summaryrefslogtreecommitdiff
path: root/Basic_Principles_And_Calculations_In_Chemical_Engineering/ch10.ipynb
blob: e4b7fe7d3d6bb5ccd3fde28784b3433508bbf22e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
{
 "metadata": {
  "name": "",
  "signature": "sha256:9f0f51ee792551db4a5ae3ded00fa549611bdd66fece52d68af61c7a164f38e5"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 10 : Material Balances for Processes Involving Reaction"
     ]
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      " Example 10.1 Page no. 264\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "F = 100             # feed to the reactor-[g mol]\n",
      "CH4 = 0.4*F         # [g mol]\n",
      "Cl2 = 0.5*F ;       # [g mol]\n",
      "N2= 0.1*F ;         #[g mol]\n",
      "\n",
      "nio_CH4 = CH4       #[g mol CH4]\n",
      "vi_CH4 = -1         # coefficint of CH4\n",
      "\n",
      "\n",
      "# Calculation and Result\n",
      "ex_CH4 = -(nio_CH4)/vi_CH4        # Max. extent of reaction based on CH4\n",
      "\n",
      "nio_Cl2 = Cl2 ;                   #[g mol Cl2]\n",
      "vi_Cl2 = -1 ;                     # coefficint of Cl2\n",
      "ex_Cl2 = -(nio_Cl2)/vi_Cl2 ;      # Max. extent of reaction based on Cl2\n",
      "\n",
      "if (ex_Cl2 > ex_CH4 ):\n",
      "    print '  CH4 is limiting reactant  '\n",
      "else:\n",
      "    print '  (b) Cl2 is limiting reactant  '\n",
      "\n",
      "cn_CH4 = 67/100.0 ;               # percentage conversion of CH4\n",
      "ex_r = (-cn_CH4)*CH4/vi_CH4 ;     # extent of reaction\n",
      "\n",
      "print ' extent of reaction is %.1f g moles reacting '%ex_r\n",
      "\n",
      "n_un = 11 ;                      # Number of unknowns in the given problem\n",
      "n_ie = 11 ;                      # Number of independent equations\n",
      "d_o_f = n_un-n_ie ;              # Number of degree of freedom\n",
      "print ' Number of degree of freedom for the given system is  %i '%d_o_f\n",
      "\n",
      "vi_CH3Cl = 1;\n",
      "vi_HCl = 1;\n",
      "vi_N2 = 0;\n",
      "p_CH4 = CH4+(vi_CH4*ex_r);       # [g mol]\n",
      "p_Cl2 = Cl2+(vi_Cl2*ex_r);       # [g mol]\n",
      "p_CH3Cl = 0+(vi_CH3Cl*ex_r);     # [g mol]\n",
      "p_HCl = 0+(vi_HCl*ex_r);         # [g mol]\n",
      "p_N2 =  N2+(vi_N2*ex_r);         # [g mol]\n",
      "\n",
      "print 'Composition of product stream in %% g mol of products'\n",
      "print 'Product            Percentage g mol'\n",
      "print 'CH4                %.1f%% g mol'%p_CH4\n",
      "print 'Cl2                %.1f%% g mol'%p_Cl2\n",
      "print 'CH3Cl              %.1f%% g mol'%p_CH3Cl\n",
      "print 'HCl                %.1f%% g mol'%p_HCl\n",
      "print 'N2                 %.1f%% g mol'%p_N2"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "  CH4 is limiting reactant  \n",
        " extent of reaction is 26.8 g moles reacting \n",
        " Number of degree of freedom for the given system is  0 \n",
        "Composition of product stream in %% g mol of products\n",
        "Product            Percentage g mol\n",
        "CH4                13.2% g mol\n",
        "Cl2                23.2% g mol\n",
        "CH3Cl              26.8% g mol\n",
        "HCl                26.8% g mol\n",
        "N2                 10.0% g mol\n"
       ]
      }
     ],
     "prompt_number": 10
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      " Example 10.2  Page no. 266\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "# Variables \n",
      "S = 5000. ;              # Sulphur [lb]\n",
      "CH4 =  80. ;             # [%]\n",
      "H2S =  20.;              # [%]\n",
      "\n",
      "n_un = 11. ;\n",
