1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
|
{
"metadata": {
"name": "",
"signature": "sha256:f003b1f1cd26176eb417b448a8cfca349700fbb49c6916dd3657fc77d5dd4cf3"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h1>Chapter 10: Amplifier Frequency Response<h1>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Example 10.1, Page Number: 311<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"import math\n",
"#Pout/P in=250;\n",
"A_p=250.0\n",
"A_p_dB=10*math.log10(A_p)\n",
"print('Power gain(dB) when power gain is 250 = %d'% math.ceil(A_p_dB));\n",
"A_p=100.0\n",
"A_p_dB=10*math.log10(A_p)\n",
"print('Power gain(dB) when power gain is 100 = %d'%A_p_dB)\n",
"A_p=10.0\n",
"A_p_dB=20*math.log10(A_p)\n",
"print('Voltage gain(dB) when Voltage gain is 10 = %d'%A_p_dB)\n",
"A_p=0.50\n",
"A_p_dB=10*math.log10(A_p)\n",
"print('Power gain(dB) when voltage gain is 0.50 = %d'%A_p_dB)\n",
"A_p=0.707\n",
"A_p_dB=20*math.log10(A_p)\n",
"print('Power gain(dB) when power gain is 0.707 = %d'%A_p_dB)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Power gain(dB) when power gain is 250 = 24\n",
"Power gain(dB) when power gain is 100 = 20\n",
"Voltage gain(dB) when Voltage gain is 10 = 20\n",
"Power gain(dB) when voltage gain is 0.50 = -3\n",
"Power gain(dB) when power gain is 0.707 = -3"
]
}
],
"prompt_number": 19
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Example 10.2, Page Number: 313<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"\n",
"v_out=0.707*10;\n",
"print('output voltage in volts at -3dB gain = %.2f'%v_out)\n",
"#at -6dB voltage gain from table is 0.5\n",
"v_out=0.5*10;\n",
"print('output voltage in volts at -6dB gain = %d'%v_out)\n",
"#at -12dB voltage gain from table is 0.25\n",
"v_out=0.25*10;\n",
"print('output voltage in volts at -12dB gain = %.1f'%v_out)\n",
"#at -24dB voltage gain from table is 0.0625\n",
"v_out=0.0625*10;\n",
"print('output voltage in volts at -24dB gain = %.3f'%v_out)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"output voltage in volts at -3dB gain = 7.07\n",
"output voltage in volts at -6dB gain = 5\n",
"output voltage in volts at -12dB gain = 2.5\n",
"output voltage in volts at -24dB gain = 0.625"
]
}
],
"prompt_number": 20
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Example 10.3, Page Number: 316<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"import math\n",
"R_in=1.0*10**3;\n",
"C1=1.0*10**-6;\n",
"A_v_mid=100.0; #mid range voltage gain\n",
"f_c=1/(2*math.pi*R_in*C1);\n",
"#at f_c, capacitive reactance is equal to resistance(X_C1=R_in)\n",
"attenuation=0.707;\n",
"#A_v is gain at lower critical frequency\n",
"A_v=0.707*A_v_mid;\n",
"print('lower critical frequency = %f Hz'%f_c)\n",
"print('attenuation at lower critical frequency =%.3f'%attenuation)\n",
"print('gain at lower critical frequency = %.1f'%A_v)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"lower critical frequency = 159.154943 Hz\n",
"attenuation at lower critical frequency =0.707\n",
"gain at lower critical frequency = 70.7"
]
}
],
"prompt_number": 21
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Example 10.4, Page Number: 317<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"A_v_mid=100.0;\n",
"#At 1Hz frequency,voltage gain is 3 dB less than at midrange. At -3dB, the voltage is reduced by a factor of 0.707\n",
"A_v=0.707*A_v_mid;\n",
"print('actual voltage gain at 1Hz frequency = %.1f'%A_v)\n",
"#At 100Hz frequency,voltage gain is 20 dB less than at critical frequency (f_c ). At -20dB, the voltage is reduced by a factor of 0.1\n",
