1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 11 - The steam engine"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 1: pg 326"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Example 11.1\n",
" (a) The bore of the cylinder is (mm) = 239.0\n",
" (b) The piston stroke is (mm) = 299.0\n",
" (c) The speed of the engine is (rev/min) = 301.1\n"
]
}
],
"source": [
"#pg 326\n",
"print('Example 11.1')\n",
"import math\n",
"# aim : To determine the \n",
"# (a) bore of the cylinder\n",
"# (b) piston stroke\n",
"# (c) speed of the engine\n",
"\n",
"# Given values\n",
"P_req = 60.;# power required to develop, [kW]\n",
"P = 1.25;# boiler pressure, [MN/m^2]\n",
"Pb = .13;# back pressure, [MN/m^2]\n",
"cut_off = .3;# [stroke]\n",
"k = .82;# diagram factor\n",
"n = .78;# mechanical efficiency\n",
"LN = 3.;# mean piston speed, [m/s]\n",
"\n",
"# solution\n",
"# (a)\n",
"r = 1/cut_off;# expansion ratio\n",
"Pm = P/r*(1+math.log(r))-Pb;# mean effective pressure, [MN/m^2]\n",
"P_ind = P_req/n;# Actual indicated power developed, [kW]\n",
"P_the = P_ind/k;# Theoretical indicated power developed, [kW]\n",
"\n",
"# using indicated_power=Pm*LN*A\n",
"# Hence\n",
"A = P_the/(Pm*LN)*10**-3;# piston area,[m^2]\n",
"d = math.sqrt(4*A/math.pi)*10**3;# bore ,[mm]\n",
"print ' (a) The bore of the cylinder is (mm) = ',round(d)\n",
"\n",
"# (b)\n",
"# given that stroke is 1.25 times bore\n",
"L = 1.25*d;# [mm]\n",
"print ' (b) The piston stroke is (mm) = ',round(L)\n",
"\n",
"# (c)\n",
"# LN=mean piston speed, where L is stroke in meter and N is 2*rev/s,(since engine is double_acting)\n",
"# hence\n",
"rev_per_sec = LN/(2*L*10**-3);# [rev/s]\n",
"\n",
"rev_per_min = rev_per_sec*60;# [rev/min]\n",
"print ' (c) The speed of the engine is (rev/min) = ',round(rev_per_min,1)\n",
"\n",
"# End\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2: pg 328"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Example 11.2\n",
" (a) The diameter of the cylinder is (mm) = 189.0\n",
" (b) The piston stroke is (mm) = 227.2\n",
" (c) The actual steam consumption/h is (kg) = 514.3\n",
" The indicated thermal efficiency is (percent) = 6.8\n",
"The answers are a bit different due to rounding off error in textbook\n"
]
}
],
"source": [
"#pg 328\n",
"print('Example 11.2')\n",
"import math\n",
"# aim : To determine the \n",
"# (a) the diameter of the cylinder\n",
"# (b) piston stroke\n",
"# (c) actual steam consumption and indicated thermal efficiency\n",
"\n",
"# Given values\n",
"P = 900.;# inlet pressure, [kN/m^2]\n",
"Pb = 140.;# exhaust pressure, [kN/m^2]\n",
"cut_off =.4;# [stroke]\n",
"k = .8;# diagram factor\n",
"rs = 1.2;# stroke to bore ratio\n",
"N = 4.;# engine speed, [rev/s]\n",
"ip = 22.5;# power output from the engine, [kW]\n",
"\n",
"# solution\n",
"# (a)\n",
"r = 1/cut_off;# expansion ratio\n",
"Pm = P/r*(1+math.log(r))-Pb;# mean effective pressure, [kN/m^2]\n",
"Pm = Pm*k;# actual mean effective pressure, [kN/m^2]\n",