      "n_ie  = 11. ;\n",
      "\n",
      "# Calculation and Result\n",
      "d_o_f =  n_un-n_ie ;\n",
      "print 'Number of degree of freedom for the given system is  %i '%d_o_f\n",
      "\n",
      "m_S = 32.0              #molecular wt. of S -[lb]\n",
      "mol_S = S/32.0;\n",
      "nio_S = 0               #[g mol S]\n",
      "ni_S = mol_S ;          #[g mol S]\n",
      "vi_S = 3.               # coefficint of S -from given reaction\n",
      "ex_r = (ni_S-nio_S)/vi_S ;     #  Extent of reaction based on S\n",
      "print ' Extent of reaction is %.1f g moles reacting '%ex_r\n",
      "\n",
      "vi_H2O = 2. ;             # coefficint of H2O\n",
      "vi_H2S = -2. ;            # coefficint of H2S\n",
      "vi_SO2 = -1. ;            #coefficint of SO2\n",
      "vi_CH4 = 0 ;              #coefficint of CH4\n",
      "P_H2O = 0+(vi_H2O*ex_r);  # [lb mol]\n",
      "P_H2S = P_H2O/10 ;        #[lb mol]\n",
      "P_SO2 = 3.*P_H2S ;        #[lb mol]\n",
      "\n",
      "F = (P_H2S-vi_H2S*ex_r)/(H2S/100) ;          # total feed-[lb mol]\n",
      "F_SO2 = P_SO2-(vi_SO2*ex_r);                 # feed rate of SO2- [lb mol]\n",
      "F_CH4 = (CH4/100.)*F+vi_CH4*ex_r ;           #feed rate of CH4- [lb mol]\n",
      "F_H2S = ((H2S/100.)*F) ;                     # feed rate of H2S-[lb mol]\n",
      "\n",
      "f_cn = -(vi_H2S*ex_r)/((H2S/100.)*F)         # Fractional conversion of limiting reagent\n",
      "\n",
      "print '(1)Feed rate of H2S-  %.1f lb mol'%F_H2S\n",
      "print '(2)Feed rate of SO2-  %.1f lb mol'%F_SO2\n",
      "print '(3)Fractional conversion of limiting reagent-  %.2f '%f_cn"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Number of degree of freedom for the given system is  0 \n",
        " Extent of reaction is 52.1 g moles reacting \n",
        "(1)Feed rate of H2S-  114.6 lb mol\n",
        "(2)Feed rate of SO2-  83.3 lb mol\n",
        "(3)Fractional conversion of limiting reagent-  0.91 \n"
       ]
      }
     ],
     "prompt_number": 11
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      " Example 10.3  Page no. 270\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "# Variables \n",
      "F = 1                      #CH3OH -[gmol]\n",
      "f_cn = 90.                 #[%]\n",
      "vi_CH3OH = -1.             #coefficint of CH3OH\n",
      "\n",
      "# Calculation and Result\n",
      "ex_r1 = (-90./100)/vi_CH3OH       #  Extent of reaction based on CH3OH \n",
      "print ' Extent of reaction 1 is %.2f g moles reacting '%ex_r1\n",
      "\n",
      "yld = 75.                         #[%]\n",
      "ex_r2 = ex_r1-(F*(yld/100.0));\n",
      "print '  Extent of reaction 2 is %.2f g moles reacting '%ex_r2\n",
      "\n",
      "f_O2 = 0.21                      # mol. fraction of O2\n",
      "f_N2 = 0.79                      # mol. fraction of N2\n",
      "n_O2 = 2*((1/2.0)*F)             # entering oxygen -[g mol]\n",
      "air =  n_O2/f_O2                 # Amount of air entering\n",
      "n_N2 = air-n_O2                  # entering nitrogen -[g mol]\n",
      "\n",
      "n_un = 11.                       # Number of unknowns in the given problem\n",
      "n_ie  = 11.                      # Number of independent equations\n",
      "d_o_f =  n_un-n_ie               # Number of degree of freedom\n",
      "print '  Number of degree of freedom for the given system is  %i '%d_o_f\n",
      "\n",
      "v1_CH3OH = -1                    #coefficint of CH3OH\n",
      "v1_O2 = -1./2                    #coefficint of O2\n",
      "v1_CH2O = 1 ;                    #coefficint of CH2O\n",
      "v1_H2O = 1 ;                     #coefficint of H2O\n",
