1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
|
{
"metadata": {
"name": "",
"signature": "sha256:806c344ebbd66dd7398f87b7be85af8355708b04b28f0bd902647a641248feff"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 25: Laminated Composite Structures"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 25.1 Pg.No.653"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"\n",
"#variable declaration\n",
"Ee=5000 #youngs modulus of epoxy (N/mm^2)\n",
"Ec=200000 #youngs modulus of carbon (N/mm^2)\n",
"\n",
"# E1=Ef*Af/A+Em+Am/A equation 25.4\n",
"A=50*80 #total area (mm^2)\n",
"Ae=40*80 #area of epoxy (mm^2)\n",
"Ac=10*80 #area of carbon(mm^2)\n",
"L=500 #length of bar(mm)\n",
"vc=0.3 #poisson ratio\n",
"ve=0.2\n",
"\n",
"#effective youngs modulus\n",
"E1=(Ee*Ae+Ec*Ac)/A\n",
"\n",
"load=100*10**3\n",
"sigma1=load/A\n",
"epsilon1=sigma1/E1\n",
"\n",
"delta1=epsilon1*L\n",
"v1t=(ve*Ae+vc*Ac)/A\n",
"epsilon_t=-v1t*epsilon1\n",
"\n",
"thickness=L\n",
"delta_t=-epsilon_t*(thickness)\n",
"\n",
"\n",
"sigma_m=Ee*epsilon1\n",
"sigma_f=Ec*epsilon1\n",
"print \"stresses in epoxy = %2.2f N/mm^2\\n\"%(sigma_m)\n",
"print \"stresses in carbon = %2.2f N/mm^2\\n\"%(sigma_f)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"stresses in epoxy = 2.84 N/mm^2\n",
"\n",
"stresses in carbon = 113.64 N/mm^2\n",
"\n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 25.2 Pg.No.657"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"\n",
"tau=40 #shear stress(N/mm^2)\n",
"G=5000 #shear modulus(N/mm^2)\n",
"v1t=0.3 #poisson ratio \n",
"Et=80000 #youngs modulus in transverse direction(N/mm^2)\n",
"E1=120000 #youngs modulus in longitudinal direction(N/mm^2)\n",
"sigma_x=50 #direction stress in x direciton\n",
"sigma_y=25 #in y direction\n",
"\n",
"\n",
"vt1=v1t*Et/E1 #minor poisson ratio\n",
"\n",
"epsilon1=sigma_x/E1-vt1*sigma_y/Et\n",
"epsilont=sigma_y/Et-v1t*sigma_x/E1\n",
"print \"direct strain in x direction = %2.2e \\n\"%(epsilon1)\n",
"print \"direct strain in y direction = %2.2e \\n\"%(epsilont)\n",
"\n",
"gama1t=tau/G\n",
"print \"shear strain in the ply = %2.2e \\n\"%(gama1t)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"direct strain in x direction = 3.54e-04 \n",
"\n",
"direct strain in y direction = 1.88e-04 \n",
"\n",
"shear strain in the ply = 8.00e-03 \n",
"\n"
]
}
],
"prompt_number": 12
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 25.3 Pg.No.661"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"import numpy as np\n",
"\n",
"El=150000 #youngs modulus(N/mm^2)\n",
"Et=90000 #youngs modulus(N/mm^2)\n",
"Glt=5000 #shear modulus(N/mm^2)\n",
"vlt=0.3 #poisson ratio\n",
"theta=45 #longitudinal plane inclination\n",
"\n",
"s11=1/El\n",
"s22=1/Et\n",
"s12=-vlt/El\n",
"s33=1/Glt\n",
"\n",
"a=np.array([[53.45,-46.55,1],[-46.55,53.45,0],[-2.2,-2.2,0]])\n",
"b=np.array([60,40,0])\n",
"x=np.dot(a,b)\n",
"print \"strain in the x direction = %4.4e\\n\"%(x[0]*10**-6)\n",
"print \"strain in the y direction = %4.4e\\n\"%(x[1]*10**-6)\n",
