1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
|
{
"metadata": {
"name": "",
"signature": "sha256:1c4ac592513e221d9ef582b6b080c90b8d233dba2c2d1c00437e9fe2319c3d83"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 5 : Three Phase Synchronous Machines"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.1 Page No : 424"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# Given Data; \n",
"slots = 18.;\n",
"p = 2.; #nmber of poles\n",
"ph = 3.; #three phase winding\n",
"\n",
"# Calculations and Results\n",
"SA = (360/slots); #slot angle\n",
"m = slots/(p*ph); #m = nmber of slots per pole per phase\n",
"print \"number of slots per pole per phase, m = %d\"%(m);\n",
"print \"emfs of the oils of each phase will have a time-phase difference of %d degree mechanical \"%(SA);\n",
"k_d = math.sin(math.radians((m*SA)/2))/(m*math.sin(math.radians(SA/2)));\n",
"print \"distribution factor = %f\"%(k_d);\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"number of slots per pole per phase, m = 3\n",
"emfs of the oils of each phase will have a time-phase difference of 20 degree mechanical \n",
"distribution factor = 0.959795\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.2 Page No : 425"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"# Given Data\n",
"slots = 36.; #number of slots\n",
"poles = 4.; #number of poles\n",
"ph = 3.; #math.single layer three phase winding\n",
"\n",
"# Calculations and Results\n",
"SP = slots/ph; #number of slots per phase\n",
"print \"number of slots per phase = %d\"%(SP);\n",
"m = SP/poles; #munber of slots per pole per phase\n",
"print \"number of slots per pole per phase, m = %d\"%(m)\n",
"SA_m = 360/slots; #slot angle mechanical\n",
"SA_e = (poles/2)*SA_m #slot angle electrical \n",
"print \"slot angle = %d degree electrical\"%(SA_e)\n",
"k_d = math.sin(math.radians((m*SA_e)/2))/(m*math.sin(math.radians(SA_e/2)));\n",
"print \"distribution factor = %f\"%(k_d)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"number of slots per phase = 12\n",
"number of slots per pole per phase, m = 3\n",
"slot angle = 20 degree electrical\n",
"distribution factor = 0.959795\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.3 Page No : 426"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# Given Data;\n",
"slots = 48.; #number of slots\n",
"poles = 4.; #4-pole machine\n",
"ph = 3.; #3-phase machine\n",
"\n",
"# Calculations and Results\n",
"SA = 360/slots; #slot angle\n",
"print \"total number of slots = %d\"%(slots);\n",
"print \"slot angle = %f degree mechanical\"%(SA);\n",
"#coil span is 11 slot pitches\n",
"#12 slots subtend 180degress, short pitched by 1 slot \n",
"Bta = 1*180./12;\n",
"k_p = math.cos(math.radians(Bta/2));\n",
"print \"pitch factor = %f\"%(k_p)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"total number of slots = 48\n",
"slot angle = 7.500000 degree mechanical\n",
"pitch factor = 0.991445\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.4 Page No : 426"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# Given Data;\n",
"slots = 72.; #number of slots\n",
"P = 8.; #number of poles\n",
"ph = 3.; #3-phase machine\n",
"N = 750.; #speed of machine in rpm\n",
"\n",
"#winding is made with 36 coils having 10 turns\n",
"Fp = 0.15; #flux per pole\n",
"fre = (P*N)/120;\n",
"NCp = 36./ph; #nmber of coils per phase\n",
