1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
|
{
"metadata": {
"name": "Ch 10"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 10: Power Amplifiers"
]
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 10.1 Page No.345"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Example 10.1\n",
"#Program to Determine the Transformer Turns Ratio\n",
"\n",
"#Given Circuit Data\n",
"RL=16 # Ohms, load resistance\n",
"RLd=10000.0 # Ohms ,effective load resistance\n",
"\n",
"#Calculation\n",
"import math\n",
"N12=math.sqrt(RLd/RL) #N12=N1/N2\n",
"\n",
"# Result\n",
"print \" The Transformer Turns Ratio is N1/N2\",N12,\":1\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" The Transformer Turns Ratio is N1/N2 25.0 :1\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 10.2 Page No.345"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Example 10.2\n",
"# Determine the Effective Resistance seen\n",
"# looking into the Primary\n",
"\n",
"#Given Circuit Data\n",
"Rl=8.0 #Ohms, load resistance\n",
"N12=15.0 #N12=N1/N2, transformer turns ratio\n",
"\n",
"#Calculation\n",
"Rld=(N12)**2*Rl #effective resistance\n",
"\n",
"# Result\n",
"print \" The Effective Resistance seen looking into the Primary, Rld = \",Rld/10**3,\"k ohm\""
],
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 10.3 Page No.353"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Example 10.3\n",
"#(a)\n",
"# Determine the Second, Third & Fourth Harmonic Distortions \n",
"\n",
"#Given Circuit Data\n",
"#io=15*sin(600*t)+1.5*sin(1200*t)+1.2*sin(1800*t)+0.5*sin(2400*t)\n",
"#current in components 1,2,3,4\n",
"I1=15 #A\n",
"I2=1.5 #A\n",
"I3=1.2 #A\n",
"I4=0.5 #A\n",
"\n",
"#Calculation\n",
"D2=(I2/I1)*100 #percentage harmonic distribution of component 2\n",
"D3=(I3/I1)*100 #percentage harmonic distribution of component 3\n",
"D4=(I4/I1)*100 #percentage harmonic distribution of component 4\n",
"\n",
"#Result\n",
"print \" The Second Harmonic Distortion is, D2 = percent .\",D2\n",
"print \" The Third Harmonic Distortion is, D3 = percent .\",D3\n",
"print \" The Fourth Harmonic Distortion is, D4 = percent .\",round(D4,2)\n",
"\n",
"#(b)\n",
"import math\n",
"P1=1 #say\n",
"\n",
"#Calculation\n",
"D=math.sqrt(D2**2+D3**2+D4**2) #Distortion Factor\n",
"P=(1+(D/100)**2)*P1\n",
"Pi=((P-P1)/P1)*100\n",
"\n",
"#Result\n",
"print \"The Percentage Increase in Power because of Distortion is, Pi (in percent)= \",round(Pi,2)"
],
"language": "python",
"metadata": {},
"outputs": []
}
],
"metadata": {}
}
]
}
|