in degree C\n",
      "k = 20.;\t\t\t#Thermal conductivity in W/m.K\n",
      "a = (6.66*10**-6);\t\t\t#Thermal diffusivity in m**2/h\n",
      "c = 1000.;\t\t\t#Specific heat in J/kg/K\n",
      "p = 3000.;\t\t\t#Density in kg/m**3\n",
      "\n",
      "# Calculations\n",
      "Bi1 = (h1*r)/(3*k);\t\t\t#Biot number\n",
      "t = ((p*r*c)/(3*h1)*math.log((Ti-Ta)/(Tc-Ta)))\t\t\t#Time required for cooling in air in s\n",
      "Bi2 = (h2*r)/(3*k);\t\t\t#Biot number\n",
      "X = 1./(3*Bi2);\t\t\t#X value for lumped capacity method\n",
      "T = (Tf-Ta)/(Tc-Ta);\t\t\t#Temperature distribution\n",
      "Fo = 0.5;\t\t\t#Umath.sing Fig.5.13, on page no.190\n",
      "t1 = (Fo*r**2)/a;\t\t\t#Time required for cooling in water in s\n",
      "Z = 0.33;\t\t\t#Umath.sing Fig.5.14, on page no.191\n",
      "Tr = Z*(Tf-Ta)+Ta;\t\t\t#Surface temperature at the end of cooling in degree C\n",
      "\n",
      "\n",
      "# Results\n",
      "print 'Time required for cooling in air is %3.0f s \\n \\\n",
      "Time required for cooling in water is %3.1f s \\n \\\n",
      "Surface temperature at the end of cooling is %3.0f degree C'%(t,t1,Tr)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Time required for cooling in air is 188 s \n",
        " Time required for cooling in water is 7.5 s \n",
        " Surface temperature at the end of cooling is  30 degree C\n"
       ]
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.15  Page No : 192"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "# Variables\n",
      "Ti = 250.;\t\t\t#Temperature of aluminium slab in degree C\n",
      "Tc = 50.;\t\t\t#Convective environment temperature in degree C\n",
      "h = 500.;\t\t\t#Heat transfer coefficient in W/m**2.K\n",
      "x = 0.05;\t\t\t#Depth of the plane in m\n",
      "t = (1.*3600);\t\t\t#Time in s\n",
      "k = 215.;\t\t\t#Thermal conductivity in W/m.K\n",
      "a = (8.4*10**-5);\t\t\t#Thermal diffusivity in m**2/h\n",
      "\n",
      "# Calculations\n",
      "X = (h*math.sqrt(a*t))/k;\t\t\t#X for calculating Temperature\n",
      "Y = (x/(2*math.sqrt(a*t)));\t\t\t#Y for calculating Temperature\n",
      "Z = 0.62;\t\t\t#From Fig. 5.16 on page no.193\n",
      "T = (Z*(Tc-Ti)+Ti);\t\t\t#Temperature at a depth of 5 cm after 1 hour in degree C\n",
      "\n",
      "# Results\n",
      "print 'Temperature at a depth of 5 cm after 1 hour is %3.0f degree C'%(T)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Temperature at a depth of 5 cm after 1 hour is 126 degree C\n"
       ]
      }
     ],
     "prompt_number": 19
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.16  Page No : 196"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Variables\n",
      "D = 0.08;\t\t\t#Diameter of the cylinder in m\n",
      "L = 0.16;\t\t\t#Length of the cylinder in m\n",
      "Ti = 800;\t\t\t#Initial tempertaure in degree C\n",
      "Tm = 30;\t\t\t#Temperature of the medium in degree C\n",
      "h = 120;\t\t\t#Heat transfer coefficient in W/m**2.K\n",
      "t = (30*60);\t\t\t#Time for cooling in s\n",
      "k = 23.5;\t\t\t#Thermal conductivity in W/m.K\n",
      "a = 0.022;\t\t\t#Thermal diffusivity in m**2/h\n",
      "\n",
      "# Calculations\n",
      "Bi2 = (h*(D/2))/k;\t\t\t#2 times the Biot number\n",
      "X = (a*t)/(D/2)**2;\t\t\t#X for calculating C(R)\n",
      "CR = 0.068;\t\t\t#From Fig.5.10 on page no.187\n",
      "Bi1 = (k/(h*L));\t\t\t#Biot number\n",
      "Y = (a*t)/L**2;\t\t\t#Y for calculating P(X)\n",
      "PX = 0.54;\t\t\t#From Fig.5.7 on page no.183\n",
      "T = CR*PX;\t\t\t#Temperature at the centre of the cylinder in degree C\n",
      "T30 = T*(Ti-Tm)+Tm;\t\t\t#Temperature at the centre of cylinder 30 minutes after cooling is initiated in degree C\n",
      "\n",