"T = NCp*10; #number of turns per phase\n",
"k_p = 1; #math.since full pitched pitch factor is 1\n",
"\n",
"# Calculations and Results\n",
"print \"flux per pole = %fWb\"%(Fp)\n",
"print \"number of turns per phase = %d\"%(T);\n",
"print \"pitch factor = %f\"%(k_p);\n",
"m = slots/(P*ph); #slots per pole per phase\n",
"SA_m = 360/slots; #slot angle mechanical\n",
"SA_e = (P/2)*SA_m;\n",
"k_d = math.sin(math.radians((m*SA_e)/2))/(m*math.sin(math.radians(SA_e/2)));\n",
"print \"distribution factor = %f\"%(k_d);\n",
"E = 4.44*Fp*fre*T*k_d*k_p;\n",
"print \"RMS vale of emf induced per phase = %fV\"%(E)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"flux per pole = 0.150000Wb\n",
"number of turns per phase = 120\n",
"pitch factor = 1.000000\n",
"distribution factor = 0.959795\n",
"RMS vale of emf induced per phase = 3835.341142V\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.5 Page No : 427"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"# Given Data;\n",
"print (\"E(line to line) = 440V\");\n",
"E_l = 440.; #line-to-line voltage\n",
"E_p = E_l/(math.sqrt(3));\n",
"N = 750.; #speed in rpm\n",
"fre = 50.; #frequency\n",
"\n",
"# Calculations and Results\n",
"P = (120*fre)/N;\n",
"print \"P = %d\"%(P);\n",
"print \"Eper phase) = %dV\"%(E_p);\n",
"ph = 3; #3-phase machine\n",
"m = 2; #number of slots per pole per phase\n",
"slots = m*P*ph; #total number of stator slots\n",
"SA_m = 360/slots; #slot angle mechanical\n",
"SA_e = (P/2)*SA_m; #slot angle electrical\n",
"k_p = 1; #assuming full pitch\n",
"print \"slot angle = %d degree electrical\"%(SA_e);\n",
"print \"pitch factor = %f\"%(k_p);\n",
"k_d = math.sin(math.radians((m*SA_e)/2))/(m*math.sin(math.radians(SA_e/2)));\n",
"print \"distribution factor = %f\"%(k_d);\n",
"#2 slots per pole per phase\n",
"NSp = 2*P; #number of slots per phase\n",
"NTc = 4; #number of turns per coil\n",
"T = 8*NTc; #number of turns per phase\n",
"Fp = E_p/(4.44*fre*T*k_d*k_p);\n",
"print \"flux per pole = %fWb\"%(Fp);"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"E(line to line) = 440V\n",
"P = 8\n",
"Eper phase) = 254V\n",
"slot angle = 30 degree electrical\n",
"pitch factor = 1.000000\n",
"distribution factor = 0.965926\n",
"flux per pole = 0.037021Wb\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.6 Page No : 428"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"#chapter 5\n",
"#example 5.6\n",
"#page 428\n",
"\n",
"# Given Data;\n",
"slots = 144.; #number of slots\n",
"ph = 3.; #3-phase machine\n",
"P = 16.; #number of poles\n",
"Cp = 10.; #number of conducters per slot\n",
"Fp = 0.03; #flux per pole\n",
"Ns = 375.; #synchronous speed\n",
"\n",
"# Calculations and Results\n",
"fre = (Ns*P)/120; #frequency\n",
"print \"frequency = %d\"%(fre);\n",
"m = slots/(P*ph); #number of slots per pole per phase\n",
"print \"number of slots per pole per phase, m = %d\"%(m);\n",
"SA_m = 360/slots; #slot angle mechanical\n",
"SA_e = (P/2)*SA_m; #slot angle electrical\n",
"k_p = 1 #no short pitching\n",
"print \"short pitch = %d\"%(k_p);\n",
"k_d = math.sin(math.radians((m*SA_e)/2))/(m*math.sin(math.radians(SA_e/2)));\n",
"print \"distribution factor = %f\"%(k_d);\n",
"T = (slots*10)/(2*ph);\n",
"print \"number of turns per phase, T = %d\"%(T);\n",
"E = 4.44*Fp*fre*T*k_d*k_p;\n",
"print \"RMS value of induced emf per phase, E = %fV\"%(E);\n",