      "v1_CO = 0  ;                     #coefficient of CO\n",
      "\n",
      "#Reaction 2\n",
      "v2_O2 = -1./2                    #coefficint of O2\n",
      "v2_CH2O = -1                     #coefficint of CH2O\n",
      "v2_H2O = 1 ;                     #coefficint of H2O\n",
      "v2_CO = 1 ;                      #coefficient of CO\n",
      "P = F+air +(v1_CH3OH+v1_O2+v1_CH2O+v1_H2O)*ex_r1 +(v2_O2+v2_CH2O+v2_H2O+v2_CO)*ex_r2 ;# Product -[g mol]\n",
      "\n",
      "no_CH3OH = F+(v1_CH3OH*ex_r1)+0 ;             # [g mol]\n",
      "no_O2 = n_O2+(v1_O2*ex_r1)+v2_O2*ex_r2 ;      # [g mol]\n",
      "no_CH2O = 0 + v1_CH2O*ex_r1 +v2_CH2O*ex_r2 ;  #[g mol]\n",
      "no_CO =  0+v1_CO*ex_r1 +v2_CO*ex_r2 ;         #[g mol]\n",
      "no_H2O = 0+v1_H2O*ex_r1+v2_H2O*ex_r2 ;        # [g mol]\n",
      "no_N2 =  n_N2-0-0 ;                           # [g mol]\n",
      "\n",
      "\n",
      "y_CH3OH = (no_CH3OH/P )*100 ;                 # mole %\n",
      "y_O2 = (no_O2/P)*100 ;                        # mole %\n",
      "y_CH2O = (no_CH2O/P)*100 ;                    # mole %\n",
      "y_CO = (no_CO/P)*100 ;                        # mole %\n",
      "y_H2O = (no_H2O/P)*100 ;                      # mole % \n",
      "y_N2 = (no_N2/P )*100;                        # mole %\n",
      "\n",
      "print 'Composition of product'\n",
      "print 'Component        mole percent'\n",
      "print ' CH3OH           %.1f %%'%y_CH3OH\n",
      "print ' O2              %.1f %%'%y_O2\n",
      "print ' CH2O            %.1f %%'%y_CH2O\n",
      "print ' CO              %.1f %%'%y_CO\n",
      "print ' H2O             %.1f %%'%y_H2O\n",
      "print ' N2              %.1f %%'%y_N2"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " Extent of reaction 1 is 0.90 g moles reacting \n",
        "  Extent of reaction 2 is 0.15 g moles reacting \n",
        "  Number of degree of freedom for the given system is  0 \n",
        "Composition of product\n",
        "Component        mole percent\n",
        " CH3OH           1.6 %\n",
        " O2              7.6 %\n",
        " CH2O            11.9 %\n",
        " CO              2.4 %\n",
        " H2O             16.7 %\n",
        " N2              59.8 %\n"
       ]
      }
     ],
     "prompt_number": 12
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      " Example 10.4  Page no. 273\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "from numpy import matrix\n",
      "\n",
      "# Variables \n",
      "F = 4000. ;                  #[kg]\n",
      "m_H2O = 18.02 ;              # molecular masss of water\n",
      "m_C6H12O6 = 180.1 ;          # molecular mass of glucose\n",
      "m_CO2 = 44. ;                #molecular mass of CO2\n",
      "m_C2H3CO2H = 72.03 ;         # molecular mass of C2H3CO2H\n",
      "m_C2H5OH = 46.05 ;           # molecular mass of ethanol\n",
      "\n",
      "p_H2O = 88. ;                # [%]\n",
      "p_C6H12O6 = 12.;             # [%] \n",
      "\n",
      "# Calculation & Result\n",
      "ni_H2O = (F*p_H2O/100.)/m_H2O ;                    # initial moles of water\n",
      "ni_C6H12O6 = (F*(p_C6H12O6/100.))/m_C6H12O6 ;      # initial moles of glucose\n",
      "\n",
      "n_un = 9. \n",
      "n_ie  = 9. \n",
      "d_o_f =  n_un-n_ie\n",
      "print 'Number of degree of freedom for the given system is  %i '%d_o_f\n",
      "\n",
      "ur_C6H12O6 =  90. ;                        #[kg]\n",
      "pr_CO2 = 120. ;                            #[kg]\n",
      "nf_C6H12O6 = ur_C6H12O6/m_C6H12O6 ;        # [kmoles]\n",
      "nf_CO2 = pr_CO2/m_CO2 ;                    # [kmoles]\n",
      "\n",
      "\n",