      "# Results\n",
      "print 'Temperature at the centre of cylinder 30 minutes after cooling is initiated is %3.2f degree C'%(T30)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Temperature at the centre of cylinder 30 minutes after cooling is initiated is 58.27 degree C\n"
       ]
      }
     ],
     "prompt_number": 20
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.17  Page No : 197"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "from numpy import *\n",
      "\n",
      "\n",
      "# Variables\n",
      "L = array([0.5,0.4,0.2]);\t\t\t#Lengths of sides of a recmath.tangular steel billet in m\n",
      "Ti = 30;\t\t\t#Initial temperature in degree C\n",
      "Tf = 1000;\t\t\t#Final temperature in degree C\n",
      "t = (90*60);\t\t\t#Time for heating in s\n",
      "h = 185;\t\t\t#Heat transfer coefficient in W/m**2.K\n",
      "k = 37;\t\t\t#Thermal conductivity in W/m.K\n",
      "a = 0.025;\t\t\t#Thermal diffusivity in m**2/h\n",
      "\n",
      "# Calculations\n",
      "L1 = L/2;\t\t\t#L values of the parallelepiped in m\n",
      "Bi1 = (h*L[0])/k;\t\t\t#Biot number\n",
      "X1 = (a*t)/L[0]**2;\t\t\t#X1 for calculating P(X1)\n",
      "PX1 = 0.68;\t\t\t#P(X1) value from From Fig.5.7 on page no.183\n",
      "Bi2 = (h*L[1])/k;\t\t\t#Biot number\n",
      "X1 = (a*t)/L[1]**2;\t\t\t#X1 for calculating P(X2)\n",
      "PX2 = 0.57;\t\t\t#P(X2) value from From Fig.5.7 on page no.183\n",
      "Bi3 = (h*L[2])/k;\t\t\t#Biot number\n",
      "Y = (1./Bi3);\t\t\t#Inverse of Biot number\n",
      "X1 = (a*t)/L[2]**2;\t\t\t#X1 for calculating P(X3)\n",
      "PX3 = 0.22;\t\t\t#P(X3) value from From Fig.5.7 on page no.183\n",
      "T = PX1*PX2*PX3;\t\t\t#Temperature at the centre of billet in degree C\n",
      "T1 = T*(Ti-Tf)+Tf;\t\t\t#Temperature at the centre of cylinder 90 minutes after heating is initiated in degree C\n",
      "\n",
      "# Results\n",
      "print 'Temperature at the centre of cylinder 90 minutes after heating is initiated is %3.2f degree C'%(T1)\n",
      "\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Temperature at the centre of cylinder 90 minutes after heating is initiated is 917.29 degree C\n"
       ]
      }
     ],
     "prompt_number": 22
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.18  Page No : 202"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Variables\n",
      "Ti = 30;\t\t\t#Initial temperature of the slab in degree C\n",
      "q = (2*10**5);\t\t\t#Constant heat flux in W/m**2\n",
      "k = 400;\t\t\t#Thermal conductivity in W/m.K\n",
      "a = (117*10**-6);\t\t\t#Thermal diffusivity in m**2/h\n",
      "n = 0.075;\t\t\t#Nodal spacing in m\n",
      "x = 0.15;\t\t\t#Depth in m\n",
      "t = (4*60);\t\t\t#Time elapsed in s\n",
      "\n",
      "#CALCULATION\n",
      "R = (x**2/(a*t));\t\t\t#R value for t1\n",
      "t1 = (n**2/(R*a));\t\t\t#Value of t1 in s\n",
      "To = 121.9;\t\t\t#The surface temperature after 4 min in degree C from the table on page no. 203\n",
      "T2 = 64;\t\t\t#Temperature at 0.15 m from the surface after 4 minutes in degree C from the table on page no. 203\n",
      "\n",
      "# Results\n",
      "print 'The surface temperature after 4 min is %3.1f degree C  \\n \\\n",
      "Temperature at 0.15 m from the surface after 4 minutes is %i degree C'%(To,T2)\n",
      "\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The surface temperature after 4 min is 121.9 degree C  \n",
        " Temperature at 0.15 m from the surface after 4 minutes is 64 degree C\n"
       ]
      }
     ],
     "prompt_number": 23
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.19  Page No : 205"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Variables\n",
      "t = 0.6;\t\t\t#Thickness of the wall in m\n",