"print \"shear strain in the xy plane = %4.4e\\n\"%(x[2]*10**-6)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"strain in the x direction = 1.3450e-03\n",
"\n",
"strain in the y direction = -6.5500e-04\n",
"\n",
"shear strain in the xy plane = -2.2000e-04\n",
"\n"
]
}
],
"prompt_number": 23
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 25.4 Pg.No.664"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"import numpy as np\n",
"\n",
"l1=150\n",
"t1=1\n",
"l2=100 #dimensions shown in Fig 25.10 (mm)\n",
"t2=2\n",
"Ef=60000 #youngs modulus of flanges(N/mm^2)\n",
"Ew=20000 #youngs modulus of web(N/mm^2)\n",
"P=40*10**3 #axial load(N)\n",
"\n",
"#sum of b*t*E \n",
"sum_btE=2*l2*t2*Ef+l1*t1*Ew\n",
"\n",
"epsilon_z=P/sum_btE #equ 25.37\n",
"P_flange=epsilon_z*l2*t2*Ef\n",
"P_web=epsilon_z*l1*t1*Ew\n",
"print \"axial load in flange = %2.2f kN\\n\"%(P_flange/1000)\n",
"print \"axial load in web = %2.2f kN\\n\"%(P_web/1000)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"axial load in flange = 17.78 kN\n",
"\n",
"axial load in web = 4.44 kN\n",
"\n"
]
}
],
"prompt_number": 28
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 25.5 Pg.No.666"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"import numpy as np\n",
"\n",
"l1=100\n",
"l2=50\n",
"t1=1 #dimension shown in Fig 25.11 (mm)\n",
"t2=2\n",
"Ef=50000 #youngs modulus of flange(N/mm^2)\n",
"Ew=15000 #youngs modulus of web(N/mm^2)\n",
"Mx=10**6 #bending moment (N.mm)\n",
"My=0\n",
"\n",
"Ixx=2*Ef*l2*t2*l2**2+Ew*t1*l1**3/12\n",
"Iyy=Ef*t2*l1**3/12\n",
"Ixy=Ef*l2*t2*(50)*(50)+Ef*l2*t2*(-50)*(-50)\n",
"\n",
"x=50\n",
"y=50 #point 1\n",
"Ez=50000\n",
"\n",
"sigma_z=Ez*((My*Ixx-Mx*Ixy)/(Ixx*Iyy-Ixy**2)*x + (Mx*Iyy-My*Ixy)/(Ixx*Iyy-Ixy**2)*y)\n",
"print \"direct stress at point 1 = %3.1f N/mm^2\\n\"%(sigma_z)\n",
"x=0\n",
"y=50\n",
"sigma_z=Ez*((My*Ixx-Mx*Ixy)/(Ixx*Iyy-Ixy**2)*x + (Mx*Iyy-My*Ixy)/(Ixx*Iyy-Ixy**2)*y)\n",
"print \"direct stress at point 2 = %3.1f N/mm^2\\n\"%(sigma_z)\n",
"\n",
"x=0\n",
"y=50\n",
"Ez=15000\n",
"sigma_z=Ez*((My*Ixx-Mx*Ixy)/(Ixx*Iyy-Ixy**2)*x + (Mx*Iyy-My*Ixy)/(Ixx*Iyy-Ixy**2)*y)\n",
"print \"direct stress at point 2 in the web = %3.1f N/mm^2\\n\"%(sigma_z)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"direct stress at point 1 = 102.6 N/mm^2\n",
"\n",
"direct stress at point 2 = -51.3 N/mm^2\n",
"\n",
"direct stress at point 2 in the web = -15.4 N/mm^2\n",
"\n"
]
}
],
"prompt_number": 39
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 25.6 Pg.No.668"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"import numpy as np\n",
"from sympy import symbols, integrate\n",
"\n",
"s=symbols('s')\n",
"\n",
"l12=250\n",
"l23=300\n",
"t31=t12=2 #dimensions shown in Fig 25.12 (mm)\n",
"t23=1.5\n",
"\n",
"P=2*10**3 #shear load(N)\n",
"E12=E31=45000 #youngs modulus of sides given in name(N/mm^2)\n",
"E23=20000\n",
"\n",
"Ixx=2*E12*t12*l12**3*(l23/2/l12)**2/12+E23*t23*l23**3/12\n",