"A_v=0.1*A_v_mid;\n",
"print('actual voltage gain at 100Hz frequency = %d'%A_v)\n",
"#At 10Hz frequency,voltage gain is 40 dB less than at critical frequency (f_c). At -40dB, the voltage is reduced by a factor of 0.01\n",
"A_v=0.01*A_v_mid;\n",
"print('actual voltage gain at 10Hz frequency = %d'%A_v)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"actual voltage gain at 1Hz frequency = 70.7\n",
"actual voltage gain at 100Hz frequency = 10\n",
"actual voltage gain at 10Hz frequency = 1"
]
}
],
"prompt_number": 22
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Example 10.5, Page Number: 319<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"import math\n",
"R_C=10.0*10**3;\n",
"C3=0.1*10**-6;\n",
"R_L=10*10**3;\n",
"A_v_mid=50;\n",
"f_c=1/(2*math.pi*(R_L+R_C)*C3);\n",
"print('lower critical frequency = %f Hz'%f_c)\n",
"#at midrange capacitive reactance is zero\n",
"X_C3=0;\n",
"attenuation=R_L/(R_L+R_C); \n",
"print('attenuation at midrange frequency = %.1f'%attenuation)\n",
"#at critical frequency, capacitive reactance equals total resistance\n",
"X_C3=R_L+R_C;\n",
"attenuation=R_L/(math.sqrt((R_C+R_L)**2+X_C3**2));\n",
"print('attenuation at critical frequency = %f'%attenuation)\n",
"A_v=0.707*A_v_mid;\n",
"print('gain at critical frequency = %.2f'%A_v)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"lower critical frequency = 79.577472 Hz\n",
"attenuation at midrange frequency = 0.5\n",
"attenuation at critical frequency = 0.353553\n",
"gain at critical frequency = 35.35"
]
}
],
"prompt_number": 23
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Example 10.6, Page Number: 321<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"import math\n",
"B_ac=100.0;\n",
"r_e=12.0;\n",
"R1=62.0*10**3;\n",
"R2=22.0*10**3;\n",
"R_S=1.0*10**3;\n",
"R_E=1.0*10**3;\n",
"C2=100.0*10**-6;\n",
"#Base circuit impedance= parallel combination of R1, R2, R_S\n",
"R_th=(R1*R2*R_S)/(R1*R2+R2*R_S+R_S*R1);\n",
"#Resistance looking at emitter\n",
"R_in_emitter=r_e+(R_th/B_ac);\n",
"#resistance of equivalent bypass RC is parallel combination of R_E,R_in_emitter\n",
"R=(R_in_emitter*R_E)/(R_E+R_in_emitter);\n",
"f_c=1/(2*math.pi*R*C2);\n",
"print('critical frequency of bypass RC circuit = %f Hz'%f_c)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"critical frequency of bypass RC circuit = 75.893960 Hz"
]
}
],
"prompt_number": 24
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Example 10.7, Page Number:323<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"import math\n",
"V_GS=-10.0;\n",
"I_GSS=25.0*10**-9;\n",
"R_G=10.0*10**6;\n",
"C1=0.001*10**-6;\n",
"R_in_gate=abs((V_GS/I_GSS));\n",
"R_in=(R_in_gate*R_G)/(R_G+R_in_gate);\n",
"f_c=1/(2*math.pi*R_in*C1);\n",
"print('critical frequency = %f Hz'%f_c)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"critical frequency = 16.313382 Hz"
]
}
],
"prompt_number": 25
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Example 10.8, Page Number: 324<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"import math\n",
"V_GS=-12.0;\n",
"I_GSS=100.0*10**-9;\n",
"R_G=10.0*10**6;\n",
"R_D=10.0*10**3;\n",
"C1=0.001*10**-6;\n",
"C2=0.001*10**-6;\n",
"R_in_gate=abs((V_GS/I_GSS));\n",
"R_in=(R_in_gate*R_G)/(R_G+R_in_gate);\n",
"R_L=R_in; #according to question\n",
"f_c_input=1/(2*math.pi*R_in*C1);\n",
"print('critical frequency of input RC circuit = %f Hz'%f_c_input)\n",
"f_c_output=1/(2*math.pi*(R_D+R_L)*C2)\n",
"print('critical frequency of output RC circuit = %f Hz'%f_c_output)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"critical frequency of input RC circuit = 17.241786 Hz\n",