"print \"induced emf across the linesis %fV \"%(math.sqrt(3)*E);"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"frequency = 50\n",
"number of slots per pole per phase, m = 3\n",
"short pitch = 1\n",
"distribution factor = 0.959795\n",
"number of turns per phase, T = 240\n",
"RMS value of induced emf per phase, E = 1534.136457V\n",
"induced emf across the linesis 2657.202289V \n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.7 Page No : 428"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# Given Data;\n",
"slots = 90.; #number of slots\n",
"P = 10.; #number of poles\n",
"ph = 3.; #3-phase machine\n",
"fre = 50.; #frequency\n",
"Fp = 0.16; #flux per pole\n",
"E_l = 11000.; #line voltage\n",
"SA_m = 360/slots; #machanical slot angle\n",
"\n",
"# Calculations and Results\n",
"SA_e = (P/2)*SA_m; #electrical slot angle\n",
"m = slots/(ph*P);\n",
"print \"slot angle = %d degree elecrical\"%(SA_e)\n",
"print \"number of slots per pole per phase, m = %d\"%(m);\n",
"k_p = 1; #assuming full pitch\n",
"print \"pitch factor = %d\"%(k_p);\n",
"k_d = math.sin(math.radians((m*SA_e)/2))/(m*math.sin(math.radians(SA_e/2)));\n",
"print \"distribution factor = %f\"%(k_d);\n",
"E_p = E_l/math.sqrt(3);\n",
"T = E_p/(4.44*Fp*fre*k_p*k_d); \n",
"print \"total number of armature conductors, Z = %d\"%(2*T);\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"slot angle = 20 degree elecrical\n",
"number of slots per pole per phase, m = 3\n",
"pitch factor = 1\n",
"distribution factor = 0.959795\n",
"total number of armature conductors, Z = 372\n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.8 Page No : 429"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# Given Data;\n",
"print (\"P = 6 , f = 50\");\n",
"P = 6.;\n",
"f = 50.;\n",
"Sp = 12.; #slots per pole\n",
"Cs = 4.; #conductors per slot\n",
"Fp = 1.5; \n",
"\n",
"# Calculations and Results\n",
"TS = Sp*P \n",
"print \"total number of slots = %d\"%(TS);\n",
"print \"total number of slots per phase = %d\"%( TS/3);\n",
"print \"total number of conductors per phase = %d\"%(( TS*Cs)/3);\n",
"T = ((TS*Cs)/3)/2;\n",
"print \"total number of turns per phase = %d\"%(T)\n",
"m = (TS/(P*3));\n",
"print \"number of slots per pole per phase, m = %d\"%(m);\n",
"SA_m = 360/TS; #slot angle mechanical\n",
"SA_e = (P/2)*SA_m;\n",
"k_d = math.sin(math.radians((m*SA_e)/2))/(m*math.sin(math.radians(SA_e/2)));\n",
"print \"distribution factor = %f\"%(k_d);\n",
"print (\"coil pitch is 5/6 of full-pitch\");\n",
"bheta = 180-(5./6)*180; #short pitch angle\n",
"print \"short pitch angle = %d degrees\"%(bheta)\n",
"k_p = math.cos(math.radians(bheta/2));\n",
"print \"pitch factor = %f \"%(k_p);\n",
"E = 4.44*Fp*f*T*k_d*k_p;\n",
"print \"induced per phase = %fV\"%(E)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"P = 6 , f = 50\n",
"total number of slots = 72\n",
"total number of slots per phase = 24\n",
"total number of conductors per phase = 96\n",
"total number of turns per phase = 48\n",
"number of slots per pole per phase, m = 4\n",
"distribution factor = 0.957662\n",
"coil pitch is 5/6 of full-pitch\n",
"short pitch angle = 30 degrees\n",
"pitch factor = 0.965926 \n",
"induced per phase = 14785.689892V\n"
]
}
],
"prompt_number": 14
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.9 Page No : 439"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# Given Data;\n",