"alpha=math.asin(l23/2/l12)\n",
"\n",
"Sx=0\n",
"Sy=2*10**3\n",
"q12=-E12*Sy/Ixx*integrate(-2*s,(s,0,250))*math.sin(alpha)\n",
"print \"shear flow at point 2 in the flange 12 = %2.2f N/mm\\n\"%(q12)\n",
"\n",
"q23=-E23*Sy/Ixx*integrate(-225+1.5*s,(s,0,300))+22.2\n",
"print \"shear flow at point 3 in the flange 23 = %2.2f N/mm\\n\"%(q23)\n",
"q0=14.2\n",
"\n",
"q12=-E12*Sy/Ixx*integrate(-2*s,s)*math.sin(alpha)-q0\n",
"print \"shear flow in the flange 12 and 31 \"\n",
"print q12\n",
"\n",
"q23=-E23*Sy/Ixx*integrate(-225+1.5*s,s,)+22.2-q0\n",
"print \"\\nshear flow in the web 23\"\n",
"print q23"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"shear flow at point 2 in the flange 12 = 22.22 N/mm\n",
"\n",
"shear flow at point 3 in the flange 23 = 22.20 N/mm\n",
"\n",
"shear flow in the flange 12 and 31 \n",
"0.000355555555555556*s**2 - 14.2\n",
"\n",
"shear flow in the web 23\n",
"-0.000197530864197531*s**2 + 0.0592592592592593*s + 8.0\n"
]
}
],
"prompt_number": 57
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 25.7 Pg.No.671"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"import numpy as np\n",
"from sympy import symbols, integrate\n",
"\n",
"\n",
"l1=200\n",
"t1=2\n",
"l2=100 #dimensions shown in Fig 25.13 (mm)\n",
"t2=1\n",
"T=10*10**6 #torque applied (N.mm)\n",
"Gl=20000 #laminate shear modulus(N/mm^2)\n",
"Gw=35000 #web shear modulus(N/mm^2)\n",
"A=l1*l2\n",
"\n",
"q=T/2/A\n",
"\n",
"#from eqn 25.47\n",
"int_ds_by_Gt=2*l1/Gl/t1+2*l2/Gw/t2\n",
"\n",
"#Let's say we want to calculate warping at point 1\n",
"#warping at mid of web is zero (W0=0) integrate eqn 25.47 from\n",
"#mid of web to point 1\n",
"W0=0\n",
"A0s=50*100\n",
"W1=W0+q*(l2/2/Gw/t2-int_ds_by_Gt/A*A0s)\n",
"print \"warping at point 1 is = %2.2f mm\\n\"%(W1)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"warping at point 1 is = -0.63 mm\n",
"\n"
]
}
],
"prompt_number": 66
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 25.8 Pg.No.673"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"import numpy as np\n",
"from sympy import symbols, integrate\n",
"\n",
"l1=50\n",
"t1=2.5\n",
"l2=25 #dimension shown in Fig 18.12(mm)\n",
"t2=1.5\n",
"\n",
"Gl=20000\n",
"Gw=15000 #shear modulus (N/mm^2)\n",
"T=10*10**3 #torque applied (N.mm)\n",
"AR=25*25/2\n",
"GJ=2*Gl*l2*t2**3/3+Gw*l1*t1**3/3\n",
"#eqn 25.49\n",
"dO_dz=T/GJ\n",
"\n",
"t_max12=2*Gl*(t2/2)*dO_dz\n",
"t_max23=2*Gw*(t1/2)*dO_dz\n",
"print \"maximum shear stress in the web = %2.2f N/mm^2\\n\"%(t_max12)\n",
"print \"maximum shear stress in the laminate = %2.2f N/mm^2\\n\"%(t_max23)\n",
"\n",
"W1=-2*AR*dO_dz\n",
"print \"warping at point 1 = %2.2f mm\\n\"%(W1)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"maximum shear stress in the web = 59.63 N/mm^2\n",
"\n",
"maximum shear stress in the laminate = 74.53 N/mm^2\n",
"\n",
"warping at point 1 = -1.24 mm\n",
"\n"
]
}
],
"prompt_number": 74
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": []
}
],
"metadata": {}
}
]
}
|