"critical frequency of output RC circuit = 17.223127 Hz"
]
}
],
"prompt_number": 26
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Example 10.9, Page Number: 327<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"import math\n",
"B_ac=100.0;\n",
"r_e=16.0;\n",
"R1=62.0*10**3;\n",
"R2=22.0*10**3;\n",
"R_S=600.0;\n",
"R_E=1.0*10**3;\n",
"R_C=2.2*10**3;\n",
"R_L=10.0*10**3;\n",
"C1=0.1*10**-6;\n",
"C2=10.0*10**-6;\n",
"C3=0.1*10**-6;\n",
"#input RC circuit\n",
"R_in=(B_ac*r_e*R1*R2)/(B_ac*r_e*R1+B_ac*r_e*R2+R1*R2);\n",
"f_c_input=1/(2*math.pi*(R_S+R_in)*C1);\n",
"print('input frequency = %f Hz'%f_c_input)\n",
"#For bypass circuit; Base circuit impedance= parallel combination of R1, R2, R_S\n",
"R_th=(R1*R2*R_S)/(R1*R2+R2*R_S+R_S*R1);\n",
"#Resistance looking at emitter\n",
"R_in_emitter=r_e+(R_th/B_ac);\n",
"#resistance of equivalent bypass RC is parallel combination of R_E,R_in_emitter\n",
"R=(R_in_emitter*R_E)/(R_E+R_in_emitter);\n",
"f_c_bypass=1/(2*math.pi*R*C2);\n",
"print('critical frequency of bypass RC circuit = %f Hz'%f_c_bypass)\n",
"f_c_output=1/(2*math.pi*(R_C+R_L)*C3)\n",
"print('output frequency circuit = %f Hz'%f_c_output)\n",
"R_c=R_C*R_L/(R_C+R_L);\n",
"A_v_mid=R_c/r_e;\n",
"attenuation=R_in/(R_in+R_S);\n",
"A_v=attenuation*A_v_mid; #overall voltage gain\n",
"A_v_mid_dB=20*math.log10(A_v); \n",
"print('overall voltage gain in dB = %f'%A_v_mid_dB)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"input frequency = 773.916632 Hz\n",
"critical frequency of bypass RC circuit = 746.446517 Hz\n",
"output frequency circuit = 130.454871 Hz\n",
"overall voltage gain in dB = 38.042470"
]
}
],
"prompt_number": 27
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Example 10.10, Page Number: 330<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"import math\n",
"B_ac=125.0;\n",
"C_be=20.0*10**-12;\n",
"C_bc=2.4*10**-12;\n",
"R1=22.0*10**3;\n",
"R2=4.7*10**3;\n",
"R_E=470.0;\n",
"R_S=600.0;\n",
"R_L=2.2*10**3;\n",
"V_CC=10.0;\n",
"V_B=(R2/(R1+R2))*V_CC;\n",
"V_E=V_B-0.7;\n",
"I_E=V_E/R_E;\n",
"r_e=25.0*10**-3/I_E;\n",
"#total resistance of input circuit is parallel combination of R1,R2,R_s,B_ac*r_e\n",
"R_in_tot=B_ac*r_e*R1*R2*R_S/(B_ac*r_e*R1*R2+B_ac*r_e*R1*R_S+B_ac*r_e*R2*R_S+R1*R2*R_S);\n",
"R_c= 1100.0#R_C*R_L/(R_C+R_L)\n",
"A_v_mid=R_c/r_e;\n",
"C_in_Miller=C_bc*(A_v_mid+1)\n",
"C_in_tot=C_in_Miller+C_be;\n",
"C_in_tot=C_in_tot*10**10\n",
"f_c=1/(2*math.pi*R_in_tot*C_in_tot);\n",
"print('total resistance of circuit = %f Ohm'%R_in_tot)\n",
"print('total capacitance = %f * 10^-10 F'%C_in_tot)\n",
"print('critical frequency = %f Hz'%f_c)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"total resistance of circuit = 377.815676 Ohm\n",
"total capacitance = 2.606290 * 10^-10 F\n",
"critical frequency = 0.000162 Hz"
]
}
],
"prompt_number": 28
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Example 10.11, Page Number: 333<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"import math\n",
"C_bc=2.4*10**-12; #from previous question\n",
"A_v=99.0; #from previous question\n",
"R_C=2.2*10**3;\n",
"R_L=2.2*10**3;\n",
"R_c=R_C*R_L/(R_C+R_L);\n",
"C_out_Miller=C_bc*(A_v+1)/A_v;\n",
"f_c=1/(2*math.pi*R_c*C_bc); #C_bc is almost equal to C_in_Miller\n",
"C_out_Miller=C_out_Miller*10**12\n",
"print('equivalent resistance = %d Ohm'%R_c)\n",
"print('equivalent capacitance =%f *10^-12 F'%C_out_Miller)\n",
"print('critical frequency =%f Hz'%f_c)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"equivalent resistance = 1100 Ohm\n",