"OP = 500000.; #output power\n",
"V_l = 3300.; #line voltage\n",
"\n",
"# Calculations and Results\n",
"I_l = OP/(math.sqrt(3)*V_l); #line current\n",
"print \"line current = %fA\"%(I_l);\n",
"#for star connected alternater, line current is equal to phase current\n",
"I_a = I_l;\n",
"pf = 0.8; #power factor\n",
"phi = math.degrees(math.acos(pf));\n",
"R_a = 0.3; #synchronous resistance\n",
"X_s = 4; #synchronous reactance\n",
"V_p = V_l/math.sqrt(3);\n",
"print \"phase voltage = %fV\"%(V_p)\n",
"E = math.sqrt((V_p*math.cos(math.radians(phi))+I_a*R_a)**2+(V_p*math.sin(math.radians(phi))+I_a*X_s)**2);\n",
"print \"induced emf = %f V/Phase\"%(E )\n",
"PR = ((E-V_p)*100)/V_p;\n",
"print \"percentage regulation = %f percent\"%(PR);"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"line current = 87.477314A\n",
"phase voltage = 1905.255888V\n",
"induced emf = 2152.469556 V/Phase\n",
"percentage regulation = 12.975353 percent\n"
]
}
],
"prompt_number": 15
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.10 Page No : 440"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# Given Data\n",
"V = 2000.;\n",
"V_oc = 500.; #open circuit voltage\n",
"I_sc = 100.; #short circuit current\n",
"I_a = 100.; \n",
"R_s = 0.8; #armature resistance\n",
"\n",
"# Calculations and Results\n",
"Z_s = V_oc/I_sc; #synchronous impedence\n",
"print \"Z_s = %d ohm\"%(Z_s);\n",
"X_s = math.sqrt(Z_s**2-R_s**2);\n",
"print \"X_s = %f ohm\"%(X_s);\n",
"pf = 1;\n",
"phi = math.degrees(math.acos(pf));\n",
"print (\"At unity power factor\");\n",
"print \"\";\n",
"E = math.sqrt((V*math.cos(math.radians(phi))+I_a*R_s)**2+(V*math.sin(math.radians(phi))+I_a*X_s)**2);\n",
"print \"induced emf = %fV\"%(E);\n",
"R = ((E-V)*100)/V;\n",
"print \"regulation = %f percent\"%(R);\n",
"pf = 0.71;\n",
"phi = math.degrees(math.acos(pf));\n",
"print (\"At 0.71 lagging power factor\");\n",
"print \"\";\n",
"E = math.sqrt((V*math.cos(math.radians(phi))+I_a*R_s)**2+(V*math.sin(math.radians(phi))+I_a*X_s)**2);\n",
"print \"induced emf = %fV\"%(E);\n",
"R = ((E-V)*100)/V;\n",
"print \"regulation = %fpercent\"%(R);\n",
"pf = 0.8;\n",
"phi = math.degrees(math.acos(pf));\n",
"print (\"At 0.8 leading power factor\");\n",
"print \"\";\n",
"E = math.sqrt((V*math.cos(math.radians(phi))+I_a*R_s)**2+(V*math.sin(math.radians(phi))-I_a*X_s)**2);\n",
"print \"induced emf = %fV\"%(E);\n",
"R = ((E-V)*100)/V;\n",
"print \"regulation = %fpercent\"%(R);\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Z_s = 5 ohm\n",
"X_s = 4.935585 ohm\n",
"At unity power factor\n",
"\n",
"induced emf = 2137.755833V\n",
"regulation = 6.887792 percent\n",
"At 0.71 lagging power factor\n",
"\n",
"induced emf = 2422.283821V\n",
"regulation = 21.114191percent\n",
"At 0.8 leading power factor\n",
"\n",
"induced emf = 1822.487197V\n",
"regulation = -8.875640percent\n"
]
}
],
"prompt_number": 18
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.11 Page No : 441"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Given Data;\n",
"print (\"field exitation current = 10A\");\n",
"V_oc = 900.; #induced emf on open circuit\n",
"I_sc = 150.; #short circuit current\n",
"\n",
"# Calculations and Results\n",
"Z_s = V_oc/I_sc; #synchronous impedence\n",
"print \"synchronous impedence, Z_s = %d ohm\"%(Z_s);\n",
"I_a = 60;\n",