"\n",
"# using ip=Pm*L*A*N\n",
"# and L=r*d; where L is stroke and d is bore\n",
"d = (ip/(Pm*rs*math.pi/4.*2*N))**(1./3);# diameter of the cylinder, [m]\n",
"\n",
"print ' (a) The diameter of the cylinder is (mm) = ',round(d*1000)\n",
"\n",
"# (b)\n",
"L = rs*d;# stroke, [m]\n",
"print ' (b) The piston stroke is (mm) = ',round(L*1000,1)\n",
"\n",
"# (c)\n",
"SV = math.pi/4*d**2*L;# stroke volume, [m^3]\n",
"V = SV*cut_off*2*240*60;# volume of steam consumed per hour, [m^3]\n",
"v = .2148;# specific volume at 900 kN/m^2, [m^3/kg]\n",
"SC = V/v;# steam consumed/h, [kg]\n",
"ASC = 1.5*SC;# actual steam consumption/h, [kg]\n",
"print ' (c) The actual steam consumption/h is (kg) = ',round(ASC,1)\n",
"\n",
"m_dot = ASC/3600.;# steam consumption,[kg/s] \n",
"# from steam table\n",
"hg = 2772.1;# specific enthalpy of inlet steam, [kJ/kg]\n",
"hfe = 458.4;# specific liquid enthalpy at exhaust pressure, [kJ/kg]\n",
"\n",
"ITE = ip/(m_dot*(hg-hfe));# indicated thermal efficiency\n",
"print ' The indicated thermal efficiency is (percent) = ',round(ITE*100,1)\n",
"\n",
"print 'The answers are a bit different due to rounding off error in textbook'\n",
"# End\n",
" "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 3: pg 330"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Example 11.3\n",
" (a) The diagram factor is = 0.85\n",
" (b) The indicated thermal efficiency is (percent) = 15.0\n"
]
}
],
"source": [
"#pg 330\n",
"print('Example 11.3');\n",
"\n",
"# aim : To determine\n",
"# (a) the diagram factor\n",
"# (b) the indicated thermal efficiency of the engine\n",
"import math\n",
"# given values\n",
"d = 250.*10**-3;# cylinder diameter, [m]\n",
"L = 375.*10**-3;# length of stroke, [m]\n",
"P = 1000.;# steam pressure , [kPa]\n",
"x = .96;# dryness fraction of steam\n",
"Pb = 55;# exhaust pressure, [kPa]\n",
"r = 6.;# expansion ratio\n",
"ip = 45.;# indicated power developed, [kW]\n",
"N = 3.5;# speed of engine, [rev/s]\n",
"m = 460.;# steam consumption, [kg/h]\n",
"\n",
"# solution\n",
"# (a)\n",
"Pm = P/r*(1+math.log(r))-Pb;# [kN/m**3]\n",
"A = math.pi*(d)**2/4;# area, [m**2]\n",
"tip = Pm*L*A*N*2;# theoretical indicated power, [kW]\n",
"k = ip/tip;# diagram factor\n",
"print ' (a) The diagram factor is = ',round(k,2)\n",
"\n",
"# (b)\n",
"# from steam table at 1 MN/m**2\n",
"hf = 762.6;# [kJ/kg]\n",
"hfg = 2013.6;# [kJ/kg]\n",
"# so \n",
"h1 = hf+x*hfg;# specific enthalpy of steam at 1MN/m**2, [kJ/kg]\n",
"# minimum specific enthalpy in engine at 55 kPa \n",
"hf = 350.6;# [kJ/kg]\n",
"# maximum energy available in engine is\n",
"h = h1-hf;# [kJ/kg]\n",
"ITE = ip/(m*h/3600)*100;# indicated thermal efficiency\n",
"print ' (b) The indicated thermal efficiency is (percent) = ',round(ITE)\n",
"\n",
"# End\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4: pg 333"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Example 11.4\n",
"The steam consumption is (kg/h) = 213.0\n"
]
}
],
"source": [
"#pg 333\n",