      "a = matrix([[-1,-1],[2,0]]);               # matrix formed by coefficients of unknowns \n",
      "b = matrix([[(nf_C6H12O6-ni_C6H12O6)],[nf_CO2]]);      #matrix formed by constant\n",
      "x = a**(-1)*b;                             #matrix formed by solution\n",
      " \n",
      "print ' Extent of reaction 1 is %.3f kg moles reacting '%x[0]\n",
      "print ' Extent of reaction 2 is %.3f kg moles reacting '%x[1]\n",
      "\n",
      "nf_H2O = ni_H2O+0*x[0] +2*x[1];              \n",
      "nf_C2H5OH = 0+2*x[0]+0*x[1];\n",
      "nf_C2H3CO2H = 0+0*x[0]+2*x[1]\n",
      "total_wt = m_H2O*nf_H2O + m_C6H12O6*nf_C6H12O6 + m_CO2*nf_CO2 + \\\n",
      "m_C2H3CO2H*nf_C2H3CO2H + m_C2H5OH*nf_C2H5OH;\n",
      "mp_C2H5OH = (m_C2H5OH*nf_C2H5OH*100)/total_wt \n",
      "mp_C2H3CO2H = (m_C2H3CO2H*nf_C2H3CO2H*100)/total_wt\n",
      "\n",
      "print '  Mass percent of ethanol in broth at end of fermentation process is  %.1f %%'%mp_C2H5OH\n",
      "print ' Mass percent of propenoic acid  in broth at end of fermentation process is  %.1f %%'%mp_C2H3CO2H"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Number of degree of freedom for the given system is  0 \n",
        " Extent of reaction 1 is 1.364 kg moles reacting \n",
        " Extent of reaction 2 is 0.802 kg moles reacting \n",
        "  Mass percent of ethanol in broth at end of fermentation process is  3.1 %\n",
        " Mass percent of propenoic acid  in broth at end of fermentation process is  2.9 %\n"
       ]
      }
     ],
     "prompt_number": 14
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      " Example 10.5  Page no. 279\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "from numpy import matrix\n",
      "\n",
      "# Variables \n",
      "\n",
      "print '(a)Solution of Example 10.1 using element balance'\n",
      "F = 100                   # feed to the reactor-[g mol]\n",
      "\n",
      "CH4 =  0.4*F ;             # [g mol]\n",
      "Cl2 =  0.5*F ;             # [g mol]\n",
      "N2 =  0.1*F                #[g mol]\n",
      "\n",
      "n_un = 10                  # Number of unknowns in the given problem(excluding extent of reaction)\n",
      "n_ie  = 10 ;               # Number of independent equations\n",
      "d_o_f =  n_un-n_ie         # Number of degree of freedom\n",
      "print '    Number of degree of freedom for the given system is  %i '%d_o_f\n",
      "\n",
      "nio_CH4 = CH4 ;            #[g mol CH4]\n",
      "vi_CH4 = -1;               # coefficint of CH4\n",
      "\n",
      "# Calculation and  Result\n",
      "ex_CH4 = -(nio_CH4)/vi_CH4 ;      # Max. extent of reaction based on CH4\n",
      "\n",
      "\n",
      "nio_Cl2 =  Cl2             #[g mol Cl2]\n",
      "vi_Cl2 = -1                # coefficint of Cl2\n",
      "ex_Cl2 = -(nio_Cl2)/vi_Cl2       # Max. extent of reaction based on Cl2\n",
      "\n",
      "if (ex_Cl2 > ex_CH4 ):    \n",
      "    print '    CH4 is limiting reactant  '\n",
      "else:\n",
      "    print '  (b) Cl2 is limiting reactant  '\n",
      "\n",
      "cn_CH4 =  67.0/100          # percentage conversion of CH4(limiting reagent)\n",
      "no_CH4 = CH4-(cn_CH4*CH4) ; #CH4 in product -[g mol]\n",
      "\n",
      "no_N2 = N2                  #N2 in product -[g mol]\n",
      "\n",
      "C = CH4 ;                   #moles of CH4  =  moles of C (by molecular formula)\n",
      "H = 4*CH4 ;                 # moles of H  =  4*moles of CH4 (by molecular formula)\n",
      "Cl = 2*Cl2 ;                # moles of Cl = 2* moles of Cl2 (by molecular formula)\n",
      "\n",
      "a = matrix([[0,0,1],[0,1,3],[2,1,1]])            # matrix formed by coefficients of unknowns \n",