"equivalent capacitance =2.424242 *10^-12 F\n",
"critical frequency =60285963.292385 Hz"
]
}
],
"prompt_number": 29
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Example 10.12, Page Number: 334<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"C_iss=6.0*10**-12;\n",
"C_rss=2.0*10**-12;\n",
"C_gd=C_rss;\n",
"C_gs=C_iss-C_rss;\n",
"C_gd=C_gd*10**12\n",
"C_gs=C_gs*10**12\n",
"print('gate to drain capacitance = %.1f * 10^-12 F'%C_gd)\n",
"print('gate to source capacitance = %.1f * 10^-12 F'%C_gs)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"gate to drain capacitance = 2.0 * 10^-12 F\n",
"gate to source capacitance = 4.0 * 10^-12 F"
]
}
],
"prompt_number": 30
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Example 10.13, Page Number:335 <h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"import math\n",
"C_iss=8.0*10**-12;\n",
"C_rss=3.0*10**-12;\n",
"g_m=6500.0*10**-6; #in Siemens\n",
"R_D=1.0*10**3;\n",
"R_L=10.0*10**6;\n",
"R_s=50.0;\n",
"C_gd=C_rss;\n",
"C_gs=C_iss-C_rss;\n",
"R_d=R_D*R_L/(R_D+R_L);\n",
"A_v=g_m*R_d;\n",
"C_in_Miller=C_gd*(A_v+1);\n",
"C_in_tot=C_in_Miller+C_gs;\n",
"f_c=1/(2*math.pi*C_in_tot*R_s);\n",
"print('critical frequency of input RC circuit =%.3f *10^8 Hz'%(f_c*10**-8))"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"critical frequency of input RC circuit =1.158 *10^8 Hz"
]
}
],
"prompt_number": 31
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Example 10.14, Page Number: 336<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"import math\n",
"C_gd=3.0*10**-12; #from previous question\n",
"A_v=6.5; #from previous question\n",
"R_d=1.0*10**3; #from previous question\n",
"C_out_Miller=C_gd*(A_v+1)/A_v;\n",
"f_c=1/(2*math.pi*R_d*C_out_Miller);\n",
"print('critical frequency of the output circuit = %d Hz'%f_c)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"critical frequency of the output circuit = 45978094 Hz"
]
}
],
"prompt_number": 32
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Example 10.15, Page Number: 339<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"f_cu=2000.0;\n",
"f_cl=200.0;\n",
"BW=f_cu-f_cl;\n",
"print('bandwidth = %d Hz'%BW)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"bandwidth = 1800 Hz"
]
}
],
"prompt_number": 33
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Example 10.16, Page Number: 340<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"f_T=175.0*10**6; #in hertz\n",
"A_v_mid=50.0;\n",
"BW=f_T/A_v_mid;\n",
"print('bandwidth = %d Hz'%BW)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"bandwidth = 3500000 Hz"
]
}
],
"prompt_number": 34
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Example 10.17, Page Number: 341<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"f_cl=1.0*10**3; #lower critical frequency of 2nd stage in hertz\n",
"f_cu=100.0*10**3; #upper critical frequency of 1st stage in hertz\n",
"BW=f_cu-f_cl;\n",
"print('bandwidth = %d Hz'%BW)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"bandwidth = 99000 Hz"
]
}
],
"prompt_number": 35
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Example 10.18, Page Number: 341<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"import math\n",
"n=2.0; #n is the number of stages of amplifier\n",
"f_cl=500.0;\n",
"f_cu=80.0*10**3;\n",
"f_cl_new=f_cl/(math.sqrt(2**(1/n)-1));\n",
"f_cu_new=f_cu*(math.sqrt(2**(1/n)-1));\n",
"BW=f_cu_new-f_cl_new;\n",
"print('bandwidth = %f Hz'%BW)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"bandwidth = 50710.653245 Hz"
]
}
],
"prompt_number": 36
}
],
"metadata": {}
}
]
}
|