      "x = 0.1;\t\t\t#x value taken from Fig.Ex. 5.19 on page no. 205\n",
      "Ti = 20;\t\t\t#Initial temperature in degree C\n",
      "T = [150,300];\t\t\t#Temperatures of the sides of the wall in degree C\n",
      "Tf = 150;\t\t\t#Final temperature of the wall in degree C\n",
      "a = (1.66*10**-3);\t\t\t#Thermal diffusivity in m**2/h\n",
      "\n",
      "# Calculations\n",
      "t = (x**2/(2*a));\t\t\t#Length of one time increment in h\n",
      "t1 = (9*t);\t        \t\t#Elapsed time in h\n",
      "\n",
      "# Results\n",
      "print 'Elasped time before the centre of the wall attains a temperature of 150 degree C is %3.0f h'%(t1)\n",
      "\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Elasped time before the centre of the wall attains a temperature of 150 degree C is  27 h\n"
       ]
      }
     ],
     "prompt_number": 24
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.20  Page No : 206"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Variables\n",
      "k = 0.175;\t\t\t#Thermal conductivity in W/m.K\n",
      "a = (0.833*10**-7);\t\t\t#Thermal diffusivity in m**2/h\n",
      "Th = 144;\t\t\t#Heated temeparture in degree C\n",
      "Tc = 15;\t\t\t#Cooled temperature in degree C\n",
      "x = 0.02;\t\t\t#Thickness of the plate in m\n",
      "h = 65;\t\t\t#Heat transfer coefficient in W/m**2.K\n",
      "t = (4*60);\t\t\t#Tiem elapsed in s\n",
      "\n",
      "# Calculations\n",
      "s = 0.002;\t\t\t#Space increment in m from FIg. Ex. 5.20 on page no. 207\n",
      "t1 = (s**2/(2*a));\t\t\t#Time increment for the space increment in s\n",
      "x1 = (k/h);\t\t\t#Convective film thickness in mm\n",
      "Tn = 114;\t\t\t#Temperature at the centre in degree C from Fig. Ex.5.20 on page no. 207\n",
      "Ts = 50;\t\t\t#Surface temperature in degree C from Fig. Ex.5.20 on page no. 207\n",
      "\n",
      "# Results\n",
      "print 'Temperature at the centre is %i degree C \\n \\\n",
      "Surface temperature is %i degree C'%(Tn,Ts)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Temperature at the centre is 114 degree C \n",
        " Surface temperature is 50 degree C\n"
       ]
      }
     ],
     "prompt_number": 25
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.21  Page No : 213"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "# Variables\n",
      "t = 24;\t\t\t#Time period in h\n",
      "T = [-10,10];\t\t\t#Range of temperatures in degree C\n",
      "x = 0.1;\t\t\t#Depth in m\n",
      "c = 1970;\t\t\t#Specific heat in J/kg/K\n",
      "p = 1000;\t\t\t#Density in kg/m**3\n",
      "k = 0.349;\t\t\t#Thermal conductivity in W/m.K\n",
      "ta = 5;\t\t\t#Time in h\n",
      "\n",
      "# Calculations\n",
      "w = (2*3.14)/t;\t\t\t#Angular velocity in rad/h\n",
      "Tm = (T[0]+T[1])/2;\t\t\t#Mean teperature in degree C\n",
      "Tmax = T[1]-Tm;\t\t\t#Maximum temperature in degree C\n",
      "a = ((k*3600)/(p*c));\t\t\t#Thermal diffusivity in m**2/h\n",
      "Txmax = Tmax*exp(-math.sqrt(w/(2*a))*x);\t\t\t#Amplitude of temperature variation in degree C\n",
      "t1 = math.sqrt(1./(2*a*w))*x;\t\t\t#Time lag of temperature wave at a depth of 0.1 m in h\n",
      "t2 = (3.14/w);\t\t\t#Time for surface temperature is minimum in h\n",
      "t3 = t2+ta;\t\t\t#Time in h\n",
      "Tx = Tmax*exp(-math.sqrt(w/(2*a))*x)*math.cos((w*t3)-(x*x*math.sqrt(w/(2*a))));\t\t\t#Temperature at 0.1m 5 hours after the surface temperature reaches the minimum in degree C\n",
      "\n",
      "# Results\n",
      "print 'Amplitude of temperature variation at a depth of 0.1m is %3.2f degree C  \\n \\\n",
      "Time lag of temperature wave at a depth of 0.1 m is %3.2f h  \\n \\\n",