      "b = matrix([[C-no_CH4*1],[H-4*no_CH4],[Cl]]) ;   #matrix formed by constant\n",
      "x = a**(-1)*b ;                                  # matrix of solution\n",
      "\n",
      "print 'Composition of product stream in %% g mol of products'\n",
      "print 'Product            Percentage g mol'\n",
      "print 'CH4                %.1f%% g mol'%no_CH4\n",
      "print 'Cl2                %.1f%% g mol'%x[0]\n",
      "print 'CH3Cl              %.1f%% g mol'%x[2]\n",
      "print 'HCl                %.1f%% g mol'%x[1]\n",
      "print 'N2                 %.1f%% g mol'%no_N2\n",
      "\n",
      "#(b)Solution of Example 10.3 using element balance\n",
      "print '______________________________________________________________________________'\n",
      "print '(b)Solution of Example 10.3 using element balance'\n",
      "\n",
      "F = 1              #CH3OH -[gmol]\n",
      "yld = 75           #[%]\n",
      "cnv = 90 ;         #conversion of methanol-[%]\n",
      "\n",
      "f_O2 = 0.21 ;      # mol. fraction of O2\n",
      "f_N2 = 0.79 ;      # mol. fraction of N2\n",
      "n_O2 = 2*((1/2.0)*F)           # entering oxygen -[g mol]\n",
      "air =  n_O2/f_O2 ;             # Amount of air entering\n",
      "n_N2 = air-n_O2                # entering nitrogen -[g mol]\n",
      "\n",
      "n_un = 9           # Number of unknowns in the given problem(excluding extent of reactions)\n",
      "n_ie  = 9 ;        # Number of independent equations\n",
      "d_o_f =  n_un-n_ie      # Number of degree of freedom\n",
      "\n",
      "print '  Number of degree of freedom for the given system is  %i '%d_o_f\n",
      "\n",
      "no_N2 = n_N2        # inert ,terefore input  =  output\n",
      "C = 1*F             #moles of C  =  moles of CH3OH (by molecular formula)\n",
      "H = 4*F ;           #moles of H  =  4*moles of CH3OH (by molecular formula)\n",
      "O =  1*F +2*n_O2;   # moles of O =  1*moles of CH3OH + O in air\n",
      "no_CH2O = yld/100.0 #[g mol]\n",
      "no_CH3OH = F-((cnv/100.0)*F)      # [g mol]\n",
      "\n",
      "a = matrix([[0,0,1],[0,2,0],[2,1,1]])            # matrix formed by coefficients of unknowns \n",
      "b = matrix([[(C-(no_CH3OH*1+no_CH2O*1))],[(H-(4*no_CH3OH+2*no_CH2O))],[(O-(no_CH3OH*1+no_CH2O*1))]]);\n",
      "a = a.I\n",
      "x = a * b ;                                      # matrix of solution\n",
      "\n",
      "P = no_CH2O+no_CH3OH+no_N2+x[0]+x[1]+x[2];\n",
      "\n",
      "# Composition of product\n",
      "y_CH3OH = (no_CH3OH/P )*100;        # mole %\n",
      "y_O2 = ((x[0])/P)*100;              # mole %\n",
      "y_CH2O = (no_CH2O/P)*100 ;          # mole %\n",
      "y_CO = (x[2]/P)*100 ;               # mole %\n",
      "y_H2O = (x[1]/P)*100 ;              # mole % \n",
      "y_N2 = (no_N2/P )*100;              # mole %\n",
      "\n",
      "\n",
      "print 'Composition of product'\n",
      "print 'Component        mole percent'\n",
      "print ' CH3OH           %.1f %%'%y_CH3OH\n",
      "print ' O2              %.1f %%'%y_O2\n",
      "print ' CH2O            %.1f %%'%y_CH2O\n",
      "print ' CO              %.1f %%'%y_CO\n",
      "print ' H2O             %.1f %%'%y_H2O\n",
      "print ' N2              %.1f %%'%y_N2\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a)Solution of Example 10.1 using element balance\n",
        "    Number of degree of freedom for the given system is  0 \n",
        "    CH4 is limiting reactant  \n",
        "Composition of product stream in %% g mol of products\n",
        "Product            Percentage g mol\n",
        "CH4                13.2% g mol\n",
        "Cl2                23.2% g mol\n",
