1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
|
{
"metadata": {
"name": "",
"signature": "sha256:8e01926cf42f8b82c73cff46263ef90c672622041c85ff2d1b1ef7a3962ce2cc"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 8: D.C. Transients"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.1, 253"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"C = 8e-06; # Value of capacitance of capacitor, farad\n",
"R = 0.5e+06; # Value of series resistor, ohm\n",
"E = 200; # Value of d.c. voltage supply, volt\n",
"\n",
"#Calculations&Results\n",
"# Part (a)\n",
"tau = C*R; # Time constant of the R-C circuit while charging, s\n",
"print \"The circuit time constant while charging = %1d s\"%tau\n",
"\n",
"# Part (b)\n",
"I_0 = E/R; # Initial charging current through capacitor, A\n",
"print \"The initial charging current through capacitor = %3d micro-ampere\"%(I_0/1e-06);\n",
"\n",
"# Part (c)\n",
"t = 4; # Time after the supply is connected, s\n",
"v_C = 0.632*E; # p.d. across the capacitor 4s after the supply is connected, V\n",
"v_R = E - v_C; # p.d. across the resistor 4s after the supply is connected, V\n",
"print \"The p.d. across resistor and capacitor %d s after the supply is connected = %5.1f V and %4.1f V respectively\"%(t, v_C, v_R);\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The circuit time constant while charging = 4 s\n",
"The initial charging current through capacitor = 400 micro-ampere\n",
"The p.d. across resistor and capacitor 4 s after the supply is connected = 126.4 V and 73.6 V respectively\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.2, Page 255"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"C = 0.5e-06; # Value of capacitance of capacitor, farad\n",
"R1 = 220e+03; # Value of series resistor, ohm\n",
"R2 = 110e+03; # Value of parallel resistor, ohm\n",
"E = 150; # Value of d.c. voltage supply, volt\n",
"\n",
"#Calculations&Results\n",
"# Part (a)\n",
"tau = C*R1; # Time constant of the R1-C circuit while charging, s\n",
"print \"The circuit time constant while charging = %4.2f s\"%tau\n",
"I_0 = E/R1; # Initial charging current through capacitor, A\n",
"print \"The initial charging current through capacitor = %3d micro-ampere\"%(I_0/1e-06)\n",
"\n",
"# Part (b)\n",
"tau = C*(R1+R2); # Time constant of the R1-C-R2 circuit while discharging, s\n",
"print \"The circuit time constant while discharging = %4.2f s\"%tau\n",
"I_0 = E/(R1 + R2); # Initial discharging current through capacitor, ampere\n",
"i = 0.368*I_0; # Discharge current after one time constant, ampere\n",
"V_R2 = i*R2; # Potential difference across R2 after one time constant, volt\n",
"print \"The p.d. across R2 after one time constant while discharging = %4.1f volt\"%V_R2\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The circuit time constant while charging = 0.11 s\n",
"The initial charging current through capacitor = 681 micro-ampere\n",
"The circuit time constant while discharging = 0.16 s\n",
"The p.d. across R2 after one time constant while discharging = 18.4 volt\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.3, Page 258"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"E = 110.; # Value of d.c. voltage supply, volt\n",
"L = 1.5; # Inductor value, henry\n",
"R = 220; # Value of series resistor, ohm\n",
"\n",
"#Calculations&Results\n",
"# Part (a)\n",
"di_dt = E/L; # The initial rate of change of current through inductor, H\n",
"print \"The initial rate of change of current through inductor = %5.2f A/s\"%di_dt\n",
"\n",
"# Part (b)\n",
"I = E/R; # The final steady current, A\n",
"print \"The final steady current through inductor = %3.1f A\"%I\n",
"\n",
"# Part (c)\n",
"tau = L/R; # The time taken for the current to reach its fi nal steady value, s\n",
"print \"The time taken for the current to reach its final steady value = %4.1f ms\"%(5*tau/1e-03);\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The initial rate of change of current through inductor = 73.33 A/s\n",
"The final steady current through inductor = 0.5 A\n",
"The time taken for the current to reach its final steady value = 34.1 ms\n"
]
}
],
"prompt_number": 3
}
],
"metadata": {}
}
]
}
|