"print('Example 11.4');\n",
"\n",
"# aim : To determine\n",
"# steam consumption\n",
"\n",
"# given values\n",
"P1 = 11.;# power, [kW]\n",
"m1 = 276.;# steam use/h when developing power P1,[kW]\n",
"ip = 8.;# indicated power output, [kW]\n",
"B = 45.;# steam used/h at no load, [kg]\n",
"\n",
"# solution\n",
"# using graph of Fig.11.9 \n",
"A = (m1-B)/P1;# slop of line, [kg/kWh]\n",
"W = A*ip+B;# output, [kg/h]\n",
"#results\n",
"print 'The steam consumption is (kg/h) = ',W\n",
"\n",
"# End\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5: pg 338"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Example 11.5\n",
" (a) The intermediate pressure is (kN/m^2) = 455.0\n",
" (b) The indicated power is (kW) = 110.5\n",
" (c) The steam consumption of the engine is (kg/h) = 1016.0\n"
]
}
],
"source": [
"#pg 338\n",
"print('Example 11.5');\n",
"from scipy.optimize import brentq\n",
"# aim : To determine\n",
"# (a) the intermediate pressure\n",
"# (b) the indicated power output\n",
"# (c) the steam consumption of the engine\n",
"import math\n",
"# given values\n",
"P1 = 1400.;# initial pressure, [kN/m**2]\n",
"x = .9;# dryness fraction\n",
"P5 = 35.;# exhaust pressure\n",
"k = .8;# diagram factor of low-pressure cylindaer\n",
"L = 350.*10**-3;# stroke of both the cylinder, [m]\n",
"dhp = 200.*10**-3;# diameter of high pressure cylinder, [m]\n",
"dlp = 300.*10**-3;# diameter of low-pressure cylinder, [m]\n",
"N = 300.;# engine speed, [rev/min]\n",
"\n",
"# solution\n",
"# taking reference Fig.11.13\n",
"Ahp = math.pi/4*dhp**2;# area of high-pressure cylinder, [m**2]\n",
"Alp = math.pi/4*dlp**2;# area of low-pressure cylinder, [m**2]\n",
"# for equal initial piston loads\n",
"# (P1-P7)Ahp=(P7-P5)Alp\n",
"def f(P7):\n",
"\treturn (P1-P7)*Ahp - (P7-P5)*Alp\n",
"#deff('[x]=f(P7)','x=(P1-P7)*Ahp-(P7-P5)*Alp');\n",
"P7 = brentq(f,0,1000);# intermediate pressure, [kN/m**2]\n",
"print ' (a) The intermediate pressure is (kN/m^2) = ',P7\n",
"\n",
"# (b)\n",
"V6 = Ahp*L;# volume of high-pressure cylinder, [m**3]\n",
"P2 = P1;\n",
"P6 = P7;\n",
"# using P2*V2=P6*V6\n",
"V2 = P6*V6/P2; # [m**3]\n",
"V1 = Alp*L;# volume of low-pressure cylinder, [m**3]\n",
"R = V1/V2;# expansion ratio\n",
"Pm = P1/R*(1+math.log(R))-P5;# effective pressure of low-pressure cylinder, [kn/m**2]\n",
"Pm = k*Pm;# actual effective pressure, [kN/m**2]\n",
"ip = Pm*L*Alp*N*2/60.;# indicated power, [kW]\n",
"print ' (b) The indicated power is (kW) = ',round(ip,1)\n",
"\n",
"# (c) \n",
"COV = V1/ R;# cut-off volume in high-pressure cylinder, [m**3]\n",
"V = COV*N*2*60;# volume of steam admitted/h\n",
"# from steam table\n",
"vg = .1407;# [m**3/kg]\n",
"AV = x*vg;# specific volume of admission steam, [m**3/kg]\n",
"m = V/AV;# steam consumption, [kg/h]\n",
"print ' (c) The steam consumption of the engine is (kg/h) = ',round(m)\n",
"\n",
"# End \n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 6: pg 340"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Example 11.6\n",