        "CH3Cl              26.8% g mol\n",
        "HCl                26.8% g mol\n",
        "N2                 10.0% g mol\n",
        "______________________________________________________________________________\n",
        "(b)Solution of Example 10.3 using element balance\n",
        "  Number of degree of freedom for the given system is  0 \n",
        "Composition of product\n",
        "Component        mole percent\n",
        " CH3OH           1.6 %\n",
        " O2              7.6 %\n",
        " CH2O            11.9 %\n",
        " CO              2.4 %\n",
        " H2O             16.7 %\n",
        " N2              59.8 %\n"
       ]
      }
     ],
     "prompt_number": 15
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      " Example 10.6  Page no. 281\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "from numpy import matrix\n",
      "\n",
      "# Variables \n",
      "P=100. ;                   #Product from the reactor-[g mol]\n",
      "C3H8 = 0.195*P ;           # [g mol]\n",
      "C4H10 = 0.594*P ;          # [g mol]\n",
      "C5H12 = 0.211*P;           # [g mol]\n",
      "\n",
      "n_un = 3 ;                 # Number of unknowns in the given problem(excluding extent of reaction)\n",
      "n_ie  = 3 ;                # Number of independent equations\n",
      "\n",
      "# Calculation and Result\n",
      "d_o_f =  n_un-n_ie ;       # Number of degree of freedom\n",
      "print 'Number of degree of freedom for the given system is  %i '%d_o_f\n",
      "\n",
      "C = C3H8*3+C4H10*4+C5H12*5        # moles of C on product side\n",
      "H = C3H8*8+C4H10*10+C5H12*12 ;    # moles of H on product side\n",
      "\n",
      "a = matrix([[8,0],[18,2]])        # matrix formed by coefficients of unknowns \n",
      "b = matrix([[C],[H]]) ;           #matrix formed by constant\n",
      "a = a.I\n",
      "x = a*b ;                         # matrix of solution\n",
      "\n",
      "R = x[1]/x[0] ;                   # Ratio of H2 consumed to C8H18 reacted  = G/F\n",
      "print ' Molar ratio of H2 consumed to C8H18 reacted is %.3f  '%R"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Number of degree of freedom for the given system is  0 \n",
        " Molar ratio of H2 consumed to C8H18 reacted is 0.992  \n"
       ]
      }
     ],
     "prompt_number": 16
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      " Example 10.7   Page no. 286\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "# Variables \n",
      "C3H8 = 20                #C3H8 burned in a test-[kg]\n",
      "m_C3H8 = 44.09           # mol. wt . of 1 kmol C3H8\n",
      "cf_O2 = 5                # coefficient of O2 in given reaction\n",
      "air = 400                # Air given -[kg]\n",
      "m_air = 29.0             # molecular wt. of  1kmol air-[kg]\n",
      "O2p = 21                 # percentage of O2 in air-[%]\n",
      "p_CO2 =  44              # CO2 produced -[kg]\n",
      "p_CO = 12                # CO produced -[kg]\n",
      "\n",
      "# Calculation \n",
      "O2 = (air*O2p/100.0)/(m_air)      # amount of entering O2-[k mol]\n",
      "rqO2 = (C3H8*cf_O2)/(m_C3H8)      # Required O2 for given reaction\n",
      "ex_air = ((O2-rqO2)*100.0)/rqO2 ;  # Excess air percent-[%]\n",
      "\n",
      "# Result\n",
      "print 'Excess air percent is %.0f %%.'%ex_air"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Excess air percent is 28 %.\n"
       ]
      }
     ],
     "prompt_number": 17
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      " Example 10.8  Page no. 287\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "# Variables\n",
      "F = 16.               # feed of CH4 -[kg]\n",