"print \"internal voltage drop when the load current is 60amp = %d V\"%(I_a*Z_s);"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"field exitation current = 10A\n",
"synchronous impedence, Z_s = 6 ohm\n",
"internal voltage drop when the load current is 60amp = 360 V\n"
]
}
],
"prompt_number": 19
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.12 Page No : 441"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# Given Data;\n",
"KVA = 2000.;\n",
"V = 6600.; #rating\n",
"V_p = 6600./math.sqrt(3);\n",
"I_a = (KVA*1000)/(math.sqrt(3)*V);\n",
"R_a = 0.4; #armature resistance\n",
"X_s = 4.5 #synchronous reactance\n",
"pf = 0.8;\n",
"\n",
"# Calculations and Results\n",
"phi = math.degrees(math.acos(pf));\n",
"print \"V/phase = %dV \"%(V_p)\n",
"E = math.sqrt((V_p*math.cos(math.radians(phi))+I_a*R_a)**2+(V_p*math.sin(math.radians(phi))+I_a*X_s)**2)\n",
"print \"E = %f V per phase\"%(E);\n",
"R = ((E-V_p)*100)/V_p;\n",
"print \"percentage change in terminal voltage = %f percent\"%(R);"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"V/phase = 3810V \n",
"E = 4378.515597 V per phase\n",
"percentage change in terminal voltage = 14.906234 percent\n"
]
}
],
"prompt_number": 20
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.13 Page No : 442"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# Given Data;\n",
"KVA = 1200.; #output power\n",
"print \"output power = %d\"%(KVA)\n",
"V_l = 3300.; #line voltage\n",
"R_a = 0.25; #armature resistance\n",
"\n",
"# Calculations and Results\n",
"I_l = (KVA*1000)/(math.sqrt(3)*V_l); #line current\n",
"#for star connected I_l = I_a\n",
"I_a = I_l;\n",
"V_p = V_l/math.sqrt(3);\n",
"print \"V per phase = %dV\"%(V_p)\n",
"#field current of 40A produces short circuit current of 200A and open circuit emf 1100\n",
"v_l = 1100;\n",
"i_s = 200;\n",
"Z_s = v_l/(math.sqrt(3)*i_s); #synchronous impedence\n",
"print \"Synchronous impedance, Zs = %f ohm\"%(Z_s)\n",
"X_s = math.sqrt(Z_s**2-R_a**2); #synchronous reactance\n",
"print (\"(a)for 0.8 lagging power facor\");\n",
"pf = 0.8;\n",
"phi = math.degrees(math.acos(pf));\n",
"E = math.sqrt((V_p*math.cos(math.radians(phi))+I_a*R_a)**2+(V_p*math.sin(math.radians(phi))+I_a*X_s)**2)\n",
"print \"induced emf, E = %f V\"%(E);\n",
"R = ((E-V_p)*100)/V_p;\n",
"print \"regulation = %f percent\"%(R);\n",
"pf = 0.8;\n",
"phi = math.degrees(math.acos(pf));\n",
"print (\"(b)For leading power factor load\")\n",
"E = math.sqrt((V_p*math.cos(math.radians(phi))+I_a*R_a)**2+(V_p*math.sin(math.radians(phi))-I_a*X_s)**2)\n",
"print \"induced emf, E = %f V\"%(E);\n",
"R = ((E-V_p)*100)/V_p;\n",
"print \"regulation = %f percent\"%(R);"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"output power = 1200\n",
"V per phase = 1905V\n",
"Synchronous impedance, Zs = 3.175426 ohm\n",
"(a)for 0.8 lagging power facor\n",
"induced emf, E = 2398.732590 V\n",
"regulation = 25.900810 percent\n",
"(b)For leading power factor load\n",
"induced emf, E = 1647.716860 V\n",
"regulation = -13.517293 percent\n"
]
}
],
"prompt_number": 21
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.14 Page No : 443"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# Given Data;\n",
"print (\"star connected alternator\")\n",
"KVA = 1500.; #rating\n",
"ph = 3.; #3-phase\n",
"V_l = 6600.; #voltage\n",
"Ra = 0.4 #armature resistance\n",
"Xs = 6.; #reactance\n",
"\n",
"# Calculations and Results\n",