" (a) The indicated power is (kW) = 440.0\n",
" (b) The diameter of high-pressure cylinder is (mm) = 383.0\n",
" (c) The intermediate opressure is (kN/m^2) = 338.0\n"
]
}
],
"source": [
"#pg 340\n",
"print('Example 11.6');\n",
"\n",
"# aim : To determine\n",
"# (a) the indicated power output\n",
"# (b) the diameter of high-pressure cylinder of the engine\n",
"# (c) the intermediate pressure\n",
"import math\n",
"from math import sqrt, exp, log, pi\n",
"# given values\n",
"P = 1100.;# initial pressure, [kN/m**2]\n",
"Pb = 28.;# exhaust pressure\n",
"k = .82;# diagram factor of low-pressure cylindaer\n",
"L = 600.*10**-3;# stroke of both the cylinder, [m]\n",
"dlp = 600.*10**-3;# diameter of low-pressure cylinder, [m]\n",
"N = 4.;# engine speed, [rev/s]\n",
"R = 8.;# expansion ratio\n",
"\n",
"# solution\n",
"# taking reference Fig.11.13\n",
"# (a)\n",
"Pm = P/R*(1+log(R))-Pb;# effective pressure of low-pressure cylinder, [kn/m**2]\n",
"Pm = k*Pm;# actual effective pressure, [kN/m**2]\n",
"Alp = pi/4*dlp**2;# area of low-pressure cylinder, [m**2]\n",
"ip = Pm*L*Alp*N*2;# indicated power, [kW]\n",
"print ' (a) The indicated power is (kW) = ',round(ip)\n",
"\n",
"# (b)\n",
"# work done by both cylinder is same as area of diagram\n",
"w = Pm*Alp*L;# [kJ]\n",
"W = w/2;# work done/cylinder, [kJ]\n",
"V2 = Alp*L/8;# volume, [m63]\n",
"P2 = P;# [kN/m**2]\n",
"# using area A1267=P2*V2*log(V6/V2)=W\n",
"V6 = V2*exp(W/(P2*V2));# intermediate volume, [m**3]\n",
"# using Ahp*L=%pi/4*dhp**2*L=V6\n",
"dhp = sqrt(V6*4/L/pi);# diameter of high-pressure cylinder, [m]\n",
"print ' (b) The diameter of high-pressure cylinder is (mm) = ',round(dhp*1000)\n",
"\n",
"# (c)\n",
"# using P2*V2=P6*V6\n",
"P6 = P2*V2/V6; # intermediate pressure, [kN/m**2]\n",
"print ' (c) The intermediate opressure is (kN/m^2) = ',round(P6)\n",
"\n",
"# End \n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 7: pg 342"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Example 11.7\n",
" (a) The engine speed is (rev/s) = 6.52\n",
" (b) The diameter of the high pressure cylinder is (mm) = 179.0\n"
]
}
],
"source": [
"#pg 342\n",
"print('Example 11.7');\n",
"\n",
"# aim : To determine\n",
"# (a) The speed of the engine\n",
"# (b) the diameter of the high pressure cylinder\n",
"import math\n",
"from math import sqrt,log, exp,pi\n",
"# given values\n",
"ip = 230.;# indicated power, [kW]\n",
"P = 1400.;# admission pressure, [kN/m**2]\n",
"Pb = 35.;# exhaust pressure, [kN/m**2]\n",
"R = 12.5;# expansion ratio\n",
"d1 = 400.*10**-3;# diameter of low pressure cylinder, [m]\n",
"L = 500.*10**-3;# stroke of both the cylinder, [m]\n",
"k = .78;# diagram factor\n",
"rv = 2.5;# expansion ratio of high pressure cylinder\n",
"\n",
"# solution\n",
"# (a)\n",
"Pm = P/R*(1+log(R))-Pb;# mean effective pressure in low pressure cylinder, [kN/m**2]\n",
"ipt = ip/k;# theoretical indicated power, [kw]\n",
"# using ip=Pm*L*A*N\n",