      "CH4p = 100.           #[%]\n",
      "m_CH4 = 16. ;         # mass of kmol of CH4-[kg]\n",
      "mol_CH4 = (F*CH4p/100)/m_CH4         #k moles of CH4 in feed-[kmol]\n",
      "air = 300. ;                         # Air given -[kg]\n",
      "m_air = 29.                          # molecular wt. of  1kmol air-[kg]\n",
      "mol_air = air/m_air ;                # kmoles of air-[kmol]\n",
      "O2p = 21.                            # percentage of O2 in air-[%]\n",
      "O2 = (mol_air*O2p/100)               # amount of entering O2-[k mol]\n",
      "N2 = mol_air-O2 ;                    # amount of entering N2-[k mol]\n",
      "\n",
      "n_un = 8.                   # Number of unknowns in the given problem(excluding extent of reactions)\n",
      "n_ie  = 8.                  # Number of independent equations\n",
      "d_o_f =  n_un-n_ie          # Number of degree of freedom\n",
      "print 'Number of degree of freedom for the given system is  %i '%d_o_f\n",
      "\n",
      "# Product composition analysis using element balance of C,H,O and N\n",
      "p_N2 = N2                   # inert \n",
      "C_in = 1*mol_CH4 ;          # kmoles of carbon in input-[kmol]\n",
      "H_in = 4*mol_CH4            # kmoles of hydrogen in input-[kmol]\n",
      "O_in = 2*O2 ;               # kmoles of oxygen in input-[kmol]\n",
      "p_CO2 = C_in/1 ;            #kmoles of  CO2 in product obtained  by carbon balance-[kmol]\n",
      "p_H2O = H_in/2 ;            #kmoles of  H2O in product obtained  by hydrogen balance-[kmol]\n",
      "p_O2 = (O_in-(2*p_CO2+p_H2O))/2         #kmoles of  O2 in product obtained  by oxygen balance-[kmol]\n",
      "p_CH4 = 0                   # Complete reaction occurs\n",
      "P = p_CH4 + p_N2+  p_CO2 + p_H2O + p_O2;\n",
      "\n",
      "y_N2 = p_N2*100/P ;         #[mol %]\n",
      "y_CO2 = p_CO2*100/P ;       #[mol %]\n",
      "y_H2O = p_H2O*100/P ;       #[mol %]\n",
      "y_O2 = p_O2*100/P ;         #[mol %]\n",
      "y_CH4 = p_CH4*100/P ;       #[mol %]\n",
      "\n",
      "# Results\n",
      "print 'Composition of product'\n",
      "print 'Component        mole percent'\n",
      "print ' CH4             %.1f %%'%y_CH4\n",
      "print ' O2              %.1f %%'%y_O2\n",
      "print ' CO2             %.1f %%'%y_CO2\n",
      "print ' H2O             %.1f %%'%y_H2O\n",
      "print ' N2              %.1f %%'%y_N2"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Number of degree of freedom for the given system is  0 \n",
        "Composition of product\n",
        "Component        mole percent\n",
        " CH4             0.0 %\n",
        " O2              1.5 %\n",
        " CO2             8.8 %\n",
        " H2O             17.6 %\n",
        " N2              72.0 %\n"
       ]
      }
     ],
     "prompt_number": 18
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      " Example 10.9  Page no. 290\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "# Variables\n",
      "F = 100.                 # feed of coal -[lb]\n",
      "C = 83.05                #[%]\n",
      "H = 4.45                 #[%]\n",
      "O = 3.36 ;               # [%]\n",
      "N = 1.08                 # [%]\n",
      "S = 0.70                 #[%]\n",
      "ash = 7.36               #[%]\n",
      "H2O = 3.9 ;              #[%]\n",
      "w_C = 12. ;              # mol. wt. of C\n",
      "w_H =  1.008;            #mol. wt. of H\n",
      "w_O = 16. ;              # mol. wt. of O\n",
      "w_N = 14. ;              # mol. wt. of N\n",
      "w_S = 32.  ;             #mol. wt. of S\n",
      "\n",
      "CO2 =  15.4              #[%]\n",
