1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
|
{
"metadata": {
"name": "",
"signature": "sha256:0a8e4e4ffe1102aa0e8d709fa097c42aa3e09b9945c321059b30f1ddc8f4e107"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"16: Electron theory of solids"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 16.1, Page number 10"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"sigma=5.87*10**7; #electrical conductivity of Cu(per ohm m)\n",
"K=390; #thermal conductivity(W/mK)\n",
"T=20+273; #temperature(K)\n",
"\n",
"#Calculation\n",
"L=K/(sigma*T); #Lorentz number(W ohm/K**2)\n",
"\n",
"#Result\n",
"print \"Lorentz number is\",round(L*10**8,4),\"*10**-8 W ohm/K**2\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Lorentz number is 2.2676 *10**-8 W ohm/K**2\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 16.2, Page number 11"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"tow_r=10**-14; #relaxation time(s)\n",
"T=300; #temperature(K)\n",
"kB=1.38*10**-23; #boltzmann constant\n",
"e=1.6*10**-19; #charge of electron(c)\n",
"m=9.1*10**-31; #mass of electron(kg)\n",
"n=6*10**28; #electron concentration(per m**3)\n",
"\n",
"#Calculation\t\n",
"sigma=n*e**2*tow_r/m; #electrical conductivity(per ohm m)\n",
"K=n*math.pi**2*kB**2*T*tow_r/(3*m); #thermal conductivity(W/mK)\n",
"L=K/(sigma*T); #Lorentz number(W ohm/K**2)\n",
"\n",
"#Result\n",
"print \"electrical conductivity is\",round(sigma/10**7,4),\"*10**7 per ohm m\"\n",
"print \"thermal conductivity is\",round(K,4),\"W/mK\"\n",
"print \"Lorentz number is\",round(L*10**8,4),\"*10**-8 W ohm/K**2\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"electrical conductivity is 1.6879 *10**7 per ohm m\n",
"thermal conductivity is 123.9275 W/mK\n",
"Lorentz number is 2.4474 *10**-8 W ohm/K**2\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 16.3, Page number 11"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"tow_r=10**-14; #relaxation time(s)\n",
"rho=8900; #density of Cu(kg/m**3)\n",
"aw=63.5; #atomic weight of Cu\n",
"N=6.022*10**23; #avagadro constant\n",
"f=1*10**3; #number of free electrons per atom\n",
"e=1.6*10**-19; #charge of electron(c)\n",
"m=9.1*10**-31; #mass of electron(kg)\n",
"\n",
"#Calculation\t\n",
"n=N*rho*f/aw; #electron concentration(per m**3)\n",
"sigma=n*e**2*tow_r/m; #electrical conductivity(per ohm m)\n",
"\n",
"#Result\n",
"print \"electrical conductivity is\",round(sigma/10**7,3),\"*10**7 per ohm m\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"electrical conductivity is 2.374 *10**7 per ohm m\n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 16.4, Page number 12"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"rho=1.54*10**-8; #resistivity(ohm m)\n",
"EF=5.5; #fermi energy(eV)\n",
"e=1.6*10**-19; #charge of electron(c)\n",
"m=9.1*10**-31; #mass of electron(kg)\n",
"E=100;\n",
"n=5.8*10**28; #electron concentration(per m**3)\n",
"\n",
"#Calculation\t\n",
"tow_r=m/(rho*n*e**2); #relaxation time(s)\n",
"mew=e*tow_r/m; #mobility of electrons(m**2/Vs)\n",
"v=e*tow_r*E/m; #drift velocity(m/s)\n",
"EF=EF*e; #fermi energy(J)\n",
"vF=math.sqrt(2*EF/m); #fermi velocity(m/s)\n",
"lamda=vF*tow_r; #mean free path(m)\n",
"\n",
"#Result\n",
"print \"relaxation time is\",round(tow_r*10**14,2),\"*10**-14 s\"\n",
"print \"mobility of electrons is\",round(mew*10**3,3),\"*10**-3 m**2/Vs\"\n",
"print \"drift velocity is\",round(v,4),\"m/s\"\n",
"print \"fermi velocity is\",round(vF/10**6,2),\"*10**6 m/s\"\n",
"print \"mean free path is\",round(lamda*10**8,2),\"*10**-8 m\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"relaxation time is 3.98 *10**-14 s\n",
"mobility of electrons is 6.997 *10**-3 m**2/Vs\n",
"drift velocity is 0.6997 m/s\n",
"fermi velocity is 1.39 *10**6 m/s\n",
"mean free path is 5.53 *10**-8 m\n"
]
}
],
"prompt_number": 15
}
],
"metadata": {}
}
]
}
|