"A = pi/4*d1**2;# area , [m**2]\n",
"N = ipt/(Pm*L*A*2);# speed, [rev/s]\n",
"print ' (a) The engine speed is (rev/s) = ',round(N,2)\n",
"\n",
"# (b)\n",
"Vl = A*L;# volume of low pressure cylinder, [m**3]\n",
"COV = Vl/R;# cutt off volume of hp cylinder, [m**3]\n",
"V = COV*rv;# total volume, [m**3]\n",
"\n",
"# V = %pi/4*d**2*L, so\n",
"d = sqrt(4*V/pi/L);# diameter of high pressure cylinder, [m]\n",
"print ' (b) The diameter of the high pressure cylinder is (mm) = ',round(d*1000)\n",
"\n",
"# End\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 8: pg 344"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Example 11.8\n",
" (a) The actual mean effective pressure referred to LP cylinder is (kN/m^2) = 234.1\n",
" The hypothetical mean effective pressure referred to LP cylinder is (kN/m^2) = 287.0\n",
" (b) The overall diagram factor is = 0.814\n",
" (c) The indicated power is (kW) = 143.0\n"
]
}
],
"source": [
"#pg 344\n",
"print('Example 11.8');\n",
"\n",
"# aim : To determine\n",
"# (a) the actual and hypothetical mean effective pressures referred to the low-pressure cylinder\n",
"# (b) the overall diagram factor\n",
"# (c) the indicated power \n",
"import math\n",
"from math import pi,sqrt,log\n",
"# given values\n",
"P = 1100.;# steam supply pressure, [kN/m**2]\n",
"Pb = 32.;# back pressure, [kN/m**2]\n",
"d1 = 300.*10**-3;# cylinder1 diameter, [m]\n",
"d2 = 600.*10**-3;# cylinder2 diameter, [m]\n",
"L = 400.*10**-3;# common stroke of both cylinder, [m]\n",
"\n",
"A1 = 12.5;# average area of indicated diagram for HP, [cm**2]\n",
"A2 = 11.4;# average area of indicated diagram for LP, [cm**2]\n",
"\n",
"P1 = 270.;# indicator calibration, [kN/m**2/ cm]\n",
"P2 = 80.;# spring calibration, [kN/m**2/ cm]\n",
"N = 2.7;# engine speed, [rev/s]\n",
"l = .75;# length of both diagram, [m]\n",
"\n",
"# solution\n",
"# (a)\n",
"# for HP cylinder\n",
"Pmh = P1*A1/7.5;# [kN/m**2]\n",
"F = Pmh*pi/4*d1**2;# force on HP, [kN]\n",
"PmH = Pmh*(d1/d2)**2;# pressure referred to LP cylinder, [kN/m**2]\n",
"PmL = P2*A2/7.5;# pressure for LP cylinder, [kN/m**2]\n",
"PmA = PmH+PmL;# actual effective pressure referred to LP cylinder, [kN/m**2]\n",
"\n",
"Ah = pi/4*d1**2;# area of HP cylinder, [m**2]\n",
"Vh = Ah*L;# volume of HP cylinder, [m**3]\n",
"CVh = Vh/3;# cut-off volume of HP cylinder, [m**3]\n",
"Al = pi/4*d2**2;# area of LP cylinder, [m**2]\n",
"Vl = Al*L;# volume of LP cylinder, [m**3]\n",
"\n",
"R = Vl/CVh;# expansion ratio\n",
"Pm = P/R*(1+log(R))-Pb;# hypothetical mean effective pressure referred to LP cylinder, [kN/m**2]\n",
"\n",
"print ' (a) The actual mean effective pressure referred to LP cylinder is (kN/m^2) = ',PmA\n",
"print ' The hypothetical mean effective pressure referred to LP cylinder is (kN/m^2) = ',round(Pm)\n",
"\n",
"# (a)\n",
"ko = PmA/Pm;# overall diagram factor\n",
"print ' (b) The overall diagram factor is = ',round(ko,3)\n",
"\n",
"# (c) \n",
"ip = PmA*L*Al*N*2;# indicated power, [kW]\n",