      "CO = 0.0                 #[%]\n",
      "O2 = 4.0 ;               # [%]\n",
      "N2 = 80.6                #[%]\n",
      "ash_R = 86               #[%]\n",
      "odr = 14                 #[%]\n",
      "\n",
      "H2O_air =  .0048         # [lb H2O/lb dry air]\n",
      "m_air = 29.              # mol. wt. of air\n",
      "mf_O2 = 0.21             # mole fraction of  O2 in air\n",
      "mf_N2 = 0.79             #mole fraction of  N2 in air\n",
      "m_H2O =  18.             # mol. wt. of H2O\n",
      "\n",
      "#Calculations\n",
      "H_cl = (H2O*2)/m_H2O ;   # lb mol of H in coal moisture\n",
      "O_cl = H_cl/2. ;         # lb mol of O in coal moisture\n",
      "\n",
      "H_air = (H2O_air*m_air )/m_H2O      # lb mol of H per lb mol air\n",
      "O_air = H_air/2.                    # lb mol of O per lb mol  air \n",
      "\n",
      "# Ash balance to get refuse(R)\n",
      "R = ash/(ash_R/100.)              # Refuse-[lb]\n",
      "\n",
      "pub_cl = 14.                      # percentage of unburned coal in refuse-[%]\n",
      "ub_cl =  (14/100.)*R              # amount of unburned coal in refuse\n",
      "C_p = (C/(100-ash))*ub_cl         #  C in unburned coal-[lb]\n",
      "H_p = (H/(100-ash))*ub_cl ;       #  H in unburned coal-[lb]\n",
      "O_p =  (O/(100-ash))*ub_cl ;      #  O in unburned coal-[lb]\n",
      "N_p =  (N/(100-ash))*ub_cl ;      #  N in unburned coal-[lb]\n",
      "S_p =  (S/(100-ash))*ub_cl ;      #  S in unburned coal-[lb]\n",
      "mol_C =  C_p/w_C;                 # lb mol of C\n",
      "mol_H = H_p/w_H ;                 # lb mol of H\n",
      "mol_N = N_p/w_N ;                 # lb mol of N\n",
      "mol_O = O_p/w_O ;                 # lb mol of O\n",
      "mol_S = S_p/w_S ;                 # lb mol of S \n",
      "\n",
      "\n",
      "n_un = 4.                         # Number of unknowns in the given problem(excluding extent of reactions)\n",
      "n_ie  = 4.                        # Number of independent equations\n",
      "d_o_f =  n_un-n_ie                # Number of degree of freedom\n",
      "print 'Number of degree of freedom for the given system is  %i '%d_o_f\n",
      "\n",
      "#Using element balance of C+S, N& H\n",
      "P = (C/w_C + S/w_S - (mol_C+mol_S ))/.154        # mol of stack gas-[lb mol]\n",
      "A = (2*P*.806 +2*mol_N-N/w_N)/(2*mf_N2)          # mol of air -[lb mol]\n",
      "W = (H/w_H +H_cl+H_air*A-mol_H)/2                # moles of exit water-[lb mol]\n",
      "print ' Moles of stack gas(P)   -      %.1f  lb mol'%P\n",
      "print ' Moles of air (A)        -      %.1f lb mol '%A\n",
      "print ' Moles of exit water(W)  -      %.1f lb mol '%W\n",
      "\n",
      "C_req =  (C/w_C)/1\n",
      "H_req = (H/w_H)/4 \n",
      "N_req = 0                   # inert\n",
      "O_req = (O/w_O)/2 \n",
      "S_req = (S/w_S)/1 \n",
      "total_O2_req =  C_req+H_req+N_req+O_req +S_req \n",
      "O2_in = A*mf_O2             # O2 entering in air\n",
      "ex_air = 100*((O2_in-total_O2_req)/total_O2_req)\n",
      "\n",
      "# Results\n",
      "print ' Excess air is %.1f %%.'%ex_air"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Number of degree of freedom for the given system is  0 \n",
        " Moles of stack gas(P)   -      44.5  lb mol\n",
        " Moles of air (A)        -      45.4 lb mol \n",
        " Moles of exit water(W)  -      2.6 lb mol \n",
        " Excess air is 16.8 %.\n"
       ]
      }
     ],
     "prompt_number": 19
    },
    {
     "cell_type": "code",
     "collapsed": true,
     "input": [],
     "language": "python",
     "metadata": {},
     "outputs": []
    }
   ],
   "metadata": {}
  }
 ]
}