"Ia = (KVA*1000)/(math.sqrt(3)*V_l);\n",
"print \"Full-load current = %d A\"%(Ia);\n",
"V = V_l/math.sqrt(3);\n",
"print \"Voltage per phase = %d V\"%(V);\n",
"print (\"for 0.8 lagging power facor\");\n",
"pf = 0.8; #power factor\n",
"phi = math.degrees(math.acos(pf));\n",
"E = math.sqrt((V*math.cos(math.radians(phi))+Ia*Ra)**2+(V*math.sin(math.radians(phi))+Ia*Xs)**2)\n",
"print \"induced emf = %f V\"%(E);\n",
"print (\"then at 0.8 leading power factor\");\n",
"Vt = 4743; #solved manually \n",
"print \"termial Voltage, line-to-line = %d V\"%(math.sqrt(3)*Vt)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"star connected alternator\n",
"Full-load current = 131 A\n",
"Voltage per phase = 3810 V\n",
"for 0.8 lagging power facor\n",
"induced emf = 4366.072552 V\n",
"then at 0.8 leading power factor\n",
"termial Voltage, line-to-line = 8215 V\n"
]
}
],
"prompt_number": 23
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.15 Page No : 450"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"#chapter 5\n",
"#example 5.15\n",
"#page 450\n",
"\n",
"# Given Data;\n",
"L = 8000.; #load\n",
"La = 5000.;\n",
"pf = 0.8;\n",
"\n",
"# Calculations and Results\n",
"phi = math.degrees(math.acos(pf));\n",
"print \"math.tan phi = %f\"%(math.degrees(math.atan(phi)));\n",
"print (\"FOR ALTERNATOR A\");\n",
"pf_a = 0.9;\n",
"phi_a = math.degrees(math.acos(pf_a));\n",
"print \"math.tan phi_a = %f\"%(math.degrees(math.atan(phi_a)));\n",
"print (\"reactive load = active load*math.tan phi\");\n",
"print (\"Active load = 8000kW\");\n",
"print \"reactive load = %d KVAr\"%(8000*math.degrees(math.atan(phi_a)));\n",
"print (\"Active Load A = 5000kW\");\n",
"print \"Reactive load A = %dkVAr\"%(5000*math.degrees(math.atan(phi_a)));\n",
"print \"Active load of B = %dkW\"%(L-La);\n",
"a = ((8000*math.degrees(math.atan(phi)))-(5000*math.degrees(math.atan(phi_a))))\n",
"print \"Reactive load of B = %dkVAr\"%(a);\n",
"B = a/(L-La);\n",
"phi_b = math.degrees(math.atan(B));\n",
"print \"phi_b = %f\"%(phi_b)\n",
"print \"Power Factor of B = %f\"%(math.cos(math.radians(phi_b)));"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"math.tan phi = 88.446382\n",
"FOR ALTERNATOR A\n",
"math.tan phi_a = 87.783943\n",
"reactive load = active load*math.tan phi\n",
"Active load = 8000kW\n",
"reactive load = 702271 KVAr\n",
"Active Load A = 5000kW\n",
"Reactive load A = 438919kVAr\n",
"Active load of B = 3000kW\n",
"Reactive load of B = 268651kVAr\n",
"phi_b = 89.360211\n",
"Power Factor of B = 0.011166\n"
]
}
],
"prompt_number": 27
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.16 Page No : 451"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# Given Data\n",
"V = 6600.;\n",
"ph = 3.; #3-phase alternators \n",
"power = 10000.; #total load\n",
"\n",
"# Calculations and Results\n",
"print (\"Two alternators in parallel connection\");\n",
"pf = 0.8;\n",
"Ia = 438; #armature current\n",
"Il = (power*1000)/(math.sqrt(3)*V*pf); #load current\n",
"print \"load current = %fA\"%(Il);\n",
"phi = math.degrees(math.acos(pf));\n",
"Ac = (Il*math.cos(math.radians(phi)));\n",
"Rc = (Il*math.sin(math.radians(phi)));\n",
"print \"Active component of current = %fA\"%(Ac);\n",
"print \"Reactive component of current = %fA\"%(Rc);\n",
"print \"Current supplied by each alternator = %fA\"%(Il/2);\n",
"print \"Active component of current supplied by each alternator = %fA\"%(Ac/2);\n",