"print ' (c) The indicated power is (kW) = ',round(ip)\n",
"\n",
"# End\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 9: pg 345"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Example 11.9\n",
" (a) The actual mean effective pressure referred to LP cylinder is (kN/m^2) = 219.6\n",
" The hypothetical mean effective pressure referred to LP cylinder is (kN/m^2) = 326.0\n",
" (b) The overall diagram factor is = 0.673\n",
" (c) The pecentage of the total indicated power developed in HP cylinder is (percent) = 29.9\n",
" The pecentage of the total indicated power developed in IP cylinder is (percent) = 30.1\n",
" The pecentage of the total indicated power developed in LP cylinder is (percent) = 40.1\n"
]
}
],
"source": [
"#pg 345\n",
"print('Example 11.9');\n",
"\n",
"# aim : To determine\n",
"# (a) the actual and hypothetical mean effective pressures referred to the low-pressure cylinder\n",
"# (b) the overall diagram factor\n",
"# (c) the pecentage of the total indicated power developed in each cylinder\n",
"from math import pi,log,sqrt\n",
"# given values\n",
"P = 1400.;# steam supply pressure, [kN/m**2]\n",
"Pb = 20.;# back pressure, [kN/m**2]\n",
"Chp = .6;# cut-off in HP cylinder, [stroke]\n",
"dh = 300.*10**-3;# HP diameter, [m]\n",
"di = 500.*10**-3;# IP diameter, [m]\n",
"dl = 900.*10**-3;# LP diameter, [m]\n",
"\n",
"Pm1 = 590.;# actual pressure of HP cylinder, [kN/m**2]\n",
"Pm2 = 214.;# actual pressure of IP cylinder, [kN/m**2]\n",
"Pm3 = 88.;# actual pressure of LP cylinder, [kN/m**2]\n",
"\n",
"# solution\n",
"# (a)\n",
"# for HP cylinder\n",
"PmH = Pm1*(dh/dl)**2;# PmH referred to LP cylinder, [kN/m**2]\n",
"# for IP cylinder\n",
"PmI = Pm2*(di/dl)**2;# PmI referred to LP cylinder, [kN/m**2]\n",
"PmA = PmH+PmI+Pm3;# actual mean effective pressure referred to LP cylinder, [kN/m**2]\n",
"\n",
"R = dl**2/(dh**2*Chp);# expansion ratio\n",
"Pm = P/R*(1+log(R))-Pb;# hypothetical mean effective pressure referred to LP cylinder, [kN/m**2]\n",
"\n",
"print ' (a) The actual mean effective pressure referred to LP cylinder is (kN/m^2) = ',round(PmA,2)\n",
"print ' The hypothetical mean effective pressure referred to LP cylinder is (kN/m^2) = ',round(Pm)\n",
"\n",
"# (b)\n",
"ko = PmA/Pm;# overall diagram factor\n",
"print ' (b) The overall diagram factor is = ',round(ko,3)\n",
"\n",
"# (c)\n",
"HP = PmH/PmA*100;# %age of indicated power developed in HP\n",
"IP = PmI/PmA*100; # %age of indicated power developed in IP\n",
"LP = Pm3/PmA*100; # %age of indicated power developed in LP\n",
"print ' (c) The pecentage of the total indicated power developed in HP cylinder is (percent) = ',round(HP,1)\n",
"print ' The pecentage of the total indicated power developed in IP cylinder is (percent) = ',round(IP,1)\n",
"print ' The pecentage of the total indicated power developed in LP cylinder is (percent) = ',round(LP,1)\n",
"\n",
"# End\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|