      "Temperature at 0.1m 5 hours after the surface temperature reaches the minimum is %3.3f degree C'%(Txmax,t1,Tx)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Amplitude of temperature variation at a depth of 0.1m is 2.39 degree C  \n",
        " Time lag of temperature wave at a depth of 0.1 m is 5.47 h  \n",
        " Temperature at 0.1m 5 hours after the surface temperature reaches the minimum is -0.946 degree C\n"
       ]
      }
     ],
     "prompt_number": 27
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.22  Page No : 214"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "# Variables\n",
      "T = [800.,200.];\t\t\t#Limits in which temperature varies in degree C\n",
      "t = 12.;\t\t\t#Cycle time in h\n",
      "x = 0.1;\t\t\t#Depth of penetration in m\n",
      "k = 1.8;\t\t\t#Thermal conductivity in W/m.K\n",
      "a = 0.02;\t\t\t#Thermal diffusivity in m**2/h\n",
      "\n",
      "# Calculations\n",
      "w = (2*3.14)/t;\t\t\t#Angular velocity in rad/h\n",
      "t1 = math.sqrt(1./(2*a*w))*x;\t\t\t#Time lag in h\n",
      "Tmax = (T[0]-T[1])/2;\t\t\t#Range of maximum temperature in degree C\n",
      "q = ((2*k*Tmax)/math.sqrt(math.pi/6*a))*(3600./1000);\t\t\t#Heat flow through the surface in kJ/m**2\n",
      "\n",
      "# Results\n",
      "print 'i)Time lag of the temperature wave at a depth of 10 cm from the inner surface is %3.2f h \\n \\\n",
      "ii)The flow through a surface located at a distance of 10 cm from the surface during the first\\\n",
      " six hours interval while the temperature is above the mean value is %i kJ/m**2'%(t1,q) "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "i)Time lag of the temperature wave at a depth of 10 cm from the inner surface is 0.69 h \n",
        " ii)The flow through a surface located at a distance of 10 cm from the surface during the first six hours interval while the temperature is above the mean value is 37993 kJ/m**2\n"
       ]
      }
     ],
     "prompt_number": 12
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.23  Page No : 215"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Variables\n",
      "N = 2000;\t\t\t#Speed of the engine\n",
      "a = 0.06;\t\t\t#Thermal diffusivity in m**2/h\n",
      "\n",
      "# Calculations\n",
      "t = 1./(60*N);\t\t\t#Period of on oscillation in h\n",
      "x = (1.6*math.sqrt(3.14*a*t))*1000;\t\t\t#Depth of penetration in mm\n",
      "\n",
      "# Results\n",
      "print 'Depth of penetration of the temperature oscillation into the cylinder wall of a \\\n",
      "single acting cylinder two stroke IC engine is%3.0f mm'%(x)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Depth of penetration of the temperature oscillation into the cylinder wall of a single acting cylinder two stroke IC engine is  2 mm\n"
       ]
      }
     ],
     "prompt_number": 29
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.24  Page No : 218"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "# Variables\n",
      "Tc = 55;\t\t\t#Tempaerature of concrete hyway in degree C\n",
      "Tl = 35;\t\t\t#Temperature lowered in degree C\n",
      "Tf = 45;\t\t\t#Final temperature in degree C\n",
      "x = 0.05;\t\t\t#Depth in m\n",
      "k = 1.279;\t\t\t#Thermal conductivity in W/m.K\n",
      "a = (1.77*10**-3);\t\t\t#Thermal diffusivity in m**2/h\n",
      "\n",
      "# Calculations\n",
      "t = 1.4;\t\t\t#Time taken from page no. 219 in h\n",
      "q = 2*(k*(Tl-Tf))/(math.sqrt(3*a*t));\t\t\t#Instantaneous heat removal rate in W/m**2\n",
      "\n",
      "# Results\n",
      "print 'Instantaneous heat removal rate is %3.1f W/m**2'%(q)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Instantaneous heat removal rate is -296.7 W/m**2\n"
       ]
      }
     ],
     "prompt_number": 30
    }
   ],
   "metadata": {}
  }
 ]
}