"print \"Reactive component of current supplied by each alternator = %fA\"%(Rc/2);\n",
"print (\"Since steam supply is same,the active component remain the same \");\n",
"RIl = math.sqrt(Ia**2-(Ac/2)**2);\n",
"print \"Reactive component of Il = %dA\"%(RIl);\n",
"RI2 = (Rc-RIl);\n",
"print \"reactive component of I2 = %fA\"%(RI2);\n",
"I2 = math.sqrt((Ac/2)**2+(RI2)**2);\n",
"print \" I2 = %fA\"%(I2);\n",
"phi_2 = math.degrees(math.atan(RI2/(Ac/2)));\n",
"print \"phi 2 = %f degrees\"%(phi_2);\n",
"print \"math.cos phi 2 = %f\"%(math.cos(math.radians(phi_2)));\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Two alternators in parallel connection\n",
"load current = 1093.466419A\n",
"Active component of current = 874.773135A\n",
"Reactive component of current = 656.079851A\n",
"Current supplied by each alternator = 546.733209A\n",
"Active component of current supplied by each alternator = 437.386568A\n",
"Reactive component of current supplied by each alternator = 328.039926A\n",
"Since steam supply is same,the active component remain the same \n",
"Reactive component of Il = 23A\n",
"reactive component of I2 = 632.906796A\n",
" I2 = 769.336091A\n",
"phi 2 = 55.352588 degrees\n",
"math.cos phi 2 = 0.568525\n"
]
}
],
"prompt_number": 28
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.17 Page No : 455"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"# Given Data;\n",
"print (\"power factor of existing load is 0.8 lagging\");\n",
"pf = 0.8; #power factor\n",
"\n",
"# Calculations and Results\n",
"phi = math.degrees(math.acos(pf));\n",
"print \"phi = %d degree\"%(phi);\n",
"L = 800.; #load\n",
"kVAr1 = (L*math.degrees(math.atan(phi)));\n",
"print \"kVAr1 = %d \"%(kVAr1);\n",
"print (\"output for the synchronous motor is 200kW\");\n",
"output = 200.;\n",
"efficiency = 0.9;\n",
"kW = (output/efficiency);\n",
"print \"Input to the synchronous motor = %fkW\"%(kW);\n",
"TL = (L+kW); # total load\n",
"print \"Total load on the system = %fkW\"%(TL);\n",
"print (\"overall power factor of the load is to be raised to 0.92 lagging\");\n",
"pf = 0.92;\n",
"phi = math.degrees(math.acos(pf));\n",
"kVAr2 = (TL*math.degrees(math.atan(phi)))\n",
"print \"kVAr2 = %f\"%(kVAr2);\n",
"kVAr = kVAr1-kVAr2;\n",
"print \"lagging kVAr of synchronous codenser = %f\"%(kVAr);\n",
"print \"leading kVAr supplied by the motor = %f\"%(kVAr);\n",
"phi = math.degrees(math.atan(kVAr/kW));\n",
"print \"phi = %d degree\"%(phi);\n",
"print \"Power factor of the synchronos motor = %f leading \"%(math.cos(math.radians(phi)));\n",
"print \"KVA rating of the synchronous motor = %f\"%(kW/math.cos(math.radians(phi)));\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"power factor of existing load is 0.8 lagging\n",
"phi = 36 degree\n",
"kVAr1 = 70757 \n",
"output for the synchronous motor is 200kW\n",
"Input to the synchronous motor = 222.222222kW\n",
"Total load on the system = 1022.222222kW\n",
"overall power factor of the load is to be raised to 0.92 lagging\n",
"kVAr2 = 89463.266068\n",
"lagging kVAr of synchronous codenser = -18706.160461\n",
"leading kVAr supplied by the motor = -18706.160461\n",
"phi = -89 degree\n",
"Power factor of the synchronos motor = 0.011879 leading \n",
"KVA rating of the synchronous motor = 18707.480373\n"
]
}
],
"prompt_number": 29
}
],
"metadata": {}
}
]
}
|